Memory-Map Selection for Firm Real-Time
SDRAM Controllers

Sven Goossens, Tim Kouters, Benny Akesson, and Kees Goossens
Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract—A modern real-time embedded system must support
multiple concurrently running applications. To reduce costs,
critical SoC components like SDRAM memories are often shared
between applications with a variety of firm real-time require-
ments. To guarantee that the system works as intended, the
memory controller must be configured such that all the real-
time requirements of all sharing applications are satisfied. The
attainable worst-case bandwidth, latency, and power of the
memory depend largely on memory map configuration. Sharing
SDRAM amongst multiple applications is challenging, since their
requirements might call for different memory maps.

This paper presents an exploration of the memory-map design
space. Two contributions improve the memory-map selection
procedure. The first contribution reduces the minimum access
granularity by interleaving requests over a configurable number
of banks instead of all banks. This technique is beneficial for
worst-case performance in terms of bandwidth, latency and
power. As a second contribution, we present a methodology to
derive a memory-map configuration, i.e. the access granularity and
number of interleaved banks, from a specification of the real-time
application requirements and an overall memory power budget.

I. INTRODUCTION

Embedded applications with real-time requirements are
mapped to heterogeneous multiprocessor systems. The compu-
tational demands placed upon these systems are continuously
increasing, while power and area budgets limit the amount
of resources that can be expended [1]-[3]. To reduce costs,
applications are often forced to share hardware resources.
Functional correctness for Firm Real-Time application is
only guaranteed if their timing requirements are considered
throughout the entire system. When the requirements are not
met, it may cause an unacceptable loss of functionality or
severe quality degradation [4].

We focus on the real-time properties of the (off-chip) memory.
SDRAM is a commonly used memory type because it provides
a large amount of storage space at low cost per bit. The
response time of an SDRAM is inherently difficult to bound,
since it is highly variable because of its internal architecture. It
comprises a hierarchical structure of banks and rows that have
to be opened and closed explicitly by the memory controller,
where only one row in each bank can be open at a time.
Requests to the open row are served at a low latency, while
request to a different row results in a high latency, since
it requires closing the open row and subsequent opening
of the requested row. Locality thus strongly influences the
performance of the memory subsystem.

The worst-case (minimum) bandwidth and worst-case (maxi-
mum) latency are determined by the way requests are mapped
to the memory. The worst-case latency can be optimized by
accessing the memory at a small granularity (i.e. few words),

978-3-9810801-8-6/DATE12/(©)2012 EDAA

such that the individual requests take a small amount of time
to complete. This allows fine-grained sharing of the memory
resource, at the expense of efficiency, since the overhead of
opening and closing rows is amortized over only a small
number of bits. Latency sensitive requests like cache misses fa-
vor this configuration. Conversely, to optimize for bandwidth,
the memory has to be used as efficiently as possible, which
requires memory maps that use a large access granularity.
Such a configuration targets streaming applications (e.g. video)
that are latency tolerant but require high bandwidth. Existing
memory controllers offer only limited configurability of the
memory mapping and are unable to balance this trade-off
based on the application requirements.

A memory controller must take the latency and bandwidth
requirements of all of its applications into account, while
staying within the given power budget. This requires an
understanding of the effect that different memory maps have
on the attainable worst-case bandwidth, latency and power.

This paper contains the following two contributions: 1) We
explore the full memory map design space by allowing requests
to be interleaved over a variable number of banks. This reduces
the minimum access granularity and can thus be beneficial for
applications with small requests or tight latency constraints.
2) We propose a configuration methodology that is aware of the
real-time and power constraints, such that an optimal memory
map can be selected.

The rest of this paper is organized as follows. In Section II,
related work is discussed. Section III gives background on
the SDRAM architecture. Section IV shows the effect of
configuring the number of banks over which requests are
interleaved. Section V shows how to compute the memory
configuration based on the requirements of a real-time work-
load. This method is applied in a case study in Section VI,
followed by conclusions in Section VII.

II. RELATED WORK

Several SDRAM controllers focusing on real-time applica-
tions have been proposed, all trying to maximize the worst-
case performance. [5] uses a static command schedule com-
puted at design time. Full knowledge of the application behav-
ior is thus required, making it unable to deal with dynamism
in the request streams.

The controller proposed in [6] dynamically schedules precom-
puted sequences of SDRAM commands according to a fixed
set of scheduling rules. The controller proposed in [7] follows
a similar approach. [8] dynamically schedules commands at
run-time according to a set of rules from which an upper
bound on the latency of a request is determined. [6] and [8]
use a memory map that always interleaves requests over all
banks in the SDRAM, which sets a high lower bound on
the smallest request size that can be supported efficiently.

[6] supports multiple bursts to each bank in an access to
increase guaranteed bandwidth for large requests. [7] allows
only single burst accesses to all banks in a fixed sequential
manner, although multiple banks can be clustered to create a
single logical resource. None of the mentioned controllers take
power into account, despite it being an increasingly important
design constraint [2].

Our work considers design-time selection of both the num-
ber of bursts per bank and the number of banks that is
interleaved over. This allows the access granularity to have
any size equal to or larger than one burst. Unlike [6]-[8], the
choice of memory map can thus completely be optimized for
the mix of application requirements.

III. BACKGROUND
A. SDRAM

An SDRAM consists of a number of banks, each containing
a matrix-like memory, structured in rows and columns. Each
bank has a row buffer that can store one row. Before data
can be read or written, a row has to be opened by moving it
to the row buffer. This is done by issuing an activate (ACT)
command. Columns in the activated row can then be accessed,
each read (RD) or write (WR) command resulting in a burst
data transfer. The number of transmitted words per read or
write command depends on the burst length (BL), which for
a DDR3 SDRAM is 8. Closing a row is done by precharging.
To retain data, all rows in the SDRAM have to be refreshed
regularly, which is done by precharging all banks and issuing
a refresh (REF) command. If no command is required during
a clock cycle, a no-operation (NOP) command is issued.

The peak bandwidth of the memory is the product of the
clock frequency, the interface width (IW), and the data rate.
Throughout this paper, we use a MT41J64M16 DDR3-800
module from Micron as the example memory [9]. It runs at
400 MHz, has a 2 byte interface width and a data rate of 2
words per cycle, resulting in a peak bandwidth of 1600 MB/s.
Memory efficiency is defined as the fraction of the peak
bandwidth that can be guaranteed to the applications. There are
several factors that reduce the memory efficiency, connected to
command timing constraints. Some of these constraints work
on a per-bank basis. For example, tgrc specifies the minimum
time between two ACT commands to the same bank, while
trep denotes the minimum time between an ACT and a RD
or WR command. Overhead from this type of constraints can
be partially hidden by pipelining commands to different banks,
for example by reading from bank 0 while waiting for bank
1 to activate. Other constraints have to be considered for
the memory as a whole. For example, tpaw specifies a time
window in which maximally 4 ACT commands may be issued.
Both read and write commands use the same data bus, and the
command and data bus are shared between different banks.
The data bus needs a few cycles to switch direction between
reads and writes, which again reduces worst-case efficiency.

B. Real-time memory controller

The access granularity (AG) is the minimum number of
bytes that can be fetched from the SDRAM in a single
request. It can range from a single burst up to a few kilo-
bytes depending on the controller. If an application issues a
request smaller than AG, then the excess bytes are fetched
and subsequently discarded. The fraction of the fetched data

4 3.2

96 22 13 8.6 6.4 .5
AG: 16 bytes
AG: 32 bytes

AG: 64 bytes S >/
AG: 128 bytes /

AG: 256 bytes | |
AG: 512 bytes |/
AG: 1024 bytes

"

B
-
N

—vd >om @

1H /

) {b“g =09GB/s F
< gross

\ S S S
- / 3
0.6(b'6326% = 0.6 GB/s

ross

0.4
0.6
0.2 x
o3
- max
0 L L
0 0.3 0.4 0.5

Power (W)

Fig. 1. Maximum guaranteed gross bandwidth at different access granularities
versus worst-case power for our example DDR3-800 memory. The labels
denote BI, shapes denote the access granularity in bytes. The isolines denote
energy efficiency in GB/J (higher is better). The encircled data points are
feasible in the case study (Section VI).

that is useful to the application is called data efficiency.
Gross bandwidth is defined as the worst-case guaranteeable
bandwidth, without taking data efficiency into account. Net
bandwidth is the product of the gross bandwidth and the data
efficiency for a given request size and hence corresponds to
the bandwidth useful to the application. This is the bandwidth
that we guarantee.

This paper uses the concepts of the SDRAM controller
proposed in [6]. The controller dynamically schedules pre-
computed non-preemptive sequences of SDRAM commands,
called memory patterns, according to a fixed set of scheduling
rules. There are five types of patterns: 1) read, 2) write,
3) read/write switching, 4) write/read switching, and 5) refresh.
Large requests are divided into smaller requests that are as
large as the access granularity by a preprocessing block. The
controller guarantees a service latency [10] and rate (band-
width), based on analysis of the arbiter and the patterns [11].
A small state machine schedules the appropriate pattern given
the request and the memory state.

The SDRAM controller uses a close-page policy that
precharges a row as soon as possible after a request. The
advantage of this policy is that the time penalty caused by
the precharge-to-activate constraint can be (partially) hidden
by bank parallelism within the access, which improves the
worst-case bounds.

IV. MEMORY-MAP PARAMETERS

This section explores different ways in which a memory
request can be mapped to the bank, row, and column structure
of an SDRAM, and we evaluate the impact on the worst-case
bandwidth, latency, and power. This is illustrated in Fig. 1 and
2 for our example DDR3-800 memory. The exact derivation
of the figures is discussed later in Section V.

[11] has shown that the memory efficiency monotonically in-
creases with the access granularity (AG), because the constant
overhead of a transfer is amortized over an increasing amount
of data. To exploit this effect, they introduced the Burst Count
(BC) parameter, which controls the number of bursts to each
bank per memory access. While for large requests efficiency

1600 -

1465146514651495

2 4 81

I AG: 16 bytes
I AG: 32 bytes
I AG: 64 bytes
[AG: 128 bytes
I AG: 256 bytes
[T AG: 512 bytes
I AG: 1024 bytes

1400
1200

@ 1000 -
825 825 825 855

800

600 2

Latency (ns

r 505 505 505 3%
400+ 338 345 365 375
265 275 295

]

35 245 255
1

il

Fig. 2. Worst-case latency with two interfering requests for our example
DDR3-800 memory. Bars are grouped and sorted ascending by access
granularity. The bottom part of the bars shows the latency as a result of
one interfering request and refreshes, which is independent of the arbitration
policy. The top part shows the latency caused by one additional request.

2 4 8 1 2 4 8 1 2 4 8 1
Number of Banks Interleaving (BI)

improves when increasing the access granularity, a penalty
is paid in terms of minimum latency. For small requests,
increasing AG may even reduce the net bandwidth. This is
because if AG is larger than the request size, time is spent
fetching data which is later discarded. Since the workload for a
memory controller can consist of both small and large requests,
efficient support for small requests is of key importance.

We propose that the number of banks involved in an access
can also be used as a parameter to scale the size of a memory
access. Instead of interleaving an access over all available
banks (e.g. [6], [8]), we propose to use only a subset of the
banks. For example, if the SDRAM has 8 banks, bank clusters
of 8,4, 2 and 1 bank can be used. We refer to this parameter as
the number of Banks the memory map Interleaves over (BI).
With the introduction of this parameter, the access granularity
in bytes is given by AG = Bl - BC'- BL - IWW. The minimum
access granularity for a DDR3 with 8 banks, a burst length
of 8 words and a 2 byte IW can be reduced from 128 to 16
bytes by using this extra degree of freedom.

Interleaving over a subset of the banks has two effects on
the net memory efficiency: 1) Small requests can be served
without a data efficiency penalty by choosing BI such that the
access granularity is equal or smaller than the request size.
2) The negative effect of the tpaw constraint within an access
can be avoided by maximally interleaving over 4 banks, while
using the burst count to maintain a constant access granularity.
Across multiple accesses, the ACT-to-ACT (trc) constraint
already enforces the activates to be spaced sufficiently, since
trc > tgaw for all DDR2 and DDR3 memories [12], [13].

Based on the effect of BI and BC on the properties of
a memory access, we draw the following four conclusions:
1) Worst-case gross bandwidth is maximized when the in-
terference of timing constraints within and between accesses
is minimized. Interference from read/write switches of the
data bus can be minimized by amortizing over large requests.
Bank specific timing constraints, such as tgrcp and trp, can
be hidden by exploiting bank parallelism and/or increasing
the burst count. Increasing either BI or BC thus increases
worst-case gross bandwidth. 2) Worst-case net bandwidth is
the product of worst-case gross bandwidth and data efficiency.
It is maximized at the best possible configuration in terms of
gross bandwidth that has an access granularity that is smaller
than or equal to the request size. At larger granularity, the data
efficiency drops below 1, which means part of the fetched
data is not used. This is very expensive in terms of perfor-

mance and energy efficiency. 3) Worst-case latency consists
of two components: time required for refreshes and read/write
switches, and requests from other applications. The worst case
contains at least one other request, since requests are non-
preemptive. Once the gross memory efficiency is maximized,
increasing AG no longer results in more bandwidth, but only
increases latency as it takes more time to serve large requests.
4) Activate and precharge commands are relatively expensive
in terms of power [14]. An activate and precharge command
is required for each bank involved in a memory access, so for
a given access granularity, decreasing BI (and thus increasing
BC) decreases power.

By introducing BI as a degree of freedom, as proposed in
this paper, all three aspects of memory performance are thus
improved for small requests. Consider for example requests
of 64 bytes in Fig. 1 and 2. Optimizing for bandwidth, the
(BI4, BC1) combination delivers 70% more net bandwidth and
reduces the worst-case latency by 28% compared to the best
configuration for 64 byte requests interleaving over all banks
(BI8, BC1). The improvement can mostly be attributed to the
increase in data efficiency when switching from an access
granularity of 128 bytes to 64 bytes, which avoids fetching
unnecessary data. If power is more important, choosing (BI1,
BC4) reduces worst-case power by 46%. For large requests,
we perform at least equally well in terms of bandwidth and
latency, while reducing power, e.g. by 7% at an AG of 1024
bytes when comparing (BI§, BCS8) with (BI2, BC32).

V. COMPUTING A MEMORY CONTROLLER CONFIGURATION

In this section, we show how to configure a memory
controller with the new degree of freedom in BI. Given a set
of application requirements and a maximum power budget for
the memory subsystem, a (B, BC) tuple must be determined.
The proposed methodology is generic and can be applied to
any SDRAM type. For the power estimations, any model can
be used. We choose the model from [14], which allows us to
analyze DDR2, DDR3, LPDDR and LPDDR2 memories.

We specify a real-time application ¢ using three parameters:
1) its request size (R.S;) in bytes, 2) its minimum net band-
width requirement (b;) in MB/s, and 3) its maximum service
latency requirement (O;) in nanoseconds. For the applications
that use the memory, we create a set Agy of these 3-tuples.
This allows the derivation of the data efficiency per application
for each possible access granularity. We further assume there
is a predefined power budget for the entire memory subsystem,
Prax, given in Watts.

The proposed four-step method is to compute the total
required bandwidth and then find the (BI, BC') controller
configurations that deliver at least that much bandwidth within
the maximum power budget and within the maximum latency
requirements of each application. The first step is to con-
vert the individual minimum bandwidth requirements to an
aggregate gross bandwidth requirement that takes the data
efficiency (ed?*®) of each application into account, using the
access granularity (AG) as a parameter. Equation (1) shows
the minimum gross bandwidth that must be supplied by a
configuration for it to be a valid candidate for the set of
applications:

bAG _ E bz _
gross edata -

b;
> min ([E57,1) (1)

_min ([ﬁ

The second step is to determine the worst-case gross band-
width that is provided by a (BI, BC') configuration. To that
end, the memory pattern generation algorithm from [15] is
applied to generate pattern sets for all feasible configurations.
The set of feasible values for BI is limited by the number of
banks in the memory. The product of BI and BC' is part of
AG and thus bounded by Equation (1), which shows that as
the access granularity increases, so does the aggregate gross
bandwidth requirement. Since the guaranteed gross bandwidth
can never exceed the peak bandwidth, this bounds the set
of valid combinations. By applying the efficiency analysis
from [11], the guaranteed gross bandwidth can be derived
for each generated pattern set. In Fig. 1, this is shown for
our example memory. All configurations that cannot satisfy
the aggregate gross bandwidth requirement can be removed
from the solution space. This is illustrated in the figure by a
horizontal line at the aggregate gross bandwidth for each AG.
All data points of an AG that lie below the corresponding line
are not feasible.

In the third step, we take the power budget into account. For
all feasible (BI, BC) configurations, the energy consumed in
each of the memory patterns is derived using the power model
in [14]. We define the worst-case power as the power that
would be drawn if the most energy consuming combination
of patterns possible within the pattern scheduling rules would
be repeated indefinitely. All (BI, BC) configurations that
consume higher worst-case power than P« can be removed
from the solution space. In Fig. 1, the valid configurations then
lie left of a vertical P« line.

In the final step, the maximum service latency for the
applications is taken into account. For this we use the analysis
from [11]. It provides an upper bound on the service latency
that is parameterized with the number of interfering requests.
When combined with a predictable arbiter like Round Robin
or any other arbiter in the class of latency-rate servers [10], the
maximum number of interfering requests for each application
can be derived, which can in turn be used to derive the worst-
case latency in nanoseconds. The choice of arbiter depends on
the specific mix of bandwidth and latency requirements and is
left to the system designer. A line with the latency requirement
for each application can be drawn in a latency plot, where valid
configurations lie below these lines, as shown in Fig. 2.

VI. CASE STUDY

The procedure of Section V is now applied to a small set of
example applications, specified in Table I. We use our example
DDR3-800 memory and set the maximum power requirement
Phax to 0.5 W. We start by determining the aggregate gross
bandwidth requirement at different access granularities using
Equation (1), and find that only four access granularities are
feasible, i.e. yield a bandwidth requirement smaller than the
peak bandwidth of the memory: bégss = bg’foss = bgé)ss =
600 MB/s and by, = 900 MB/s.

We then determine the worst-case gross bandwidth that is
provided by the patterns generated for the (BI, BC') config-
urations within the solution space, shown in Fig. 1. Since the
configurations with an access granularity of 16 and 32 bytes
are only capable of providing 251 and 512 MB/s, respectively,
we discard them from the solution space. Discarding all
the tuples that consume more power than P, leaves five
configurations: (1, 4), (2, 2), (1, 8), (2, 4) and (4, 2).

TABLE I
THE APPLICATIONS USED IN THE CASE STUDY

Application | RS; (bytes) | b; (MB/s) | ©; (ns)
App. 1 128 300 700
App. 2 64 300 700

The final requirement to consider is service latency. We as-
sume that a round-robin arbiter is used to arbitrate between the
applications, making a scheduling decision at fixed intervals.
The worst case consists of the application just missing its own
scheduling slot, followed by the slot reserved for the second
application. In Fig. 2, this latency is plotted. All remaining
candidate configurations provide a maximum latency within
the required 700 ns. This allows us to select the most power
efficient memory map, which in this case is (1, 4).

VII. CONCLUSION

This paper addresses the problem of finding a memory
map for firm real-time workloads in the context of SDRAM
memory controllers. Existing controllers use either a static
memory map or provide only limited configurability. We
improve existing work with two contributions. 1) We use
the number of banks requests are interleaved over as flexible
configuration parameter, while previous work considers it a
fixed part of the controller architecture. We use this degree of
freedom to optimize the memory configuration to the mix of
applications and their requirements. This is beneficial for the
worst-case performance in terms of bandwidth, latency and
power. 2) We propose a configuration methodology that takes
the real-time and power constraints of all applications into
account. We have shown how these requirements in terms of
bandwidth, latency and a total power budget can be used to
find a memory configuration that satisfies the requirements.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by Agentschap NL, as part
of the EUREKA/CATRENE/COBRA project CA104.

REFERENCES

[1] C. van Berkel, “Multi-core for Mobile Phones,” in Proc. DATE, 2009.

[2] “International Technology Roadmap for Semiconductors (ITRS),” 2009.

[3] P. Kollig et al., “Heterogeneous Multi-Core Platform for Consumer
Multimedia Applications,” in Proc. DATE, 2009.

[4] L. Steffens et al., “Real-Time Analysis for Memory Access in Media
Processing SoCs: A Practical Approach,” Proc. ECRTS, 2008.

[5] S. Bayliss et al., “Methodology for designing statically scheduled
application-specific SDRAM controllers using constrained local search,”
in Proc. FPT, 2009.

[6] B. Akesson et al., “Architectures and modeling of predictable memory
controllers for improved system integration,” in Proc. DATE, 2011.

[71 J. Reineke et al., “PRET DRAM Controller: Bank Privatization for
Predictability and Temporal Isolation,” in Proc. CODES+ISSS, 2011.

[8] M. Paolieri et al., “An Analyzable Memory Controller for Hard Real-
Time CMPs,” Embedded Systems Letters, IEEE, vol. 1, no. 4, 2009.

[9] Micron Technology Inc., “DDR3-800-1Gb SDRAM Datasheet, 02/10

EN edition,” 2006.

D. Stiliadis et al., “Latency-rate servers: a general model for analysis

of traffic scheduling algorithms,” IEEE/ACM Trans. Netw., 1998.

B. Akesson et al., “Classification and Analysis of Predictable Memory

Patterns,” in Proc. RTCSA, 2010.

DDR?2 SDRAM Specification, JESD79-2E ed., JEDEC Solid State Tech-

nology Association, 2008.

DDR3 SDRAM Specification, JESD79-3D ed., JEDEC Solid State Tech-

nology Association, 2009.

K. Chandrasekar et al., “Improved Power Modeling of DDR SDRAMs,”

in Proc. DSD, 2011.

B. Akesson et al.,, “Automatic Generation of Efficient Predictable

Memory Patterns,” in Proc. RTCSA, 2011.

[10]
(1]
[12]
[13]
[14]
[15]

