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Abstract—Electronic devices are expected to accommodate
evermore complex functionality. Portable devices, such as mobile
phones, have experienced a rapid increase in functionality, while
at the same time being constrained by the amount of energy that
may be stored in their batteries. Dynamic Voltage and Frequency
Scaling (DVFS) is a common technique that is used to trade
processor speed for a reduction in power consumption. Adaptive
applications can reduce their output quality in exchange for
a reduction in their execution time. This exchange has been
shown to be useful for meeting temporal constraints, but its
usefulness for reducing energy/power consumption has not been
investigated.

In this paper, we present a technique that uses existing DVFS
methods to trade a quality decrease for lower power/energy
consumption through an intermediary reduction in execution
time. Our technique achieves this while meeting soft and/or hard
time/energy/power constraints. We demonstrate the applicability
of our technique on an adaptive H.263 decoder application,
running on a predictable hardware platform that is prototyped
on an FPGA. We further contribute an experimental evaluation
of the H.263 decoder’s scalable mechanisms, in their ability to
trade quality for temporal/energy/power. From experimentation,
we show that our quality trading technique is able to achieve up
to a 45% increase in the number of frames decoded for the same
amount of energy, in comparison to frequency scaling alone, but
with a quality reduction of up to 22dB Peak Signal-to-Noise Ratio
(PSNR).

Index Terms—Low-power design, Real-time systems, Embed-
ded Systems

I. INTRODUCTION

Energy and power constraints are an ever growing concern
for designers and users of electronic devices [1]. Gadgets,
such as mobile phones and tablet computers, that depend on
battery power, are now ubiquitous in everyday life. Reducing
energy and power consumption is desirable to increase the
time between charges and to decrease the temperature of the
device.

Dynamic Voltage and Frequency Scaling (DVFS) [2] is one
approach that is commonly applied in order to reduce the
power consumption of electronic systems. DVFS techniques
lower the operating voltage and frequency, saving power at
the expense of an extended execution time. For real-time ap-
plications, such as video and audio decoders, DVFS techniques
have been demonstrated that lower the frequency of the applic-
ation’s execution while not violating the application’s real-time
requirements [2]–[4]. This is achieved by calculating what
extended execution time, and hence frequency, is acceptable
within the application’s given temporal constraint. By decreas-
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Figure 1. Adaptive H.263 decoder per frame trace of quality-level scaling
to meet the indicated average energy target.

ing the application’s execution time through quality scaling,
these existing DVFS mechanisms exchange the reduction in
execution time for a reduction in power consumption.

Adaptive applications [5] may change their execution profile
at run-time, enabling, e.g. a slower exact algorithm to be
substituted for a faster approximate algorithm at the cost of
output quality. For example, in [6], [7], it was shown for an
MPEG2 video decoder that output quality may be sacrificed
to meet timing constraints by adapting the application.

Little work has been carried out to investigate using adaptive
applications with quality-scalable algorithms to trade quality
in order to meet temporal and energy requirements. [8] fulfils
these specific criteria, by using a relatively complex run-
time technique to maximise the quality level within given
temporal and energy budgets. We propose a low-complexity
technique, with a relatively small processing and energy over-
head. Figure 1 shows how an adaptive H.263 decoder [9], [10],
using our technique, can scale the quality of its algorithms in
order to meet an average energy-per-frame budget. This is
achieved by simply decreasing the quality level whenever the
video is consuming more energy per frame than budgeted, and
similarly increasing the level when it consumes less. Playing
a video on a mobile phone is an example use case that can
benefit from such a trade-off. If, for instance, a user wanted to
display a video right until the end, but the phone’s battery does



not contain sufficient charge for this, and also retain enough
energy to make a possible emergency phone call. Quality
scaling for power reduction enables the user to have the option
to watch the entire video at lesser quality, while not exceeding
its allocated energy budget. This enables the user to retain
some energy in the battery to make their potential emergency
phone call.

In this paper, we contribute:
1) An experimental analysis of the adaptive mechanisms of

an H.263 decoder [10] in regards to output quality and the
amount of work required to produce a frame of decoded
video.

2) A low-complexity run-time technique to trade a de-
crease in quality for a decrease in energy, via common
DVFS techniques, in order to meet mixed criticality
temporal/energy/power constraints.

By building on common DVFS techniques we ensure that
our technique has wide applicability and generality. Our
technique uses decoupled DVFS and quality scaling policies,
aiding integration into platforms with existing DVFS policies,
while still producing good combined results.

We demonstrate our technique for an adaptive H.263 de-
coder application mapped onto the existing CompSOC plat-
form [11]. We analyse the effectiveness of our technique for
the use case of scaling quality in order to achieve a particular
number of decoded frames from an initial energy budget.
We show that our technique works with both soft and firm
real-time DVFS techniques, and that the DVFS technique
does not significantly affect our technique’s ability to trade a
decrease in quality for a decrease in energy consumption. From
experimentation on a single processing core, we show that our
quality-scaling technique is able to extend the number of video
frames decoded by up to 45% for the same energy budget,
over using the DVFS technique on its own, in exchange for a
quality reduction of up to 22dB of PSNR.

The rest of this paper is structured as follows. In the next
section we give an overview of the current related work
to the topic of this paper. We follow this in Section III
with a description of pertinent background information before
describing our technique in detail in Section IV. In Section V
we provide an experimental analysis of our technique. We
end this paper by drawing conclusions from our work in
Section VI.

II. RELATED WORK

In this section, we consider work that is related to our
proposed technique. Our technique depends on adaptive ap-
plications that can exchange output quality for a reduction
in their execution time. The term quality is application de-
pendent, and even within an application domain may have
different meanings, e.g. for video decoders quality could
(non-exhaustively) refer to the number of deadline misses
and/or the reproduction quality of the video frames using the
PSNR metric. [5] evaluates the notion of adaptive applications
in general. [12] looks at application adaptivity in terms of
resource mapping rather than scalable algorithm complexity.

[13] uses scalable algorithm complexity to adapt applications
to improve hardware yield through process variation. While
the applications described in these papers are adaptive, they
do not have the correct sort of complexity scaling adaptivity
for our technique.

[14], [15] presents dynamic QoS resource management
where adaptive applications, with quality-scalable algorithms,
are used in combination with resource budgeting in order to
meet real-time requirements. [6], [7] demonstrate how an ad-
aptive MPEG2 decoder may be used to trade quality in order to
meet real-time requirements in consumer terminals. In [6], [7],
quality decisions are made off-line and are fixed for the type
of terminal. Similarly, [16], [17] show how quality scalable
video algorithms may be applied for medical X-ray imaging on
multi-application, multi-core architectures. These techniques
demonstrate the applicability of adaptive application quality
scaling to meeting temporal requirements, but do not use the
scaling mechanisms to achieve an energy/power reduction.

In [18] adaptive MPEG2 DCT/IDCT algorithms are presen-
ted that can trade-off quality for an energy reduction. The
work in [18] only considers the energy reduction due to the
number and type of operations performed, and not the energy
that can be subsequently be saved through DVFS while still
meeting timing constraints. Similarly, [19] demonstrates a run-
time technique to select appropriate encryption algorithms to
meet real-time requirements, but also does not consider energy
reductions through DVFS, in contrast to our technique.

DVFS is a commonly applied technique, that decreases the
system’s, operating voltage and frequency. [2]–[4] and many
other works demonstrate how DVFS may be used with real-
time applications, enabling a power reduction while meeting
the application’s temporal constraints. These techniques lower
the operating frequency, stretching the application’s execution
time within the context of the temporal constraint. DVFS
techniques can also be used to meet power and thermal
constraints, as demonstrated in [20].

In [21], a run-time technique is proposed that trades
application-level quality-of-service for power reduction, on
multi-core multimedia platforms. They present their technique
for an MPEG2 decoder, using deadline miss rates as their qual-
ity metric. A run-time linear programming technique is used
to find optimal task mappings on an MPSoC, considering core
performance variations due to production process variability.
As opposed to this paper, the technique presented in [21] does
not consider quality scaling of adaptive applications, in order
to achieve an energy/power reduction.

In [8], task scheduling and DVFS levels are selected in
order to maximise quality within a given temporal and energy
budget. The problem is formulated as an integer linear program
that is solved at run-time after every task execution. From their
own evaluation of their technique, solving the linear program
costs thousands of cycles each time, adding both a processing
and energy overhead. An evaluation of the energy/power
performance of the technique is not provided in [8].

In this paper, we describe a low-complexity (hence low
overhead) technique to trade a quality reduction for a re-
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duction in energy/power consumption, while meeting real-
time throughput requirements. We demonstrate this for an
adaptive H.263 decoder application [10], which has scalable
complexity algorithms. We use run-time complexity scaling
to satisfy mixed criticality temporal/energy/power constraints,
at the expense of quality. Energy and power reductions are
made by trading temporal savings from quality scaling for
voltage and frequency reductions using common run-time
DVFS techniques.

III. BACKGROUND

We proceed now to present the relevant background inform-
ation, required by our quality scaling technique. In order to
be able to guarantee that we meet real-time constraints, we
use the CompSOC predictable platform, which we describe
in Section III-A. We use an adaptive H.263 decoder as the
running example application throughout this paper, which we
describe in Section III-B.

A. Predictable Platform

In order to meet temporal constraints, our technique requires
a DVFS capable real-time hardware platform. For this purpose
we use the CompSOC predictable MPSoC, as illustrated in
Figure 2. The CompSOC platform is a NoC-centric tile-based
platform. Processing tiles consist of a MicroBlaze processing
core, with local instruction and data memories, as illustrated
in Figure 3. DVFS is enabled using the hardware Voltage
and Frequency Control Module (VFCM). The VFCM module
models frequency scaling through clock sub-sampling. Voltage
scaling is taken into account using a frequency to power
model, assumes a minimum voltage for a given frequency,
as per [3]. Tiles are also equipped with DMAs for inter-tile
communication, allowing the parallelisation of computation
and communication. Inter-tile communication is carried out
using the predictable Æthereal NoC. The CompSOC platform
enables the calculation of worst case computation and com-
munication timings, making the platform predictable.

On top of the CompSOC hardware platform we run the
CompOSe OS, as illustrated in Figure 4. This OS executes
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applications that are structured as task graphs, such as Cyclo
Static DataFlow (CSDF). The task graphs are annotated with
worst case timings, that when coupled with the predictable
nature of the hardware, enables the implementation of DVFS
policies that can lower the voltage and frequency, while
maintaining an applications real-time requirements.

The CompOSe OS provides a power-management API
interface that provides run-time budgeting data and functions,
in order to implement DVFS policies as power-management
functions. A DVFS policy that is implemented in multiple
DVFS capable real-time systems [2], [3], involves observing
slack in the applications schedule, due to static or dynamic
timing variations, and then using this observed slack to per-
form DVFS. For firm real-time applications, by knowing the
application’s worst-case timings and only using slack that has
been observed the frequency can be scaled conservatively.
Using the CompOSe OS we are able to implement this and
other DVFS policies.

B. Adaptive Application

In order to demonstrate our technique we apply it to an
adaptive baseline H.263 video decoder application [9]. The
H.263 application decodes the input video stream as illustrated
in Figure 5. The compressed stream first undergoes Variable
Length Decoding (VLD). The resultant stream consists of mac-
roblocks, with each macroblock containing frequency encoded
YUV information for an 8× 8 block of pixels.

Macroblocks belong to either an I-frame or a P-frame. I-
Frames contain the information to reconstruct all the pixels
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of the encoded frame. These frames are reconstituted through
Inverse Quantisation (IQ), Inverse Discrete Cosine Transform
(IDCT), and finally Frame Reconstruction (FR). P-frames do
not contain the encoded version of the entire frame. Instead
these frames contain Motion Compensation (MC) information,
that groups pixels with vector translations, allowing the frame
to be reconstructed from the previously reconstructed frame.
The reconstructed I/P-frames are Up-scaled (UP) to fit the
allocated display area.

An adaptive H.263 decoder [10] contains parametrised
adaptive functions in the application that allow us to decrease
the decoder’s execution time in exchange for a reduction in
the decoder’s output quality. The adaptive H.263 decoder used
here contains the following two adaptabilities:

1) Parametrised quantity of decoded AC values in a mac-
roblock.

2) Parametrised up-scaling complexity.
A frequency domain macroblock is encoded using a Dis-

crete Cosine Transform (DCT) [9]. An 8×8 value macroblock
of this type consists of a single DC value, that represents
the average value for the macroblock, and 63 AC values, as
illustrated in Figure 6. As shown in this 2 dimensional rep-
resentation of the macroblock, the further in each dimension
an AC value is from the DC value, the higher the frequency
is that it represents in that dimension. By selectively ignoring
AC values, the time taken for the IDCT task of the decoder
may be decreased, in exchange for a reduction in reproduction
quality of the spatially encoded macroblock. The encoding
process places less value on higher frequency information
in the macroblock, due to human perception. Similarly the
adaptable function in the decoder allows scaling of the amount
of processed AC values, ignoring AC values at the higher end
of the frequency spectrum first.

Parametrised up-scaling complexity is achieved by a
similarity-threshold parameter passed to a bi-linear interpola-
tion algorithm. If the two pixels under comparison are similar
to within the threshold value, then no interpolation takes
place. In this eventuality one of the compared values is
simply reproduced. If the two pixels are suitably dissimilar,
bi-linear interpolation is performed. By relaxing the similarity
threshold, a reduction in execution time is achieved at the
expense of the reproduction quality of the final image.

IV. QUALITY FOR POWER REDUCTION

We continue by describing how our temporal and power
constrained quality scaling technique works in general. We
further show how it may be applied in practice using the
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Time
surplus deficit

Energy surplus decrease frequency increase frequency
deficit decrease frequency increase frequency

(a) Power-management DVFS policy. (Regardless of energy/power budget
constraint)

Time
surplus deficit

Energy surplus increase quality decrease quality
deficit decrease quality decrease quality

(b) Quality-management policy

Table I
QUALITY- AND POWER-MANAGEMENT POLICIES, BASED ON RUN-TIME

TEMPORAL/ENERGY/POWER BUDGET INFORMATION.

CompSOC platform and the adaptive H.263 decoder described
in Section III.

A. Applied in General

In order to achieve this we introduce a quality management
layer between the application and existing DVFS capable
system, as illustrated in Figure 7.

The quality-management layer enacts the application’s qual-
ity policy. Example quality- and power-management policies
are shown in Table I. The policies indicate the course of action
that is taken by the quality- and power-management, in the
context of run-time temporal and energy budget information.
For simplicity, Table I describes the policies for coarse-grained
budget information, i.e. whether the budgets are being under-
or overused. At run-time, temporal and energy budgets may
be underused, creating a budget surplus (i.e. slack), and they
may also be overused, creating a budget deficit (i.e. running
low in terms of energy, or late in terms of time).

The quality-management policy in Table Ib and the power-
management policy in Table Ia are two independent polices.
This allows the technique to be applied more easily to plat-
forms that already have DVFS power-management policies.
The quality- and power-management may also operate at
different granularities, e.g. for the H.263 decoder, the quality
may change every frame while the frequency changes every
macroblock. This allows our technique to be more general
and therefore more widely applicable, than by having a single
policy.

Four scenarios are presented in Table I, covering the



possible combined scenarios of temporal and energy budget
under- and overuse. If the temporal budget has slack then
the power-manager can lower the frequency and voltage con-
serving power, while still meeting the temporal requirement. If
the temporal budget is showing that the application is running
late, then the power-manager must increase the frequency and
voltage to meet the temporal requirement. The increase in the
frequency also means and increase in power consumption, and
is therefore dependent on the slack in the energy/power budget.
If the temporal and energy/power budgets are concurrently
running deficits, then a conflicting situation arises whereby the
system needs to increase the frequency in order to meet the
temporal budgets constraint, while at the same time needing
to lower energy/power consumption in order to meet the
energy/power budgets constraint. In the policy in Table I, a
decision is made so that if an increase in frequency is required
to satisfy the temporal constraint, and the energy/power budget
does not have slack, then the frequency is increased regardless
of the energy/power budget constraint.

Scaling the quality of an adaptive application, such as the
H.263 decoder described in Section III, enables a trade-off in
quality for a reduction in execution time. This reduction in
execution time can be used to meet temporal constraints, or
traded through DVFS for a reduction in power consumption,
in order to meet energy/power constraints. As illustrated in
Figure 7, our technique provides a quality-management layer
between the application and the existing DVFS policy. The
quality-manager has access to the application’s budgeting
information, and may also use information regarding power-
management policy. Table I shows an example quality policy
for use with the quality-manager. In this policy the quality
is decreased when the temporal or energy/power budgets are
running a deficit while trying to meet their constraints. Quality
may be increased again whenever all the budgets have slack.

Our technique permits mixed criticality temporal/energy/
power constraints within an application. This means that ap-
plications using our technique may have concurrent temporal/
energy/power constraints with mixed degrees of severity, e.g.
for the use case of playing a video on a mobile phone, the
video play back is temporally soft real-time, while it’s energy
budget is a firm constraint, which subsequently results in a soft
criticality power constraint per frame. A suitable policy needs
to be selected depending on the criticality of the constraint.
Conservative policies ensure that the temporal/energy/power
constraint is always met, and are therefore used for firm
real-time applications. This is achieved by using worst-case
task timing/energy information when making quality-/power-
management decisions. Speculative policies in our system
use run-time observed average task timing/energy information
when making quality-/power-management decisions, and are
therefore used for soft real-time applications. Both guaranteed
and speculative policies only use run-time observed budget
slack, making the quality- and power-management a closed-
loop control system.

B. Applied to the CompSOC Platform

We now proceed to explain how our technique may be
used with a DVFS capable predictable platform, for an H.263
decoder adaptive application. For this we apply our technique
to the CompSOC platform, running the CompOSe OS, as
described in Section III. The CompOSe OS facilitates DVFS
through the use of a user specified power-management func-
tion at the application-level, as illustrated in Figure 4. To fit
our aim of using quality management with existing DVFS
platforms, as is illustrated in Figure 7, we introduce a user
specified quality-management function at the application-level
of the CompSOC platform.

The quality-management function enacts the quality policy,
such as the policy that is described in Table I. It achieves this
by returning an enumerated quality-level to the application,
that the scalable mechanisms use to scale the quality. In
our implementation the enumerated quality-level is a Natural
number from 1 to 10, with 1 being the lowest quality and
10 being the highest. The function is called from within the
adaptive application. The frequency of calling the quality-
manager function is a design decision. For the H.263 decoder,
the quality-manager is called on the granularity of video
frames.

As with the power-manager, the quality manager accesses
run-time budget information via the power-management API.
As such, the quality-manager has access to the same budgeting
information as the power-management function. The H.263
decoder is a real-time application, and therefore a temporal
budget for the application is maintained. An energy constraint
is also placed on the H.263 decoder, specifying how much
energy the application can maximally use to complete the
video. This firm constraint for the entire video, translates
into a soft criticality power constraint that is represented
as an energy constraint per-frame. The relevant budgeting
information, provided by the CompOSe power-management
API, consists of the following:

• time_budget Amount of time in system time budgeted
for n application graph iterations.

• used_time_budget Current time in system time used
from the temporal budget.

• energy_budget Amount of energy budgeted for the
entire application execution (i.e. for decoding the entire
video).

• power_budget Amount of energy budgeted for the cur-
rent time interval (i.e. video frame duration).

• used_power_budget Current energy used from the
power budget, for the current time interval (i.e. video frame
duration).

System time is the time measured in cycles, by count-
ing the clock pulses of the unscaled system clock, that
runs at the system’s maximum frequency. There is a linear
relationship between the progression of system time and
wall time. The amount of temporal slack that is avail-
able in the budget is calculated by subtracting the used_
time_budget from the time_budget_constraint.
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The power_budget_constraint is calculated by divid-
ing the energy_budget_constraint by the number of
frames in the video to obtain the power budget constraint, in
terms of energy per frame. Similarly, the amount of energy
slack that is available in the power budget is calculated by
subtracting the used_power_budget from the power_
budget_constraint. Using the slack values for the tem-
poral and power budgets, the quality-manager is able to enact
quality-management policy from Table I. For the adaptive
H.263 decoder, the power-management function looks as fol-
lows:

quality_level h263_quality_manager(){
time_slack = getTimeBudgetConstraint();
time_slack -= getUsedTimeBudget();
power_slack = getPowerBudgetConstraint();
power_slack -= getUsedPowerBudget();

if(time_slack < 0 || power_slack < 0){
quality_level = getCurrentQualityLevel() - 1;

}else if(time_slack > 0 && power_slack > 0){
quality_level = getCurrentQualityLevel() + 1;

}

return quality_level;
}

where get functions are used from the CompOSe power-
management API to access the budget information. For this
policy, if both temporal and power slack are positive, then
the quality-level is raised. If either temporal or power slack
is negative, then the quality level is lowered. In all other
combinations, the quality-level is maintained at its current
level.

For the adaptive H.263 decoder the quality- and power-
management control loop, illustrated in Figure 8, is executed
on a per frame granularity. The quality-manager is called at
the start of every frame. The obtained quality-level is then
passed to the application’s adaptive functions, as per the
control flow illustrated in Figure 8. Any observed reduction
in execution time will be noted in the temporal budget. The
power-management observes this reduction when it calculates
the temporal slack. The power-manager changes the frequency
according to the policy in Table I. If the H.263 decoder
is running late with its temporal requirement, the frequency
is set at its highest level. If the H.263 decoder is ahead
of its temporal requirement, the power-manager lowers the
frequency as much as possible within the constraint of the

observed slack. Changing the frequency, modifies the observed
temporal/energy/power consumption in the budgets, which
in turn affects the next chosen quality-level by the quality-
manager.

V. EXPERIMENTATION

We continue by experimentally analysing the pertinent
properties of our technique. We apply our technique to the
adaptive H.263 decoder from Section III-B, running on the
CompSOC platform from Section III-A. Our experimentation
is carried out on an FPGA prototype of the CompSOC
platform, using the Xilinx ml605 prototyping board. Using this
platform, we contribute an experimental analysis of the adapt-
ive H.263 decoder’s scalable mechanisms, that are described
in Section III-B. We investigate the relationship between the
requested quality level and the output quality of the decoded
video frame, measured as a Peak Signal to Noise Ratio (PSNR)
in comparison to the reference frame, decoded at the highest
quality settings. We also investigate the relationship between
the requested quality level and the amount of work required
to decode a single frame of video.

Following this, we evaluate our quality-scaling technique
by providing an in depth analysis of its application to the
use case of decoding a particular number of video frames for
a given energy budget. Due to the decoupled nature of the
power management (DVFS) and quality management policies
described in Table I, we evaluate the pairing of the quality
management with both conservative and speculative real-time
power management policies.

While our experimental results show absolute power and
energy estimates, we do not make any claims about the
accuracy of our used power model. The power model that we
use is for comparative purposes only, enabling us to evaluate
whether our technique provides an improvement in comparison
to the same situation without our technique. Our processor
power model is based on the power consumption estimate of
the MicroBlaze processor, at 120MHz, for the ml605 board’s
virtex 6 FPGA. We obtained an estimate of 348mW using
the Xilinx “Xpower Analyzer” tool, for a mapped and routed
instance of a MicroBlaze processor on the FPGA. What is im-
portant for demonstrating the validity of our technique, is that
by lowering the processor’s operating frequency (and voltage
to match) the processor’s power consumption decreases. As
such, we use a simple linear relationship between frequency
and power, but emphasise that our technique also works for
other monotonic frequency/power models, such as those with
a quadratic or cubic relationship, as may be obtained from the
parametrised model described in [3].

A. H.263 Scalable Quality Mechanisms

We start out experimentation by evaluating the H.263 de-
coder’s scalable quality mechanisms. For our first experiment
we evaluate the amount of work that has to be performed,
in processor cycles, in order to produce a frame of decoded
video at a particular requested quality-level. The H.263 de-
coder has two scalable quality mechanisms, as described in
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Figure 9. Quality mechanism performance, for the average of 30 decoded
frames.

Section III-B, each having 10 discrete quality levels, giving
100 possible quality combinations that may be requested. In
order to obtain a work measurement for each of these quality
combinations, a video is decoded with the quality-level fixed
at that combination for the duration of the decoding. In order
to provide a single value per quality-level, we take the average
work required to decode a video frame from the first 30
decoded frames.

Figures 9a, 9c and 9e show the work to produce a decoded
frame against quality-level results for the decoded akiyo, tree
and bus reference videos respectively. The resultant surfaces
are not exactly the same due to the data dependent nature of
the quality scaling mechanism’s execution. From the graphs it
can be seen that by decreasing either of the two quality scaling
mechanisms, that there is a monotonic reduction in work that
must be performed to decode a frame. This is a useful property
of the quality-scaling mechanisms as it ensures that requesting
a lower quality-level will not lead to extra work having to be
performed.

From Figures 9a, 9c and 9e, it is apparent that the up-
scaler quality mechanism produces a larger reduction in work
needed to decode a frame, across its range of quality-levels,
than the AC-values quality mechanism. The amount of work
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Figure 10. Work against PSNR for the 10 quality levels.

that can be saved by scalable algorithms is algorithm specific.
It depends on the physical nature of the algorithm, or the
minimum acceptable quality of output that is still useful. For
each scalable algorithm, the degree of received quality across
their scalable ranges will also vary. Since we are trading output
quality for a reduction in work, and hence a reduction in
energy consumption, it is important to evaluate the received
quality-level (PSNR) from each mechanism in comparison
to the requested quality-level, which leads us to our next
experiment.

For our second experiment we evaluate the received quality,
measured as Peak Signal to Noise Ratio (PSNR), in com-
parison to the requested quality. In order to obtain a PSNR
measurement for each of these quality combinations, a video
is decoded with the quality-level fixed at that combination
for the duration of the decoding. In order to provide a single
value per quality-level, we take the average PSNR of the first
30 decoded frames.

Figures 9b, 9d and 9f show the PSNR against quality-level
results for the decoded akiyo, tree and bus reference videos
respectively. As with the surfaces produced by exchanging
a reduction in quality for a reduction in work, the resultant
surfaces here are also not exactly the same due to the data de-
pendent nature of the quality scaling mechanism’s execution.
Nevertheless, the results from the three input videos show a
monotonic decrease in received quality-level as the requested
quality-levels are decreased. Reducing the quality-level for the
AC-value mechanism shows the largest quality reduction at its
lowest quality value, with an ≈10 dB difference in comparison
to the up-scaler mechanism at its lowest quality value.

Due to the data dependent nature of the required work
and eventual quality (PSNR) of both adaptive mechanisms,
it is not possible to derive a generic linear path through all
100 possible quality levels that provides a monotonic trade-
off between quality and work. As such, for the rest of our
experimentation we scale both mechanisms equally, producing
10 possible quality levels that provide the monotonic trade-off
we require, as shown in Figure 10. From this graph we can
see that on average a work reduction of 2 × 106 cycles is
achievable for a quality reduction of 22dB PSNR.
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B. Practical Application

Having evaluated the H.263 decoder’s quality-scalable
mechanisms, we proceed to evaluate the practical application
of these mechanisms. It is described in Section IV-B how an
adaptive application may be executed on the CompSOC plat-
form, using the platform’s budgeting mechanisms in order to
make quality management decisions. We evaluate the practical
usage of the quality scaling mechanisms for the use-case that
is described in Section I. Given a particular energy budget,
such as the remainder of the energy in a devices battery, we
evaluate the applicability of quality-scaling in combination
with frequency-scaling in order to meet a target number of
decoded video frames.

Our experimental evaluation consists of decoding a video
five times:
NO FS NO Q no frequency scaling or quality scaling.
FS NO Q speculative frequency scaling no quality scaling.
FS Q speculative frequency scaling, and quality scaling.
WC FS NO Q conservative frequency scaling no quality

scaling.
WC FS Q conservative frequency scaling, and quality scal-

ing.
The decoder is given an energy budget of 15J to decode

45 video frames, while maintaining a real-time throughput
requirement of 10 frames per second. The depletion of the
energy budget during the three different runs can be seen
in Figure 11. Without frequency scaling and quality scaling
(NO FS NO Q) the video is decoded at the processor’s
maximum frequency. As can be seen in Figure 11 running at
the processor’s maximum frequency causes the energy budget
to deplete at a relatively fast rate, causing the energy budget
to be depleted by the 28th frame.

Enabling frequency-scaling (FS NO Q) allows the processor
to run at lower frequencies, thereby consuming energy at
lower rates. The power-management policies described in
Section IV-B scales the processor frequency while meeting
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Figure 12. Remaining work budget after each frame.

the application’s real-time requirements. Figure 12 shows that
given a per-frame work budget suitable to achieve 10fps on
a processor with a maximum frequency of 120MHz, that the
power-management is able to scale the frequency, as shown
in Figure 12, while meeting the real-time requirement.

In comparison to the situation with no frequency-scaling
(NO FS NO Q) in Figure 12, by running at maximum
frequency all the time the H.263 decoder continuously under
uses its work budget, causing it to continuously accumulate.
In Figure 11 it can be seen that by enabling frequency-scaling
(FS NO Q) that the energy budget now stretches to the 37th
frame, which is a 32% improvement but is still short of the
45 frame target.

The frequency scaling is done in accordance with either
a speculative or conservative power-management policy. The
conservative policy (WC FS NO Q) is guaranteed to meet
the throughput requirement by scaling the frequency assuming
the worst-case task execution times, whereas the speculative
policy (FS NO Q) assumes the average task execution time
from the previous frame. The work budget is accumulative,
meaning that it retains slack between frames. If the con-
servative policy runs faster than the speculative policy in a
particular frame then the conservative policy has more slack
to use for frequency scaling in the next frame. Figure 13 shows
that on average the conservative and speculative policies use
similar frequencies, which in turn translates into similar energy
consumption, as is apparent from Figure 11 where the FS NO
Q and WC FS NO Q lines almost completely overlap.

Frequency-scaling alone is not able to reduce the energy
consumption rate further without affecting the video’s decoded
frame rate. By enabling quality-scaling in conjunction with
frequency-scaling (FS Q), the 45 frame target is met within the
given energy budget, as shown in Figure 11. With the use of
quality-scaling and frequency-scaling (FS Q), the same initial
energy budget lasted for 22% more frames than frequency-
scaling alone (FS NO Q), and for 60% more frames than
without frequency- and quality-scaling (NO FS NO Q).
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Figure 14. Energy budget depletion from various starting points, while
decoding H.263 video with a soft 45 frame minimum requirement.

We run the experiment again with varying starting energy
levels, with and without quality scaling, but still with a
minimum frame requirement of 45 frames, producing the
figures shown in Figure 14. Figure 14a demonstrates the
battery depletion for frequency scaling without quality scaling.
The power-management policy described in Table Ia scales the
frequency to meet temporal requirements but does not take
energy requirements into account. Figure 14b demonstrates
the battery depletion with both frequency scaling and quality
scaling enabled. In contrast to the power-management policy,
the quality-management policy described in Table Ib tries to
meet energy requirements. This can be seen in Figure 14b as
the quality-manager tries to make the energy budget last for
45 decode frames. Some starting energy budgets are too low
and cannot stretch to 45 frames, even at the lowest quality
setting, and other starting energy budgets are so large that the
45 frame target is met without any quality scaling. A funnel
shaped region exists in Figure 14b where run-time adjustments
made by the quality manager to the quality level are effective
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Figure 15. Energy budget consumption per frame.

to meet the 45 frame requirement.
As described in Section IV-B, the total energy budget is

divided among the number of frames to create a per frame
energy budget. Figure 1 shows a per frame trace of how the
quality manager adjusts the quality level in respect to this
budget, for the policy described in Table Ib. Whenever there
is an energy budget surplus, represented by the trace being
below the budget line, the quality is increased one quality-
level per frame. Whenever there is a deficit, represented by
the trace being above the budget line, the quality-level is
decreased by one level per frame. With quality scaling enabled
the policy keeps the energy per frame close to the budget.
This is sufficient to meet the energy budget’s soft real-time
requirement.

The outcome of the five different experimental runs are
shown in relation to the per frame energy budget in Figure 15.
Both runs with quality scaling enabled, FS Q and WC FS
Q, are shown to keep the energy consumption close to the
budgeted amount. The quality levels that they use to achieve
this are shown in Figure 16. From this graph it can be seen
that the quality management with the conservative frequency
scaling policy produces the highest quality for more frames,
but also reaches the lowest quality level of the two runs. The
quality scaling policy does not take into account the power-
management’s speculative or conservative real-time policy,
only if the work budget has a surplus or a deficit. Even though
the work budget continuously had a surplus for both runs
with quality scaling enabled, as can be seen in Figure 12, the
difference between the speculative and conservative polices
affected the frequency levels and hence the rate of energy
consumption. As per Figure 8, this in turn affects the chosen
quality level by the quality management, which affects the
work required to decode a frame, leaving more/less slack and
energy for the next quality- and power-management decisions.

As is explained in Section IV-A, a reduction in quality-level
translates into a reduction in work that needs to be performed
in order to decode the frame. This in turn translates into
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an accumulation of extra slack in the work budget, thereby
enabling lower frequencies to be used to decode the frame
while still meeting the application’s throughput requirement.
This effect can be seen in Figure 13 where the frequency-
scaling and quality-scaling combined (FS Q) is able to run
more of the time at lower frequencies than without quality-
scaling (FS NO Q). This is achievable while meeting the video
decoder’s throughput requirement, as can be seen in Figure 12.
While the underlying conservative or speculative real-time
DVFS policy has an affect on quality management decisions
the overall effect on energy consumption, as seen in Figure 11,
is not appear very significant from our experimentation. As
such, we have shown that our quality management technique
is suitable for use with conservative and speculative real-time
DVFS policies, but that there is no significant advantage of
using one over the other in relation to energy/quality trade-
offs.

VI. CONCLUSION

The energy and power savings that can be made using
quality scaling, with adaptive applications, are application and
platform dependent. We show how these scaling mechanisms
may be applied in a practical context for an H.263 adaptive
real-time application executing on an existing MPSoC plat-
form. By using independent power- and quality-managers our
technique is able to be integrated more easily onto platforms
with existing real-time DVFS power-management techniques,
while still achieving the quality/energy trade-off we require.

We show that our technique can be used with soft and firm
real-time DVFS mechanisms. From experimentation there does
not appear to be a significant difference in their ability to
work with our quality scaling technique, with both techniques
performing very similarly. Our quality scaling technique is
shown to work for mixed criticality temporal/energy/power
constraints. We demonstrate this for the practical application
of scaling the output quality of the H.263 video decoder in

order to meet a given energy budget for a particular number
of decoded video frames. Through experimentation, using an
actual platform instance executing on an FPGA prototyping
board, we show that quality-scaling enables the same level
of energy budget to be used to decode more frames than
with frequency-scaling alone. From our experimentation we
show that the same level of energy budget can be used to
decode up to 45% more frames when using quality-scaling,
than frequency scaling alone, but at a cost of up to 22dB
PSNR.
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