Virtual Platform for Mixed-Time Criticality Applications:
The CoMPSoC Architecture and SDF3 Design Flow

Benny Akessoh Sander Stuijk, Anca Molnog, Martijn Koedani, Radu Stefah
Andrew Nelsor, Ashkan Beyranvand Nejddand Kees Goossehs
I Eindhoven University of Technology, Delft University of Technology

I I N TRO DU CT I O N l(:-\ timing constraint(s)

CSDF model 3
| —® (SDF’design flow

binding and scheduling
decisions

Systems-on-Chip (SoC) complexity increases as a grow-
ing number of applications are integrated and executed on
contemporary systems. These applications consist of com-

actor implementation
source code A]

municating tasks mapped on heterogeneous multi-processor

platforms with distributed memory hierarchies that strike ((CRILRTE GER 0 L) >
good balance between performance, cost, power consumption CoMPSoC architcoture { appliation sotware

and flexibility [1], [2]. Complexity is further increased kan virtual virtual virtual
increasing number ofise-caseswhich are different combi- kel AL T
nations of concurrently running applications. The appites
havemixed time-criticality which is a mix between firm, soft, [A i >
and noreal-time requirementsFirm real-time requirements —H NoC front back
must always be satisfied to prevent unacceptable outpuityjual <EH =

loss, while occasional failures to meet soft requiremeatshe

tolerated. Lastly, non-real-time applications do not had- Fig. 1. CoMPSoC architecture and SbHesign flow.

defined timing requirements, but must still be responsive.

Applications from different domains and that have différen
time criticalities use differentlesign and verification meth- relies on two complexity-reducing conceptsmposabilityand
ods After applications are developed, the verification precegredictability, detailed as follows.
begins. Verification of real-time requirements is tradiidy =~ Composable virtual platforms are completely isolated and
performed using formal analysis, simulation, or a comliimat cannot affect each other’s temporal behaviors by even desing
of the two. Firm real-time applications demand rigorousrfat clock cycle. They are henceirtualized in terms of actual
verification, since their requirements must always be méxecution timgenabling applications to be designed, devel-
In contrast, soft real-time applications are often verifind oped and verified in isolation. This alleviates the verifimat
simulation for a large set of inputs, as they are often dysanfroblem in the mixed-time criticality domain in three ways:
by nature and difficult to verify by formal methods in a costl) verification becomes a non-circular process, 2) the time
effective manner. required by simulation-based verification is reduced, esinc

To reduce cost, platform resources, such as process@dly a single application in its virtual platform has to be
interconnect, and memories, are shared between appiisati¢imulated, and 3) the use of different design and verificatio
However, resource sharing causeserferencebetween ap- Methods is enabled.
plications, making their temporal behaviors inter-demed The virtual platforms are also predictable, which means tha
This results in three problems with respect to system desigl platform and application interference is bounded. — This
verification, and integration. Firstly, accurate systewvel sim- Mmakes thenvirtualized in terms of performance boundsich
ulation and several approaches to formal analysis in compl@S upper bounds on latency or lower bounds on throughput.
SoCs are infeasib'e, because of tbmte_space explosionThiS enables firm real-time app|icati0nS to be verified USing
resulting from the many use-cases, application inputs, affgmal performance analysis frameworks, such as data-flow
resources states. Secondly, use-case verification becamednalysis [5]. Composability and predictability are henoene
circular processthat must be repeated if an application i®lementary concepts that both solve important parts of the
added, removed, or modified [3]. Thirdly, it is difficult toverification problem for mixed time-criticality systemsnca
support various automatic analysis and design flows. AsPgovide a complete solution when combined.
result, the integration and verification process is a dontina
part of SoC development, both in terms of time and money [3].

The CoMPSoC platform [4] addresses these problems byThe CoMPSoC platform, illustrated in the bottom part of
executing each application in an independent virtual ptatf Figure 1, has a tiled architecture consisting of proceskas, t
and by using the SDFdesign flow [5] that automatically network-on-chip, and memory tiles. Each of these tiles and
analyses firm real-time applications and maps them ontle interconnect are virtualized to implement a set of wirtu
virtual platform. The CoMPSoC virtualization technologyplatforms. We first briefly describe each resource in turn

Il. PLATFORM ARCHITECTURE

and then present the techniques to achieve composable aedds to consider the worst-case execution time and worst-
predictable virtualization. case memory requirements of an actor. Currently, a designer
A processor tileis equipped with a MicroBlaze proces-is responsible for providing these inputs to our flow.
sor running the CompOSe real-time operating system [6]. To implement a CSDF graph, its actors and edges should
CompOSe provides composable and predictable services, sbe bound and scheduled on the resources of an MPSoC.
as application scheduling and power management [7]. Fhis process is handled by our design flow. Our flow first
processor tile furthermore contains non-shared local nngma@nalyzes the trade-off between the storage-space assigned
(Lmem) for instruction and data, as well as communicatidhe edges and the throughput of the graph. After constminin
memories (Cmem) used by a DMA for communication witthe storage space of the edges, the flow binds the actors to the
remote tiles. Thenemory tileis subdivided into a front-end MPSoC resources. Next, static-order schedules are cotestru
and a back-end. The front-end is independent of memdgr all processors to which actors have been bound. Finally,
technology and contains buffering and arbitration. Thekbacthe flow computes the minimal TDM time slices needed on
end interfaces with the actual memory device and is differefiiese processors to guarantee the timing requirementseof th
for different types of memories. It is possible to use antbé- application. By minimizing the TDM time slices, processor
shelf SRAM back-end, but a customized SDRAM back-end [8sources are saved for other applications. Once the ctample
is used to enable efficient performance virtualization. files mapping is known, the CoMPSoC design flow generates a set
in the system are interconnected using the Athereal netwopk C source files that together with the C source code of the
on-chip [9]. The architecture of the network comprises neactors implement the complete application on the CoMPSoC
work interfaces that packetizes and buffers incoming datd, platform. The generated C code contains all required fancti
control access to the network, and routers that forwardetackcalls to CompOSe to initialize arbiters in the processastil
towards the destination network interface. network-on-chip and memory tiles, and execute the apjdicat
The CoMPSoC platform uses three main techniques ffithin its timing constraints.
composability and predictability, respectively. The teicfues IV. CASE STUDY

for composability are [4]: 1) use@reemptionafter a fixed . :
time to prevent large or infinite requests from one applorati m cﬁjglaé?jeviittﬁdg Végsli)lgegg&edisllﬂglﬁgtiigllc.$n6:pgeegotge;
from starving other applications, ZJelay schedulingunti wo-tile CoMPSoC instance using our automated design flow.

the end of a time slice to prevent requests that finish eal o flow was able to find a mapning of our apolication within
from affecting when the following request is scheduled, and - 10 Tind a mapping " app
seconds that satisfied its timing constraints as well as the

usecomposable schedulinguch as time-division multiplexing

(TDM), where the presence or absence of requests frdgsource constraints imposed by our platform instanceerAft

one application cannot affect when other applications apghning our flow, the CoMPSoC instance and our mapped

- . o i application were implemented on an FPGA board using an
scheduled. The techniques for predictability [4] are: 13tda : ; .
worst-case analysis per resourby requiring that all data for automated synthesis trajectory. Experiments on the FPGA

a request is available and that there is sufficient memorgespgfaéid tC%Tﬂanid \t/?art v(\)/r]r ﬁlﬁtfr?rr]m p:ﬁwcﬁszgscgmpc()jsar\ble and
to store responses before scheduling it, 2) psedictable predictable behavio enru g the A. ecoaer.

resourceswith bounded worst-case execution times, such as V. CONCLUSIONS

the CoMPSoC processing tiles, network-on-chip, and memoryThis paper presents the CoMPSoC architecture, which com-

tiles, and 3) usepredictable schedulingo bound worst-case pined with the SDF design flow can be used to realize

response times, such as TDM or Round-Robin. virtual platforms for mixed-time criticality applicatisn The
CoMPSoC virtualization technology combines composahilit

[1l. DESIGN FLOW and predictability in a single platform and design trajegto
REFERENCES

STMicroelectronics and CEA, “Platform 2012: A Many-core programmable accel-
erator for Ultra-Efficient Embedded Computing in Nanometer Technology,” 2010

Programming heterogeneous systems, such as the CoMP-
SoC platform, is a very challenging task. Model-based desigy

approaches using the dataflow Model-of-Computation have
emerged as a promising solution to address this challengg
For example, [10] presents a design flow that maps a througl#
put constrained application, modeled with a scenario-awary
dataflow graph, to an MPSoC. This design flow is implemented
in the SDPE tool set [5]. We adapted this design flow for

use with CoMPSoC. As shown in Figure 1, our flow takesl]
an application modeled with a Cyclo-Static Dataflow (CSDF)[6]
graph [11] as an input. The nodes in a CSDF graph, callefl!
actors model application tasks and tleelgesmodel control (g
or data dependencies. In the CoMPSoC design flow, eacgﬁ
actor is associated with C code that implements its funct
tionality. When determining the mapping of the actors ofid
the platform resources, the design flow abstracts from thig;
functional behavior. To provide timing guarantees, it only

white paper.

C. van Berkel, “Multi-core for Mobile Phones,” iRroc. DATE 2009.

H. Kopetz and G. Bauer, “The time-triggered architectuferdc. IEEE vol. 91,
no. 1, 2003.

B. Akessonet al, “Composability and predictability for independent application
development, verification, and execution,” Multiprocessor System-on-Chip —
Hardware Design and Tool IntegratioM. Hilbner and J. Becker, Eds. Springer,
2010, ch. 2.)

S. Stuijk et al,, “SDF®: SDF For Free,” inProc. ACSD 2006.

A. Hanssonet al, “Design and Implementation of an Operating System for
Composable Processor Sharin§|flCPRQ vol. 35, no. 2, 2011.

A. Nelsonet al,, “Composable power management with energy and power budgets
per application,” inProc. SAMOS2011.

B. Akessonet al, “Predator: a predictable SDRAM memory controller,”Rnoc.
CODES+ISSS2007.

K. Goossens and A. Hansson, “The aethereal network on chip after ten years:
Goals, evolution, lessons, and future,”noc. DAG 2010.

S. Stuijket al, “A predictable multiprocessor design flow for streaming applica-
tions with dynamic behaviour,” ifProc. DSDQ 2010.

G. Bilsenet al, “Cyclo-static dataflow,”IEEE Trans. Signal Processvol. 44,
no. 2, 1996.

