
Online allocation for contention-free-routing NoCs

Radu Stefan
Eindhoven University of

Technology

R.Stefan@tue.nl

Ashkan Beyranvand
Nejad

Delft University of Technology

A.BeyranvandNejad@tudelft.nl

Kees Goossens
Eindhoven University of

Technology

K.G.W.Goossens@tue.nl

ABSTRACT

Time-division-multiplexed networks based on the contention-
free routing model represent an attractive high-performance
and low-cost solution for on-chip communication thanks to
their low buffer requirements at the router level. Tradition-
ally, allocating the slots for each connection in the network
TDM tables was performed at design time, thus requiring
prior knowledge of the application communication demands
and as a consequence making this approach unfeasible to
certain classes of problems. In this paper we propose per-
forming the slot allocation on demand, at run time. While
this approach is not new, we improve upon the state-of-the-
art in terms of speed by more than one order of magnitude,
while at the same time requiring less memory space.

1. INTRODUCTION
Networks on Chip (NoC) [2] have been proposed as a scal-

able solution for on-chip communication, as the traditional
bus-based interconnects began showing their limits. Among
NoC implementations, the circuit-switched, time-division-
multiplexed (TDM) NoCs based on the contention-free rout-
ing model represent an attractive choice as they use only
minimal buffering at the router level which translates into
reduced NoC cost [4]. Circuit-switching was also proven to
be more energy-efficient than packet-switching [6, 1].

The contention-free routing model assumes that packets
travel through the network without having to wait for each
other at the intermediate nodes (routers). This is enforced
by and using strict timing for the allowed packet insertion
time and predefined routes, according to a global, collision-
free schedule. Because the arbitration delays are eliminated
and packets do not need to wait for each other inside the
network, network traversal times are reduced and latencies
are predictable.

The disadvantage of the approach is that the computation
of the collision-free schedule is resource-intensive and as a re-
sult it is customarily performed at design time. This is pos-
sible when the communication behavior of the application
is known beforehand but that limits the usability of these
networks to certain classes of problems. In this study we
propose a solution for computing the communication sched-
ule at run time, according to application demands. Our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INA-OCMC ’12, January 25, 2012, Paris, France
Copyright 2012 ACM 978-1-4503-1010-9 ...$10.00.

solution allocates network connections one at a time using
an minimal path exhaustive search algorithm that is able to
deal simultaneously with allocation in the space and time
domains.

Our algorithm is implemented in software, and we mea-
sure its performance running in FPGA, on an embedded
processor. Compared to similar solutions proposed in the
past it provides a significant advantage in terms of speed
and memory requirements.

2. RELATED WORK
The closest proposal to ours is [8] which performs allo-

cation in a TDM NoC based on the contention-free routing
model. Our solution has several advantages compared to
this study. Instead of performing explicit graph-splitting we
store the graph with one node per router and we infer the
split edges. We use a precomputed table of distances to
know beforehand what the distance to destination is, there-
fore eliminating the need for iterative deepening used in the
previous study. We eliminate routes that lead away from
the destination at an early stage. We perform allocation of
multiple slots simultaneously. Overall, these choices result
in much lower allocation times.

In [10], the authors propose runtime mapping of applica-
tions on a multi-core design supported by the Æthereal NoC.
The path finding algorithm employs as well a graph-splitting
method. The algorithm running time is not presented.

A hardware accelerated NoCManager for performing path-
finding and allocation is presented in [14]. The network ar-
chitecture employed in that case is simpler, not making use
of TDM. By comparison our solution is a purely software
one, although we are currently looking into hardware accel-
erated computation.

In [13], the authors discuss routing in the context of run-
time application mapping. Their experiments show that the
failure in assigning tasks to specific locations in the system
has high probability resulting from a failure in computing
proper routing.

The assignment of virtual channels (or VCs) at run time in
a NoC is discussed in [6]. Although the platform is different
from ours, the approach is similar. A central authority as-
signs network resources (this time virtual channels instead of
time-slots) to connections requiring service guarantees. The
problem is solved using a simple path-finding algorithm as
it does not have to deal with the more complex time-domain
allocation we encounter in our target NoC implementation
which is Æthereal [4].

Several studies propose hardware accelerated solutions for
similar problems: wire routing [3], reachability and shortest
path [9]. Hardware accelerated slot allocation is part of our
current and future work.

The state-of-the-art in solving the same allocation prob-
lem at design time is found in [5]. The approach is based on

a branch-and-bound algorithm unapplicable here due to the
high memory requirements. Another design-time allocation
flow for a similar network model is presented in [7].

3. IMPLEMENTATION
In this section, we first introduce the data structure that

is required to implement the TDM based routing technique.
Secondly, we propose the run-time path finding algorithm
and the methods for computation of the available band-
width.

3.1 Data structures
A routing algorithm requires knowledge of the underly-

ing network topology and available network resources. To
allow an efficient implementation we opted for simple data
structures with minimal memory footprint and we selected
data types with the minimum bit-width that allows storing
the necessary values. The given data structures are able to
describe any network topology.

Both links and network nodes are identified by numeric
IDs. Network nodes are sorted by type, first network inter-
faces (NIs), then routers. The algorithm does not make a
distinction between NIs and routers except that the source
and the destination are always NIs. Links are considered to
be unidirectional (bidirectional links are stored as two sep-
arate unidirectional links). Links are sorted by their source
node. One table (dest in Figure 1) stores the destination of
each link. Another table (start) stores the first link in the
table of links that belongs to each IP. The last entry in this
table marks the end of the links table. This corresponds to
the Compressed Row Format [11] for storing sparse matri-
ces. The set of available TDM slots for each link is stored
as bits packed in an integer. This allows manipulating sets
of up to 32 slots at once.

Figure 1: An example graph representation.

The same numeric link ID used as an index in the dest
table is also used as index in the slots table (Figure 1). De-
pending on the usage scenario, we can have multiple slot
tables, for example for offline (guaranteed) allocated slots
and for best-effort paths.

3.2 The path finding algorithm
Our allocation algorithm consists of an exhaustive search

of minimal length paths based on the backtracking method.
The reader is referred to [12] for more details as the space
here does not allow us an in-depth explanation.

A formal description of the algorithm is given in Algo-
rithm 3.1. Instead of using recursion we simulate a stack
using the arrays solution[], solLink[] and avSlots. The level
variable represents the top of the stack, and it also repre-
sents the number of segments in the currently explored path.
We found this finite-state-machine-like implementation to be
more efficient than an implementation using recursion.

firstLink[node] and lastLink[node] are used as more sug-
gestive names for the start[] array. In fact lastLink[node] =
start[node + 1] − 1. We use crt as an abbreviation in the

variable names representing the current hop and nxt for the
variables representing the next hop.

Algorithm 3.1: Non-recursive exhaustive pathfinding

Data: source and destination nodes
requiredBw the required Bandwidth
dist [] precomputed distance from all nodes to dest.
allowedDistance allowed path length, equal to

precomputed minimum distance source-destination
Result: Path from source to destination which satisfies the

bandwidth constraints
will be found stored in solLink[1..level]

1 level← 1;
2 crtNode← source;
3 crtSlots← S;
4 crtLink ← start[crtNode];
5 while level > 0 do

77 if crtNode = destination then

8 found solution;
9 break;

10 end

11 nxtSlots← shift(crtSlots) and not slots[crtLink];
12 crtDest← dest[crtLink];
13 slotsOK ← bw(nxtSlots) ≥ requiredBw;
1515 if dist[crtDest] ≤ allowedDistance− level ∧ slotsOK

then

16 solution[level]← crtNode;
17 solLink[level]← crtLink;
18 avSlots[level]← crtSlots;
19 level← level + 1;
20 crtSlots← nxtSlots;
21 crtNode← crtDest;
22 crtLink← firstLink[crtDest];
23 continue;
24 end

25 crtLink ← crtLink + 1;
2727 if crtLink ≥ lastLink[crtNode] then
28 level← level − 1;
29 crtNode← solution[level];
30 crtLink← solLink[level] + 1;
31 crtSlots← avSlots[level];
32 end

33 end

The algorithm starts with an empty path at the source
node. The algorithm tries to add links to the current path
(the if statement in line 15) as long as the slots available
on the path provide sufficient bandwidth (slotsOK) and the
link brings us closer to the destination (which is ensured by
the dist[crtDest] ≤ allowedDistance− level condition).

When all links departing from one node have been ex-
hausted (the if statement in line 27) the algorithm falls back
to the previous node by reading the value from the top of
the stack. When the condition in line 7 is met the destina-
tion was reached and the solution (list of links forming the
path) can be read from the solLink [] array.

3.3 Computation of the available bandwidth
The path finding algorithm is very efficient because it per-

forms operations on an entire slot table at a time: a shift
operation for advancing time as well as the bit-wise “and”
and “not” operations. One task that is more difficult how-
ever is the computation of the bandwidth delivered by a
particular set of slots. This computation potentially needs
to take into account the overhead of network headers. In
particular in the Æthereal implementation which we used
in our study, a header is inserted at the beginning of each
group of consecutive slots as well as every 3 slots afterwards
in the larger groups (Figure 2).

In the following we will discuss alternatives for computing

Figure 2: Header overhead in Æthereal.

the available bandwidth efficiently.

Exact bandwidth computation

The most straightforward method for determining the avail-
able bandwidth is to iterate over the entire slot table, check-
ing which slots are available and which slots are not. In ad-
dition, we need to keep track of how large are the groups of
available slots and how many headers need to be used. This
approach is however very time consuming.

To avoid the computational overhead of the previous method,
we can employ a look-up table storing the bandwidth pro-
vided by each combination of available and unavailable slots.
The fact that the slot table is already stored as bits packed
in an integer value means that this value can be stored di-
rectly as an index into the lookup table, providing the result
in a single operation. The drawback of this method is that
the size of the lookup table increases exponentially with the
number of slots (it has memory complexity of O(2n)). For
a realistic size of the slot table of 16 slots, the cost of the
table would be prohibitive.

Bandwidth approximation using lookup tables

A less memory intensive solution would be to split the slot
table into groups of slots of reasonably small size and per-
form a lookup operation for each group. The difficulty is
that in the networks that employ headers (e.g. Æthereal)
we would also need to keep track of groups of consecutive
slots that span multiple groups which would increase the
computation time. Instead, we prefer a solution which pro-
duces an approximate result.

It is possible to assume conservatively that all the slots
have headers, which results in underestimating the available
bandwidth by 15.5% on average. A more accurate solution
is to assume that the first slot in a group always has a header
(Figure 3). This results an underestimate of 3.3% of the real
value and never produces an overestimate which is important
for the correctness of the solution. We will prefer thus this
method as an alternative to exact computation.

Figure 3: Approximate computation of the available
words.

4. EXPERIMENTAL RESULTS
In this section we evaluate the performance and memory

requirements of our online allocation algorithms. We mea-
sure the speed and memory requirements of the allocation
algorithm proposed in Section 3, implemented in the C lan-
guage and running on an embedded Microblaze processor in

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 3 4 5 6 7 8 9

C
y
c
le

s

hops

Exact 0% traffic
Approx 0%
Exact 10%

Approx 10%
Exact 20%

Approx 10%

Figure 4: Allocation time vs. path length using 0%,
10% and 20% background traffic.

an FPGA prototype. The target NoC platfrom of the ex-
periments is an Æthereal 4x4 mesh network on chip. We
use both the exact and approximate bandwidth computa-
tion methods and we evaluate the decrease in the number of
successful allocations resulting from the approximation.

Allocation speed

We first generate an amount of random background traffic
that uses some of the 16 TDM slots. We then measure the
speed of path allocations between all pairs of 2 nodes and all
requested bandwidths. Our performance evaluation metric
is the number of cycles that the algorithm needs before it
can either find a solution or determine that an allocation
is not possible. We perform exhaustive search of minimal
paths as described in Algorithm 3.1. It is possible to perform
a search of longer paths by increasing the allowedDistance
variable but that may lead to an unacceptable increase in
the execution time. It would also be possible to bound the
computation time by requiring the algorithm to give up after
a certain number of attempted paths. This can be achieved
by forcing an exit out of the loop 5-30 in the same algorithm.

The main factor affecting the duration of path compu-
tation is the distance between the source and destination.
When the network load is zero or close to zero it is expected
that the first path attempted produces a successful alloca-
tion. The algorithm running time will then increase linearly
with the path length. This behavior is confirmed by the ex-
perimental results in Figure 4. Under higher network load,
the execution time of the algorithm increases and the depen-
dency on path length becomes exponential instead of linear.

Furthermore, the combination of background traffic load
and requested bandwidth has an important effect on the
execution time. When the requested bandwidth is very low,
a path will be found early. If the requested bandwidth is
much higher than the one that could be accommodated by
the network, the algorithm will also determine quickly that
no route is possible. Long running times are obtained when
paths are neither too easy nor straight impossible to find.

Previous work [8] reports allocation times of 1000 cy-
cles/hop/allocated slot in a 4x4 mesh. The speed of our
solution is not directly dependent on the number of allo-
cated slots as operations are performed on an entire table of
slots at the same time, but there is an indirect dependence
as the requested bandwidth affects the number of paths that
will be examined. In our case, the highest runtime is 6394

 0
 5

 10
 15

 20
 25

 30
 35

 40
Required BW 2

 3

 4

 5

 6

 7

 8

Distance (hops)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

A
llo

c
a

ti
o

n
 t

im
e

 (
c
y
c
le

s
)

Figure 5: Allocation time vs. path length and re-
quested bandwidth, Exact method, 10% background
traffic.

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

 0 5 10 15 20 25 30 35 40 45

S
u

c
c
e

s
s
 r

a
te

Requested bw (words/slot table revolution)

Exact, 10% bk traffic
Approx, 10% bk traffic

Exact, 20% bk traffic
Approx, 20% bk traffic

Figure 6: Success rate vs. requested bandwidth with
10% and 20% background traffic.

cycles/13 slots/path length 8 = 61.5 cycles/slot/hop, thus
more than one order of magnitude lower.

Success Rate

The previous experiments indicate that using approxima-
tions in the bandwidth computation offers a significant speed
advantage. On the other hand, as we mentioned in Section
3.3 the approximate method for bandwidth computation un-
derestimates the available bandwidth on a given path by
3.3% on average. This means that some paths that would
otherwise provide valid solutions are considered as having
insufficient bandwidth. Figure 6 shows that the success rate
of the approximate method as a function of requested band-
width is decreased by 1.7% comparing with the rates of the
exact method.

Memory requirements

The data structure presented in Section 3.1 allows us to
provide a complete description of the network topology with
memory complexityO(n+m) where n is the number of nodes

and m is the number of links. The array of distances has
nevertheless memory complexity of O(n ∗ n). As only one
line of this table is used during one path-search (the array
of distances from each node to one destination), it could be
possible to also compute these values before each allocation.
In the case of a 4x4 mesh network the memory size used by
the topology description is:

80 links × 1 byte/link (link destinations)
+ 80 links × 2 byte/link (slot tables)
+ 32 IPs × 1 byte/IP
+ 13 bytes (scalar data)
+ 256 bytes (distance table)
+ 8 stack entries × (2+1+1) bytes/stack entry
= 573 bytes

This is also lower than the 1.5 kbytes reported in [8] for a
slot table size of 16.

5. CONCLUSIONS
In this study we have proposed an efficient run-time path

allocation algorithm for TDM based contention-free NoCs.
The allocation algorithm has low computation overhead. We
find our implementation to be more than one order of mag-
nitude faster than the state of the art and to require less
memory.

6. REFERENCES
[1] A. Banerjee et al. An energy and performance

exploration of Network-on-Chip architectures.
Transactions on VLSI, 17(3):319–329, 2009.

[2] L. Benini and G. De Micheli. Networks on chips: a
new SoC paradigm. Computer, 35(1), Jan 2002.

[3] A. DeHon et al. Hardware-assisted fast routing. In
FCCM, 2002.

[4] K. Goossens et al. The Æthereal network on chip after
ten years: Goals, evolution, lessons, and future. In
DAC, June 2010.

[5] A. Hansson et al. A unified approach to mapping and
routing on a network-on-chip for both best-effort and
guaranteed service traffic. VLSI Design, 2007.

[6] N. Kavaldjiev et al. Providing QoS guarantees in a
NoC by virtual channel reservation. Reconfigurable
Computing: Architectures and Applications, 2006.

[7] Zhonghai Lu et al. Slot allocation using logical
networks for TDM virtual-circuit configuration for
network-on-chip. In ICCAD, 2007.

[8] T. Marescauxet al. Dynamic time-slot allocation for
QoS enabled networks on chip. In ESTIMedia, 2005.

[9] O. Mencer et al. HAGAR: efficient multi-context
graph processors. Field-Programmable Logic and
Applications: Reconfigurable Computing Is Going
Mainstream, 2002.

[10] O. Moreira et al. Online resource management in a
multiprocessor with a network-on-chip. In SAC, Seoul,
Korea, 2007.

[11] Sergio Pissanetsky. Sparse Matrix Technology.
Academic Press, London, 1984.

[12] R. Stefan et al. A tdm slot allocation flow based on
multipath routing in nocs. Microprocessors and
Microsystems, 2010.

[13] T.D. ter Braak et al. Run-time spatial resource
management for real-time applications on
heterogeneous MPSoCs. In DATE, 2010.

[14] M. Winter et al. A Network-on-Chip channel allocator
for Run-Time task scheduling in Multi-Processor
System-on-Chips. In DSD, 2008.

