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Abstract—As technology scales, the impact of process variation
on the maximum supported frequency (FMAX) of individual
cores in a MPSoC becomes more pronounced. Task allocation
without variation-aware performance analysis can result in a
significant loss in yield, defined as the number of manufactured
chips satisfying the application timing requirement. We propose
variation-aware task allocation for real-time streaming applica-
tions modeled as task graphs. Our solutions are primarily based
on the throughput requirement, which is the most important
timing requirement in many real-time streaming applications.
The three main contributions of this paper are: 1) Using data
flow graphs that are well-suited for modeling and analysis
of real-time streaming applications, we explicitly model task
execution both in terms of clock cycles (which is independent of
variation) and seconds (which does depend on the variation of the
resource), which we connect by an explicit binding. 2) We present
two approaches for optimizing the yield. The approaches give
different results at different costs. 3) We present exhaustive and
heuristic algorithms that implement the optimization approaches.
Our variation-aware mapping algorithms are tested on models of
real applications, and are compared to the mapping methods that
are unaware of hardware variation. Our results demonstrate yield
improvements of up to 50% with an average of 31%, showing
the effectiveness of our approaches.

Index Terms—Process variation, Multiprocessor System-on-
Chip, Synchronous Data Flow Graphs, Task Allocation

I. INTRODUCTION

Aggressive technology scaling has enabled the integration

of multiple processors and hardware accelerators on a single

silicon chip die, known as a Multiprocessor System-on-Chip

(MPSoC). The use of such systems is increasingly popular, as

they have high computational power and low power consump-

tion, which are the main requirements for many embedded

systems. Scaling the minimum feature sizes in deep-sub-

micron technologies, however, has also brought variations

in key transistor parameters, such as channel length and

device and interconnect width. This phenomenon, known as

process variation [1], [2], significantly impacts the maximum

supported frequency of individual cores in a MPSoC [3], [4]. It

is shown in [5] that the variation in the longest path delay (the

inverse of FMAX) of a Very Long Instruction Word (VLIW)

processor, manufactured at 32nm technology, is up to 40%.

Moreover, the impact of within-die variation on the system

parameters is increasing as the technology scales, making it a

limiting factor in efficient MPSoC design [3].

Binding of application tasks to the resources in a MPSoC

without considering the impact of process variation can greatly

compromise the performance and lead to a significant yield

loss. In this work, the yield metric is not the hardware

manufacturing yield, which determines the number of chips

that meet the predefined frequency requirements. In our view,

yield is defined at the application level, and shows the number

of manufactured chips that satisfy the application timing re-

quirement. Existing solutions, which propose variation-aware

yield-driven task allocation and scheduling [6]–[9], use acyclic

task graphs for application modeling and are based on latency

requirements. Acyclic task graphs are not able to capture

the cyclic data dependencies and the streaming behavior (i.e.

iterative and overlapping execution) of real-time streaming

applications [10]. In this work, we allow arbitrary task graphs

that may include cyclic data dependencies. Our solutions

are primarily based on the throughput requirement, which is

the most important timing requirements in many real-time

streaming applications, but latency requirements can also be

addressed [11].

The three main contributions of this work are: 1) We base

our solutions on Synchronous Data Flow Graphs (SDFG),

which are well-suited for modeling and analysis of real-time

streaming applications, and have multiple efficient techniques

for throughput computation [10]. The novelty of our SDFG

formulation lies in the explicit modeling of software execution

in terms of clock cycles (which is independent of the variation

in the hardware resource), and in terms of seconds (which

does depend on the variation in the resource), which are

linked by an explicit binding. 2) We present two approaches

for optimizing the yield, single-binding and multiple-bindings.

With the single-binding optimization approach, the objective

is to find a binding at design time that maximizes the yield of

all the manufactured chips, which have different variation in

the resources. With multiple-bindings optimization approach, a

set of bindings are found and stored at design time, and based

on the variation in each manufactured chip, the right binding

that satisfies the application timing requirement is selected

at the run-time configuration stage. 3) We present exhaustive

and heuristic algorithms that implement the optimization ap-

proaches. The exhaustive algorithms provide optimum results

and can be applied to problems of small to medium size.

The heuristic algorithms provide results close to optimum and

are scalable to problems of large size. Our variation-aware

mapping algorithms are compared to the mapping methods

that are unaware of the variation in the hardware resources.

Our results report yield improvements of up to 50% with an

average of 31%, showing the effectiveness of our methods.

The rest of the paper is organized as follows: Section II

presents the related work in the field. Section III introduces

formal models of a hardware platform, an application SDFG

and a binding. In Section IV, we present the single-binding and

multiple-bindings approaches for optimizing the yield of real-

time streaming applications. Section V illustrates the variation-

aware exhaustive and heuristic algorithms that implement the



optimization approaches. Section VI experimentally evaluates

our methods and Section VII concludes the paper.

II. RELATED WORK

Several techniques have been proposed to minimize process

variation at the circuit and microarchitectural levels [1], [12],

but they are unable to hide the variation at the system

level. There has been extensive research in the area of task

allocation and scheduling for MPSoC [6]–[10], [13]–[15].

The researchers in [10], [14], [15] proposed methods to map

throughput-constrained applications modeled as SDFGs to the

resources in a MPSoC. None of them, however, considers the

impact of process variation. With variation-unaware mapping

approaches, the impact of process variation cannot be reflected

by having different resources with different frequencies as the

availability of a resource with a specific frequency is a matter

of probability.

Wang et al. [6] introduced a new design metric called

performance yield, defined as the probability of the assigned

schedule meeting the predefined performance constraint. As-

suming that the execution times of tasks follow a Gaussian

distribution, they proposed a variation-aware scheduling al-

gorithm that allocates and schedules tasks that have latency

requirements in an acyclic task graph to MPSoC, such that the

performance yield is maximized. Resource sharing in task allo-

cation and scheduling under process variation has been studied

by Chon and Kim [7]. They proposed an effective statistical

static timing analysis technique, which schedules and binds

tasks in an acyclic task graph to the resources in an MPSoC

in the presence of resource sharing, such that the performance

yield is maximized. Singhal and Bozorgzadeh [8] introduced

the problem of stochastically optimal task allocation, which is

to minimize the overall execution time of tasks in sequence and

parallel under process variation. Huang and Xu [9] took into

account the spatial correlation characteristics of systematic

within-die variation and presented a scheduling algorithm that

schedules tasks with latency constraints in an acyclic task

graph, such that the performance yield is maximized. With

their solution, a set of schedules is synthesized off-line and

based on the variation for each chip, a run-time scheduler

selects the right one, such that the latency constraint is satisfied

whenever possible.

All the solutions in the above work that account for process

variation use acyclic task graphs for application modeling and

are based on latency requirements. Acyclic task graphs are not

able to capture the iterative and overlapping execution of real-

time streaming applications, which are primarily constrained

by throughput requirements. We allow arbitrary task graphs

that may include cyclic data dependencies. Our solutions

are primarily based on throughput requirements but latency

requirements can also be addressed [11]. We use SDF graphs

that are well suited for modeling and analysis.

III. FORMAL MODELS

This section formally defines a hardware multiprocessor

platform as a set of resources. We introduce a set of operating

points (maximum supported frequencies) for each resource to

reflect the impact of process variation. We define an SDFG

model of an application, named an unbound graph, where the

actors (tasks of an application) are characterized by execution

times in clock cycles. The unbound graph is unaware of

the binding of application actors to the hardware resources,

and is hence decoupled from hardware variation. Later, we

introduce an explicit binding of actors to the resources in a

platform and define an SDFG model of an application, named

a bound graph, where application actors are characterized by

execution times in seconds. The bound graph is no longer

decoupled from hardware variation, and it enables us to

analyze the impact of variation on the application performance

for different actor to resource bindings.

The presented techniques are general and apply to any

system that implements the models in this section. Examples

of such systems are CoMPSoC [16] and CA-MPSoC [17]

A. Model of a Hardware Platform

We refer to a hardware multiprocessor platform as a set

of resources connected with each other by a hypothetical

interconnection network. We denote the set of resources as

R. Each resource is a generic processing element, such as

a processor, DSP or a hardware accelerator. To model pro-

cess variation in each of the resources, we characterize each

resource by a nominal operating point (nominal maximum

supported frequency) and a set of possible operating points

(possible maximum supported frequencies). The nominal op-

erating point (Definition 1) is the target speed specification of

the resource, and what the manufacturing aims for, but due to

process variation, the resource can have any of the multiple

operating points (Definition 2). We assume a multiprocessor

platform, where each resource is in a separate frequency

domain and can be operated at any of its possible operating

points. This assumption holds for Globally Asynchronous and

Locally Synchronous (GALS) embedded designs.

Definition 1: (Nominal operating point of a resource) The

function ON : R → R+ returns the nominal operating point

of a resource r ∈ R.

Definition 2: (Possible operating points of a resource) The

function OP : R → P(R+) \ ∅ returns a non-empty set of all

possible operating points of a resource r ∈ R.

The occurrence probability of each operating point of a

resource is given by Definition 3. Note that the sum of the

probabilities of all the operating points of any resource is 1.

Definition 3: (Probability of an operating point of a re-

source) The function P : R× Ω → R+ returns the occurrence

probability of an operating point op ∈ OP(r) of a resource

r ∈ R, where Ω is the set of all operating points

Ω =
⋃

r∈R

OP(r) (1)

Given that each resource is characterized by a set of possible

operating points, there are multiple combinations of operating

points for the overall number of resources. We refer to an

instance of operating points for a sequence of the overall

number of resources as a system operating point. The set of all

possible system operating points is obtained by the Cartesian

product of the individual sets of operating points of resources

(Definition 4), and is an N-dimensional vector for N resources.



The probability that a set of resources has a certain system

operating point is given by Definition 5.

Definition 4: (System operating points) The set OS of all

possible system operating points for a set R of resources is

defined as

OS =
∏

r∈R

OP(r) (2)

Definition 5: (Probability of a system operating point) The

function SP : OS → R+ gives the occurrence probability of a

system operating point os ∈ OS and is defined as

∀os ∈ OS. SP(os) =
∏

r∈R
op∈os

P (r, op) (3)

To illustrate the presented concepts, consider a platform

comprising two resources. Each resource r is given by a

nominal operating point ON(r) (in cycles/second), a set of

two possible operating points OP(r), and the occurrence

probabilities P (r, op) of each operating point (Table I). The

system operating points and the occurrence probability of each

system operating point are obtained by Definitions 4 and 5,

respectively, and are given in Table II.

TABLE I
A PLATFORM COMPRISING TWO RESOURCES

Resource ON(r) OP(r) P(r, op)

r1 10 8 0.3

10 0.7

r2 10 9 0.3

10 0.7

TABLE II
SYSTEM OPERATING POINTS AND THEIR OCCURRENCE PROBABILITIES

OS (8 9) (8 10) (10 9) (10 10)

SP(os) 0.09 0.21 0.21 0.49

B. Model of an Unbound Graph

We model real-time streaming applications by means of

Synchronous Data Flow Graphs (SDFG). The motivation

behind this choice is that an SDFG model provides a good

compromise between expressiveness, modeling ease, analysis

potential and implementation efficiency. With an SDFG model,

an application is captured by a directed graph, where the nodes

(called actors) represent computations (tasks) that communi-

cate with each other by sending streams of data-elements over

their edges. We denote the set of all actors as A, where each

actor requires a number of clock cycles to finish its execution

(Definition 6). Note that the number of clock cycles required

for an actor’s execution can be different for each resource.

Definition 6: (Execution time of an actor in cycles) The

function EC : A × R → N returns the number of cycles

required to execute an actor a ∈ A on a resource r ∈ R.

Definition 7 defines a model of a SDFG that is unaware of

the binding of actors to resources. Each actor in the graph is

characterized by a number of execution times in clock cycles

of the resource for the resources to which it can be bound.

Definition 7: (Unbound graph) An unbound graph ug is a

4-tuple 〈A,D, Init,EC〉 with a set A of actors, a set D = A×A
of dependency edges, a function Init : D → N that gives the

number of initial tokens for an edge d ∈ D, and the function

EC : A× R that gives the execution times in clock cycles of

actors A on a number of resources in the set R.

Figure 1 illustrates an example SDFG model of an H.263

Encoder application. It consists of five actors, which are

connected to each other by means of seven dependency

edges. Dependency edges d3, d6 and d7 contain initial tokens,

illustrated by black dots in the figure. The execution of an actor

is called a firing. When an actor fires it removes a number of

tokens from all its input ports and at the end of the firing

(after its execution), it produces a number of tokens on each

output port. The set of actor firings that restores the initial

configuration of the graph is termed an iteration. During a

single iteration of the graph, each actor can fire a number

of times. This is given by the repetition vector of the graph

(Definition 8). The repetition vector of the SDFG shown in

Figure 1 is equal to (1, 99, 1, 99, 1) for actors (a1, a2, a3,

a4, a5), respectively.

Definition 8: (Repetition vector) The function γ : A → N

returns the number of times each actor a ∈ A fires during a

single iteration.

a1

Motion Est.

a2

MB Enc.

a3

VLC

a4

Motion Comp.

a5

MB Dec.

99 1

d1

1 99

d2

d3

1

1

d4

199

d5

d6

1

1
d7

1 1

1 1

1

1

1

Fig. 1. Example SDFG model of H.263 Encoder.

C. Model of a Bound Graph

Each actor can be bound to a number of resources from the

set R. The set of resources an actor can be bound to is given

by Definition 9.

Definition 9: (Possible bindings of an actor) The function

BP : A → P(R) \ ∅ returns the set of resources to which an

actor a ∈ A can be bound.

For a set A of actors and a set R of resources, there can be

multiple bindings of actors to resources. The set of all possible

actor to resource bindings can be obtained by the Cartesian

product of the individual sets of possible bindings of actors

(Definition 10).

Definition 10: (Binding) The set B of all possible actor to

resource bindings is defined as

B =
∏

a∈A

BP(a) (4)



For each binding, the execution time of an actor in clock

cycles is known. The execution time of an actor in seconds

on a resource for a specific operating point is given by

Definition 11.

Definition 11: (Execution time of an actor in seconds) The

function ET : A×R → Q returns the execution time in seconds

of an actor a ∈ A on a resource r ∈ R that has an operating

point op ∈ OP(r), and is defined as

ET(a, r) =
EC(a, r)

op
(5)

For a specific system operating point and a specific binding

of actors to resources, a model of a bound SDFG can be

generated (Definition 12).

Definition 12: (Bound graph) A bound graph bg is a

3-tuple 〈ug, b, os〉 with an unbound graph ug, a binding b ∈ B
of actors A to resources R and a system operating point

os ∈ OS.

The throughput of a SDFG is traditionally computed by

means of Maximum Cycle Mean analysis (MCM) on the

equivalent Homogeneous SDFG (HSDFG) (Definition 13).

This implies that a conversion from SDFG to HSDFG is

required [18].

Definition 13: (Throughput of a bound graph) Throughput

of a bound graph bg is defined as T (ug, b, os) = 1/MCM(bg′),
where MCM(bg′) is the maximum cycle mean over all cycles

in the equivalent HSDFG bg′. The cycle mean of each cycle

c equals the sum of the execution times of actors in the cycle

divided by the number of initial tokens on the cycle.

MCM(bg′) = max
c∈Cbg

∑

a∈c

ET(a)/Init(c) (6)

IV. YIELD OPTIMIZATION PROBLEMS

In this section, we define our optimization problem for

real-time streaming applications. The optimization objective

is to maximize the yield, which is the number of manufac-

tured chips that satisfy the application minimum throughput

requirement, denoted treq. We present two approaches for

optimizing the yield, single-binding and multiple-bindings.

With the single-binding optimization approach, the objective

is to find a single binding at design time, such that the yield

is maximized. With this approach, all the manufactured chips,

which have different system operating points (variation) in the

resources, have an identical binding. The objective with the

multiple-bindings optimization approach is to find and store

a set of bindings at design time, and based on the system

operating point (variation) of each manufactured chip, the right

binding that satisfies the throughput requirement is selected

at the run-time configuration stage. The run-time binding

selection for each chip is done only once at the system initial

configuration stage through the operating system, and is not

detrimental to real-time deadlines.

A. Single Binding

With the single-binding optimization approach, the objective

is to find a binding that maximizes the yield. For a given

binding b ∈ B, the different chips that have different system

operating points (variation) can have different throughputs.

Figure 2 depicts the throughput T (bg) = T (ug, b, os) of

the bound graph bg for the different system operating points

os ∈ OS of the chips, given a fixed binding b ∈ B. In our

modeling framework, the yield of a binding b ∈ B over all

the system operating points os ∈ OS, where each system

operating point has a probability-weight SP(os), is given in

Definition 14.

Maximize the number
of os points above treq

os ∈ OS

T (ug, b, os)

treq

Fig. 2. Throughput against system operating point for a fixed binding. Yield
is given by the number of os points (with associated probabilities) above treq.

Definition 14: (Yield of a binding) Given an unbound graph

ug and a binding b ∈ B, the function Y gives the number of

chips satisfying the requirement treq over all system operating

points os ∈ OS

∀b ∈ B. Y (b) =
∑

os∈OS

{

SP(os) if T (ug, b, os) ≥ treq
0 otherwise

(7)

The objective of the single-binding optimization approach is

formulated as: Given a set A of actors and a set R of resources,

find a binding bout ∈ B of actors to resources, such that the

yield ymax = Y (bout) is maximized.

B. Multiple Bindings (Run-Time Configuration)

With the multiple-bindings optimization approach, the ob-

jective is to find a binding for each system operating point

os ∈ OS at design time, such that the throughput requirement

of the bound graph at that system operating point is satisfied.

If there is no binding that satisfies the requirement, then the

chips with that particular system operating point cannot be

used, reducing the yield. Therefore, a set of bindings are found

and stored at design time. Based on the system operating

point (variation) of each manufactured chip, the right binding

that satisfies the throughput requirement is then selected at

the run-time configuration stage. Per chip binding selection

always results in higher or equal yield as compared to the

case where a single binding is selected for all the chips. The

downside of the approach is that multiple bindings are stored

for the configuration stage and diverse application instances

are present for the same product, which can complicate the

processes of software maintenance and upgrading.

The objective of the multiple-bindings optimization ap-

proach is formulated as: Given a set A of actors and a set R
of resources, find a set Bout ⊆ B of bindings that includes

a binding for each os ∈ OS, such that the yield ymax is

maximized.



V. IMPLEMENTATION ALGORITHMS

As shown in Section IV, to maximize the yield by either

of the presented optimization approaches, various bindings

of application actors to resources have to be explored. In

this section we present two algorithms for the evaluation of

bindings, an exhaustive approach and a heuristic algorithm.

With the exhaustive approach, we evaluate all binding pos-

sibilities (as given by Definition 10) to find a binding for

all chips (single-binding optimization) or a binding per chip

(multiple-bindings optimization). This approach enables us to

find the maximum improvement in yield (optimum solution),

but is computationally too expensive for problems of large

size (i.e. large number of actors and resources). To overcome

this limitation, we also implemented a heuristic algorithm

that prunes the search space and obtains results close to the

optimum.

A. Exhaustive Algorithm

The exhaustive algorithm for the single-binding optimiza-

tion approach is shown in Algorithm 1. As input, the algorithm

requires an application graph ug with an associated throughput

requirement treq and a set R of resources, where each resource

is given by a set OP(r) of possible operating points and

associated occurrence probabilities P (r, op). As can be seen,

the algorithm exhaustively evaluates the yield (Definition 14)

of all possible bindings, and returns the binding bout that results

in the highest yield ymax = Y (bout).

Algorithm 1 Exhaustive algorithm: Single-binding.

Require: ug, treq, R, OP(r), P (r, op)
1: ymax ← 0
2: for all b ∈ B do
3: if Y (b) > ymax then
4: bout ← b
5: ymax ← Y (b)
6: end if
7: end for
8: return bout, ymax

Algorithm 2 illustrates the exhaustive algorithm for the

multiple-bindings optimization approach. As shown, for each

system operating point os ∈ OS, the algorithm exhaustively

evaluates all possible bindings to find a binding that satis-

fies the requirement treq. The first binding that satisfies the

requirement treq is stored for each system operating point. It

is possible that no binding can satisfy treq for a particular

os ∈ OS, resulting in reduced yield. The algorithm returns

a set Bout of bindings that includes a binding for individual

os ∈ OS and an estimated yield ymax for all the chips.

The exhaustive approach enables us to find the optimum

solution, which provides the maximum improvement in yield.

The limitation of the approach is that it is computationally

too expensive for problems of large size (i.e. large number of

actors and resources). The total number of bindings to evaluate

is |R||A|, where |R| is the number of resources and |A| is the

number of actors in an application. We, hence, proceed by

presenting a heuristic algorithm that prunes the search space

and obtains results close to the optimum.

Algorithm 2 Exhaustive algorithm: Multiple-bindings.

Require: ug, treq, R, OP(r), P (r, op)
1: ymax ← 0, Bout ← ∅
2: for all os ∈ OS do
3: for all b ∈ B do
4: if T (ug, b, os) > treq then
5: Bout ← Bout ∪ {b} //save b for current os
6: ymax ← ymax + SP(os)
7: BREAK
8: end if
9: end for

10: end for
11: return Bout, ymax

B. Heuristic Algorithm

With the heuristic algorithm, only a small number of

bindings from the total number of possibilities are explored.

The bindings that are evaluated by the heuristic algorithm are

generated by a two-phase procedure, initial resource allocation

and allocation optimization. In the initial resource allocation,

an initial binding of application actors to resources is derived.

This initial binding later undergoes an optimization stage

where the actors are moved from one resource to another to

either improve the yield (single-binding optimization) or the

throughput for each chip (multiple-bindings optimization).

In the initial resource allocation, the actors whose execution

time have a large impact on the throughput of an applica-

tion, referred to as critical actors, are considered first. The

criticality of an actor a ∈ A is estimated by the product of

its repetition vector γ(a) (Definition 8) and average execution

time (Definition 6) in a number of cycles over all the resources

(Definition 15). This is an approximate way of determining the

criticality, as it intuitively estimates the average computational

demand of an actor.

Definition 15: (Actor criticality) The function C : A → Q

returns the criticality of an actor a ∈ A, and is defined as

∀a ∈ A. C(a) = γ(a) ·
1

|R|

∑

r∈R

EC(a, r) (8)

When allocating the actors to the resources, the initial

resource allocation tries to balance the load (in terms of

execution time in seconds during an iteration) on the resources.

The load of a resource is computed by the sum of products

of the repetition vectors and the execution times in seconds of

the actors bound to the resource (Definition 16).

Definition 16: (Resource load) The function L : R → Q

returns the load of a resource r ∈ R, and is defined as

∀r ∈ R. L(r) =
∑

a∈A

a bound to r

γ(a) · ET(a, r) (9)

Algorithm 3 shows the heuristic algorithm for the single-

binding optimization approach. In the first part of the algo-

rithm (lines 2–9), initial resource allocation is performed. The

actors, sorted in decreasing order of criticality, are allocated to

the resources, such that the load on the resources is balanced.

Each time an actor is to be bound to a resource, the resource

with the lowest load is selected. If the resources are not



allocated yet, an actor is bound to the resource with the

highest nominal operating point (Definition 1). This is done

to ensure that the actors with higher criticality are allocated

to resources with higher computational power (resources with

higher nominal operating points are on average faster). In

the second part of the algorithm (lines 11–19), allocation

optimization is performed. The allocation of each actor in

increasing order of criticality is reconsidered. Each time an

actor is moved from one resource to another, the new binding

is evaluated for yield. The algorithm returns a binding bout that

has the highest yield ymax = Y (bout) among the bindings that

have been explored.

Algorithm 3 Heuristic algorithm: Single-binding.

Require: ug, treq , R, OP(r), P (r, op)
1: ymax ← 0
2: ∀r ∈ R. L(r)← 0
3: Sort A in decreasing C(a)
4: Sort R in decreasing ON(r)
5: for all a ∈ A do
6: Sort R in increasing L(r)
7: Bind first a to first r
8: Update L(r)
9: end for //initial binding b retrieved

10:

11: for all a ∈ A do
12: for all r ∈ R do
13: if Y (b) > ymax then
14: bout ← b
15: ymax ← Y (b)
16: end if
17: Bind a to r //new binding b retrieved
18: end for
19: end for
20: return bout, ymax

The heuristic algorithm for the multiple-bindings optimiza-

tion approach is illustrated in Algorithm 4. For each system

operating point os ∈ OS, the algorithm performs initial

resource allocation and allocation optimization, such that a

binding is found that satisfies the requirement treq. In initial

resource allocation (for each os ∈ OS), when the resources

are not allocated yet, an actor is bound to the resource with

the highest operating point based on the current os (line 5

in Algorithm 4). This ensures that the actors with higher

criticality are allocated to faster resources for each system

operating point. After initial resource allocation, allocation

optimization is performed (lines 12–25). The allocation of

each actor in increasing order of criticality is reconsidered.

Each time an actor is moved from one resource to another, the

new binding is evaluated for throughput. The optimization for

each os ∈ OS stops when a binding is found that satisfies the

requirement treq. The algorithm returns a set Bout of bindings

that includes a binding for individual os ∈ OS and an estimated

yield ymax for all the chips.
The number of bindings to explore with the heuristic

algorithm for yield estimation for all chips (single-binding

approach) or for throughput estimation per chip (multiple-

bindings approach) is |A| · (|R| − 1). Given a large problem,

|A| · (|R| − 1) is considerably lower than the total number

|R||A| of bindings evaluated by the exhaustive approach, i.e.

|A| · (|R| − 1) << |R||A|.

Algorithm 4 Heuristic algorithm: Multiple-bindings.

Require: ug, treq, R, OP(r), P (r, op)
1: ymax ← 0, Bout ← ∅
2: Sort A in decreasing C(a)
3: for all os ∈ OS do
4: ∀r ∈ R. L(r)← 0
5: Sort R in decreasing speed based on os
6: for all a ∈ A do
7: Sort R in increasing L(r)
8: Bind first a to first r
9: Update L(r)

10: end for //initial binding b retrieved
11:

12: for all a ∈ A do
13: if T (ug, b, os) > treq then
14: Bout ← Bout ∪ {b} //save b for current os
15: ymax ← ymax + SP(os)
16: BREAK
17: end if
18: for all r ∈ R do
19: Bind a to r //new binding b retrieved
20: if T (ug, b, os) > treq then
21: BREAK
22: end if
23: end for
24: end for
25: end for
26: return Bout, ymax

VI. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup and

present the results of our experiments. We illustrate the

improvements in yield that are achieved by our variation-

aware mapping algorithms over the mapping approaches that

are unaware of hardware variation. Additionally, we analyze

how well the heuristic algorithms perform as compared to the

optimum results.

A. Setup

Our variation-aware mapping algorithms for real-time

streaming applications are evaluated on a number of real

DSP and multimedia applications modeled as SDFGs. From

the DSP domain, the set contains a Sample-Rate Converter

and Modem, and from the multimedia domain an H.263

Encoder (Figure 1), H.263 Decoder, MP3 Playback, MP3

Decoder and Satellite Receiver. These application SDFGs are

the unbound graphs in our formal framework. The SDFGs

of the applications, including their execution times in clock

cycles, can be found in [19], and are not presented in this

paper because of limited space.

These applications are allocated to a hypothetical MPSoC

with 2-5 heterogeneous resources with nominal operating

points (Definition 1) of 380, 380, 380, 440 and 500 MHz,

respectively. The set of possible operating points of each

resource is obtained by making assumptions on the impact of

process variation on the nominal operating point (FMAX) of

the resources. To reflect the impact of within-die variation on

the nominal operating point, we assumed mean degradations

of 3%, 6% and 15% for the resources with 380, 440 and 500

MHz nominal operating points, respectively. As shown in [4],

within-die variations result in uncorrelated delay variations



in various devices in a chip, and are higher for devices

with lower logic depth (faster resources). That is why we

assumed different mean degradations for the resources. Die-

to-die variations, on the other hand, result in correlated delay

variations in the devices, and are not dependent on the logic

depth. For this variation, we assumed a standard deviation

of 3.3% (3σ = 10%) for all three resources. These numbers

are selected as they agree with the data on process variation

in current technology nodes [5]. To obtain the set of pos-

sible operating points, we discretized the FMAX probability

distribution function (PDF) of each resource into 5 discrete

points. The discretized model of FMAX PDF for the resource

with 380 MHz nominal operating point is shown in Figure 3.

The more points from the distribution we select, the higher

accuracy we achieve. By choosing 5 points, we sacrifice

accuracy in the interest of reducing the run-times of the

algorithms.
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Fig. 3. Discretized FMAX PDF of a resource with 380 MHz nominal oper-
ating point, resulting in possible operating points and associated probabilities.

As given in Definition 13, the throughput of a SDFG is

traditionally computed by means of MCM analysis on the

equivalent HSDFG. This requires a conversion from the SDFG

to an equivalent HSDFG, which can be considerably larger

in size (in terms of the number of actors) than the original

SDFG, making the approach inefficient for SDFG throughput

analysis. In our work, we use the SDF3 tool for throughput

analysis [20]. To compute the throughput of a SDFG, SDF3

uses State Space Exploration, which works directly on a SDFG

and gives results equivalent to MCM analysis [21]. Depending

on what features are enabled in SDF3, the run-time of the

tool can vary [22]. In our experiments, SDF3 is used for only

throughput analysis, and no additional features are required.

This results in run-times in the order of micro-seconds.

B. Evaluation Results

We compare the results of our optimization algorithms to

those of variation-unaware nominal frequency-based mapping

methods, where the binding of actors to resources is derived

based on the nominal operating points of the resources. The

purpose of the experiments is to show the importance of

variation-aware mapping. We first show the maximum im-

provement in yield (optimum result) that is achieved by the

variation-aware exhaustive mapping algorithms for the H.263

Decoder, H.263 Encoder, MP3 Playback and Sample Rate

applications of medium size (6 actors the largest). Later, we

evaluate the performance of the heuristic mapping algorithms

as compared to the optimum results for the same applications

of medium size, and we apply the heuristic algorithms to the

Modem, MP3 Decoder and Satellite Receiver applications of

large size (22 actors the largest).
Figure 4 illustrates the yield for the H.263 Decoder, H.263

Encoder, MP3 Playback and Sample Rate as a result of

variation-aware exhaustive and nominal frequency-based map-

ping algorithms. These applications have a small to medium

number of actors (6 actors the largest), enabling the use of

the exhaustive mapping algorithms. The exhaustive algorithms

for the single-binding and multiple-bindings optimization ap-

proaches are denoted as VA-SBE and VA-MBE, respectively.

For nominal frequency-based mapping, there can be multiple

bindings of actors to resources that satisfy the throughput re-

quirement for the nominal operating points of the resources. A

binding that just satisfies the requirement can potentially result

in very low yield, as any negative variation in the nominal

operating points of the resources can lead to a violation. For

a fair comparison, for the nominal frequency-based mapping,

we choose a binding that satisfies the throughput requirement

and gives the highest throughput among all other bindings. The

algorithm for the described nominal frequency-based mapping

is denoted as NCE in Figure 4.
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Fig. 4. Yield of applications as a result of NCE, VA-SBE and VA-MBE
mapping algorithms.

Figure 4 shows yield improvements of up to 69%− 50% =
19% (H.263 Encoder) achieved by VA-SBE over the variation-

unaware NCE mapping. As expected, VA-MBE performs

better than VA-SBE, resulting in yield improvements of up

to 27% over NCE mapping. Figure 4 additionally illustrates

the average yield for the set of applications. The variation-

unaware NCE mapping results in 59% average yield, which

is improved to 70% and 80% by VA-SBE and VA-MBE,

respectively. These results show the importance of variation-

awareness in the resource allocation process. The run-times of

the exhaustive algorithms for the applications in Figure 4 are

in the order of 1 hour on a dual core 2.8 GHz machine.
Figure 5 shows the yield achieved by the variation-aware

heuristic and nominal frequency-based mapping approaches

for the complete set of applications. The nominal frequency-

based mapping, denoted as NCH, is also implemented by

the same heuristic algorithm presented in Section V. With

NCH mapping, application actors are initially allocated to

the resources for the nominal operating points, followed by



an allocation optimization, where the initial allocation is

optimized for higher throughput. Figure 5 shows that for the

H.263 Decoder, H.263 Encoder, MP3 Playback and Sample

Rate, the heuristic NCH mapping gives the same results as

the exhaustive NCE mapping illustrated in Figure 4.
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Fig. 5. Yield of applications as a result of NCH, VA-SBH and VA-MBH
mapping algorithms.

Figure 5 shows that for the H.263 Encoder, MP3 Playback

and Sample Rate, the heuristic algorithm for the single-

binding mapping approach, denoted as VA-SBH, gives the

optimum results as found by the computationally expensive

VA-SBE exhaustive algorithm shown in Figure 4. For the

H.263 Decoder, VA-SBH results in 8% lower yield than the

optimum result found by VA-SBE. The heuristic algorithm

for the multiple-bindings mapping approach, denoted as VA-

MBH, gives the optimum result for the H.263 Encoder. For the

H.263 Decoder, MP3 Playback and Sample Rate, VA-MBH

results in 2%, 4% and 2% lower yield, respectively. These

results show that the heuristic algorithms provide results close

to the optimum.

Figure 5 additionally illustrates the yield improvements

achieved by the variation-aware heuristic mapping algorithms

for the Modem, MP3 Decoder and Satellite Receiver applica-

tions of large size (22 actors the largest). VA-SBH and VA-

MBH provide improvements in yield of up to 50%. The run-

times of the heuristic algorithms for the applications of large

size are in the order of 15 minutes on a dual core 2.8 GHz

machine. The exhaustive algorithms for these applications are

infeasible and cannot be applied. This shows how effectively

the heuristic algorithms can be applied to problems of large

size.

Our experiments showed that many of the bindings selected

for an application by VA-MBH are identical, and that not

more than 10 different bindings are selected for any of the

applications. This observation shows the applicability of the

multiple-bindings optimization approach as it imposes low

storage requirements.

VII. CONCLUSIONS

This paper introduces two approaches, single-binding and

multiple-bindings, for mapping real-time streaming applica-

tions to MPSoC for maximized yield under process variation.

For application modeling we use Data Flow graphs, which can

capture the iterative and overlapping execution of real-time

streaming applications and have multiple efficient techniques

for throughput computation. The novelty of our SDF formu-

lation lies in the explicit modeling of software execution 1)

in terms of clock cycles (which is independent of hardware

variation), and 2) in terms of seconds (which does depend

on the hardware variation), which are linked by an explicit

binding. We present exhaustive and heuristic algorithms that

implement the single-binding and multiple-bindings optimiza-

tion approaches. Our results show that: 1) Variation-awareness

is important in the resource allocation process, resulting in

yield improvements of up to 50% with an average of 31% over

the mapping methods that are unaware of hardware variation.

2) The heuristic mapping algorithm effectively reduces the

exponential complexity of the exhaustive algorithm, while

only giving slight reduction in yield (4% on average). 3)

The run-time storage requirements for the multiple-bindings

optimization approach are very low as only a few bindings

are selected and stored for an application.
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