
Automatic Generation of Efficient Predictable Memory Patterns

Benny Akesson, Williston Hayes Jr., Kees Goossens
Eindhoven University of Technology

Abstract—Verifying firm real-time requirements gets increas-
ingly complex, as the number of applications in embedded
systems grows. Predictable systems reduce the complexity by
enabling formal verification. However, these systems require
predictable software and hardware components, which is prob-
lematic for resources with highly variable execution times, such
as SDRAM controllers. A predictable SDRAM controller has
been proposed that addresses this problem using predictable
memory patterns, which are precomputed sequences of SDRAM
commands. However, the memory patterns are derived manually,
which is a time-consuming and error-prone process that must be
repeated for every memory device, and may result in inefficient
use of scarce and expensive bandwidth.

This paper addresses this issue by proposing three algorithms
for automatic generation of efficient memory patterns that pro-
vide different trade-offs between run-time of the algorithm and
the bandwidth guaranteed by the controller. We experimentally
evaluate the algorithms for a number of DDR2/DDR3 memories
and show that an appropriate choice of algorithm reduces
run-time to less than a second and increases the guaranteed
bandwidth by up to 10.2%.

Index Terms—predictability; real-time; SDRAM; memory con-
troller; memory patterns; pattern generation; memory efficiency

I. INTRODUCTION

Embedded systems get increasingly complex, both in terms
of software and hardware. The number of applications is
growing as well as their individual complexity, requiring
increased system performance. To deliver on this expectation
while limiting power consumption, industry is moving towards
sophisticated heterogeneous multi-processor platforms that en-
able concurrent execution of applications [1], [2]. To reduce
cost, resources, such as interconnects and memories, are shared
between applications, further adding to complexity by making
the timing behaviors of applications inter-dependent.

The increasing complexity is challenging in real-time sys-
tems, where some applications, such as a Software-Defined
Radio [3], have firm real-time requirements. Failure to satisfy
this type of requirement is highly undesirable and may result
in significantly reduced quality of the application, failure to
comply with a given standard, or even violate the functional
correctness of the system [4]. It is hence imperative to guar-
antee that all firm real-time requirements are satisfied for all
inputs and all possible combinations of concurrently executing
applications. This results in a problem for many simulation-
based verification approaches that are too slow to achieve full
coverage of the possible cases.
Techniques for design-time verification of applications with

firm real-time requirements based on formal models of compu-
tation, such as data-flow analysis [5], [6], have been proposed.
These approaches enable independent application verification,
which significantly reduces the verification complexity. How-
ever, this requires predictable systems, where the response
times of both the applications and the platform resources are

bounded [7]. SDRAM memories are essential resources that
are challenging to use in predictable systems. The reason is
that they have highly variable response times that depend on
previous requests. SDRAM bandwidth is furthermore scarce
and expensive due to pin constraints on the chip, and has to
be efficiently utilized. Most memory controllers hence apply
sophisticated techniques to maximize the average bandwidth.
However, this makes them unable to guarantee bandwidth and
response time to a memory requestor, which is a processor
that accesses the memory on behalf of an application.

A predictable memory controller that provides bounds on
bandwidth and response times has been proposed that enables
formal verification of real-time multi-processor systems with
shared SDRAM memories [8]. This is achieved by first using
a predictable arbiter to schedule memory requests that are
then dynamically mapped by an SDRAM back-end to a set
of predictable memory patterns, which are statically computed
sequences of SDRAM commands with known execution times.
However, a drawback of this approach is that memory patterns
are derived manually, resulting in three problems: 1) Making a
pattern set is a time-consuming process that must be repeated
for every type of SDRAM memory and pattern configuration.
2) Making patterns manually is error-prone, considering that
a large number of timing constraints between successive com-
mands must be satisfied for the SDRAM to execute correctly.
3) It is difficult to ensure that the generated patterns provide
optimal bandwidth, due to the large size of the design space.

This paper addresses this issue by presenting three algo-

rithms for generation of predictable memory patterns offering
different trade-offs between run-time and guaranteed band-
width. The first algorithm uses a branch and bound search that
is guaranteed to find the optimal patterns subject to our design
decisions. The second algorithm is a heuristic that works
cycle-by-cycle and schedules SDRAM commands as-soon-as-
possible (ASAP) when their timing constraints are satisfied.
The last algorithm is a heuristic that schedules commands
bank-by-bank. We experimentally compare the algorithms for
a range of DDR2/DDR3 SDRAM memories with a variety of
pattern configurations and show that an appropriate choice of
algorithm reduces run-time to less than a second and increases
the guaranteed bandwidth by up to 10.2%.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work. The SDRAM architecture is
introduced in Section III, and we explain the problem of
providing guarantees on bandwidth and response times with
these memories. Section IV then recapitulates the concept of
memory patterns and explains how they address the problem.
The main contributions of this paper are in Section V, which
presents three algorithms for automatic generation of efficient
memory patterns. Section VI experimentally compares the dif-
ferent algorithms in terms of run-time and provided bandwidth,
before we present our conclusions in Section VII.



II. RELATED WORK

Most SDRAM controllers are either statically or dynam-
ically scheduled, depending on the type of systems they
target. Statically scheduled controllers execute precomputed
schedules of SDRAM commands that have been determined
at design time. These controllers are predictable, since the
response time and bandwidth provided to a requestor can be
bounded at design time by analyzing the schedule. However,
the predictability of these controllers comes at the expense of
flexibility, as it requires the entire trace of memory requests
to be known at design time. Statically scheduled controllers
are hence suitable for real-time systems executing single
applications that are not input-dependent [9], but do not scale
to systems with multiple concurrently executing applications.

Dynamically scheduled memory controllers, on the other
hand, schedule SDRAM commands at run-time based on
available requests. These controllers target high efficiency and
flexibility to fit in high-performance systems with dynamic
applications. Several of these controllers feature sophisticated
mechanisms to reduce average response times or increase the
average available bandwidth. Examples involve preference for
requests that target open rows in the memory banks [10]–
[13], or that fit with the current direction (read/write) of the
data bus [12]–[15]. The problem with these controllers is that
the interactions between all these mechanisms are complex,
making it difficult to derive useful bounds on bandwidth and
response times. Most dynamically scheduled controllers are
hence unsuitable for systems with firm real-time requirements.

A hybrid memory controller that combines aspects of both
statically and dynamically scheduled approaches is proposed
in [8]. This controller uses five types of predictable mem-

ory patterns, which are statically computed sub-schedules of
SDRAM commands that are dynamically combined at run-
time. This results in a predictable controller that is more
flexible than statically scheduled designs. However, the mem-
ory patterns must be manually derived for every type of
SDRAM device, which is time-consuming and error-prone,
and may result in inefficient use of scarce bandwidth. This
paper addresses this problem by proposing three algorithms
for predictable memory pattern generation. The algorithms are
experimentally evaluated to determine the trade-off between
guaranteed bandwidth and run-time of the algorithms.

III. SDRAM OVERVIEW

An SDRAM memory comprises a number of banks (nbanks),
each containing a memory array with a matrix-like structure,
consisting of rows and columns. Each bank has a row buffer
that can hold one open row at a time, and read and write
operations are only allowed to the open row.

A bank has two states, idle and active. The bank is activated
from the idle state by an activate (ACT) command that loads
the requested row into a row buffer, which stores the most
recently activated row. Once the bank has been activated,
read (RD) and write (WR) bursts can be issued to access the
columns in the row buffer. These bursts have a programmable
burst length (BL) of either 4 or 8 words for DDR2/DDR3
SDRAM that are transferred from/to the memory with a data
rate of two words per clock cycle. Finally, a precharge (PRE)
command is issued to return the bank to the idle state. This

stores the row in the buffer back into the memory array. Read
and write commands can be issued with an auto-precharge

flag, resulting in an automatic precharge at the earliest possible
moment after the data transfer is completed. In order to retain
data, all rows in the SDRAM have to be refreshed regularly,
which is done by precharging all banks and issuing a refresh

(REF) command. If no other command is required during a
clock cycle, a no-operation (NOP) command is issued.

The SDRAM architecture makes the response time of re-
quests and the provided bandwidth highly variable for three
reasons. 1) A request targeting an open row can be served
immediately, while it otherwise first needs the current row to
be closed and the required row to be opened. 2) The data bus is
bi-directional and requires several cycles to switch from read
to write and vice versa. 3) The memory must occasionally
be refreshed before executing the next request, resulting in
several additional cycles without data transfer. The impact of
these factors may cause the time to serve an SDRAM burst to
vary by an order of magnitude from a few clock cycles to a
few tens of cycles. This makes it very challenging to tightly
bound response times and the provided bandwidth.

The bandwidth to and from a memory ideally corresponds
to the product of the width of the memory interface, the
clock frequency of the memory, and the data rate. This is
referred to as the peak bandwidth of the memory. However,
for the previously mentioned reasons, the peak bandwidth of
SDRAMs cannot be fully utilized. This is captured by the
concept of memory efficiency, which is the fraction of clock
cycles with useful data on the data bus [16]. The product of
the memory efficiency and the peak bandwidth determines the
net bandwidth, which is the bandwidth that is useful to the
requestors after considering all types of overhead.

IV. MEMORY PATTERNS

Providing useful bounds on response time and net band-
width to SDRAM requestors at design time is a challenging
task. This section first provides an overview of how the hybrid
memory controller proposed in [8] accomplishes this using
predictable memory patterns and then explains the general
structure of each of the pattern types, which is a prerequisite
for the memory pattern generation presented in Section V.

A. Memory pattern overview

Scheduling SDRAM commands is not trivial, since there
is a considerable number of timing constraints that must
be satisfied before a command can be issued. These timing
constraints are specified minimum delays between issuing
particular SDRAM commands, such as two activates to the
same (tRC ) or different (tRRD) banks, an activate and a read
or a write in the same bank (tRCD), two reads or two writes
(BL/2), a read and a precharge (tRTP ), or a precharge and an
activate to the same bank (tRP ). Some of these constraints are
illustrated in Figure 1. The complete list of timing constraints
and their particular delays are specified for all DDR2/DDR3
memories in [17], [18].

Command scheduling in the hybrid controller is based on
predictable memory patterns, which are precomputed sub-
schedules of SDRAM commands that are designed to satisfy
the timing constraints of the memory. These patterns are



0 1 2 10 11 12 13 14 153 4 5 6 87 9 16 17 18 19 20 21cycle

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1 2 2 2 2 2 2 2 2 33 3 3 3 3 3 3data

R/W patternRead pattern Write pattern

ACT
0

NOP NOP
0

RD ACT
1

NOP NOP
1

RD ACT
2

NOP NOP
2

RD ACT
3

NOP NOP
3

RD NOP NOP ACT
0

NOP NOP
0

WRcmd

≥ BL/2≥ tRRD ≥ tRCD

≥ tRC ≥ tRCD

Fig. 1. Read pattern with BL = 8 followed by a read/write switching pattern
and a partial write pattern (DDR2-400).

dynamically scheduled at run-time, depending on incoming
requests, thus increasing flexibility over statically scheduled
controllers. A memory pattern set consists of five types of
patterns: 1) a read pattern, 2) a write pattern, 3) a read/write
switching pattern, 4) a write/read switching pattern, and 5)
a refresh pattern. The read and the write pattern are referred
to as access patterns, while the remaining patterns are called
auxiliary patterns. The patterns are created such that multiple
read or write patterns can be scheduled in sequence. However,
a switching pattern is required between a read and a write
pattern, and vice versa. The refresh pattern is scheduled
periodically and can be followed by either a read or a write
pattern without a preceding switching pattern. The mapping
from requests to patterns is illustrated in Figure 2. The actual
command sequence of a read pattern followed by a read/write
switching pattern and a write pattern (first four cycles) for a
DDR2-400 memory is shown in Figure 1. Note that the data
from a bank arrives on the data bus a few cycles after the
corresponding read command, due to the read latency in the
memory device. The data from the last banks may hence arrive
during the following patterns.

Bursts /

Banks

Read Read

Read Refresh Write W/R Read Read R/W Write

0 2 31 0 2 31 0 2 31 0 2 31 0 2 31

Write Read WriteRequests

Time

patterns

Memory

Fig. 2. Mapping from requests to patterns to SDRAM bursts.

To bound the bandwidth and response times provided by the
controller, information is required about the temporal behavior
of the memory patterns, defined in Definition 1. The definition
considers the lengths of the patterns in the set, corresponding
to the number of SDRAM commands in each pattern. One
command is issued by the memory controller per clock cycle,
which implies that the time to issue a pattern is known at
design time.

Definition 1 (Memory pattern set): A memory pattern set
is defined as (tread, twrite, trtw, twtr, tref), where the parameters
correspond to the lengths of the read pattern, the write pattern,
the read/write switching pattern, the write/read switching
pattern, and the refresh pattern, respectively.

The use of predictable memory patterns combined with a
predictable arbiter enables the hybrid memory controller to
provide guarantees on net bandwidth and response times to
its requestors. Response time is bounded according to a three
step process: 1) The predictable arbiter bounds the maximum

number of interfering requests before a particular requestor
is scheduled. 2) For a given set of memory patterns, it is
shown in [16] how to determine the worst-case combination
of patterns these interfering requests may map to. 3) It is
known how many cycles it takes to execute this worst-case
combination of patterns, since they are generated at design
time. Net bandwidth is bounded in a similar manner, since
the time to execute the worst-case combination of patterns is
known together with how much data they transfer to and from
the memory.

B. Pattern structure

We now present the general structure of the different pat-
terns in a pattern set. There are many possible patterns for
each memory device that implement this structure. For now,
we keep the discussion general and consider any patterns of
the different types that satisfy the scheduling rules and do not
violate the timing constraints of the memory device. We refer
to these patterns as valid patterns. We return in Section V to
discuss how to construct valid patterns that are efficient.

The controller uses an interleaving memory map. This
means that read and write accesses to successive logical
addresses map to SDRAM bursts for the different banks in
sequence. An access pattern consists of a read or a write
burst to each of the banks in turn, as illustrated in Figure 2.
Interleaving over the banks in this manner is an efficient
way to access the memory, since it is possible to activate
and precharge one bank while reading or writing to another.
To be able to schedule access patterns of the same type
immediately after each other, as shown in the figure, they
must be completely independent of each other. It is hence not
possible to assume that the correct rows are open in any of
the banks. An access pattern must hence contain an activate
and a precharge command for each bank to return them to a
neutral state, thus implementing a close-page policy. Access
patterns also contain a fixed number of SDRAM bursts to
every bank. The number of issued SDRAM bursts per bank is
a pattern parameter, referred to as the burst count (BC ), which
enables a trade-off between the guaranteed net bandwidth and
response times provided by the patterns [16]. The example
access patterns in Figure 2 have a burst count of one, since
there is only a single SDRAM burst per bank in the patterns.

The switching patterns are used to provide sufficient time
for the SDRAM to reverse the direction of the data bus.
These patterns only consist of NOP commands, and the length
is determined by the minimum number of cycles required
between read and write commands, which are defined by the
specification of the memory device. Note that it is possible
to have switching patterns with a length of zero cycles if the
distance between the last read command in a read pattern and
the first write command in a write pattern, or the other way
around, is already sufficient.

The refresh pattern contains a single refresh command,
preceded and succeeded by a number of NOPs. There have
to be enough NOPs before the refresh command to allow all
banks to precharge after the last read or write pattern. After
the refresh command is issued, there have to be at least tRFC
NOPs to allow the refresh operation to complete before the
next pattern is issued.



V. MEMORY PATTERN GENERATION

After explaining the idea behind memory patterns and their
overall structure, this section explains how to generate efficient
patterns that implement this structure. First, we discuss some
design decisions that significantly reduce the search space,
while having negligible impact on the efficiency of the gen-
erated patterns. We then proceed by explaining the conditions
that have to be satisfied for an access pattern to be considered
valid and complete. We then move on to present three access
pattern generation algorithms with different trade-off between
the efficiency of the generated pattern sets and run-time. In
this work, we focus our efforts on generating patterns for a
given burst count. How to determine a suitable burst count for
a set of requestor requirements is discussed in [19]. Lastly, we
conclude by discussing how to generate auxiliary patterns for
the access patterns provided by the algorithms.

A. Design decisions

The number of valid access patterns for a given burst count
grows exponentially with the pattern length. To manage the
size of this design space, we make five important design
decisions. The first design decision is that we assume that

shorter access patterns result in higher bandwidth and lower

response times than longer ones. The benefit of this assump-
tion is that it allows the pattern generation algorithms to focus
on independently finding the shortest read and write patterns
for the given burst count before deriving the corresponding
auxiliary patterns. The assumption holds for most pattern sets,
but sometimes longer access patterns result in shorter auxiliary
patterns that together cause a marginal increase in memory
efficiency and response times [19]. However, the maximum
impact of this is estimated to be less than 1% reduction in
memory efficiency and a few clock cycles of latency under
any circumstances.

The second design decision is not to distinguish the iden-

tity of the banks. This means that we do not consider two
access patterns as different if all commands to two banks
are swapped, a decision that affects neither bandwidth nor
response times. However, this decision has a significant impact
on the set of valid patterns, since we do not have to consider
identical patterns that access the banks in different orders.

The third design decision states that we always start an

access pattern with an activate command and hence ignore all
patterns starting with one or more NOP commands. The idea
behind this decision is to prune a large number of inefficient
patterns from the design space. The rationale is that the
purpose of an access pattern is to issue a number of read and
write bursts to the SDRAM. These bursts cannot be issued
until their corresponding banks have been activated. Inserting
NOPs in the beginning of an access pattern makes the access
pattern longer, typically reducing bandwidth and increasing
response times.

The fourth design decision is to issue the last burst to a bank
in an access pattern with the auto-precharge flag. This reduces
the number of non-NOP commands in the access patterns,
limiting the design space. The use of auto-precharge may
furthermore reduce the length of the pattern, since it reduces
contention on the command bus of the memory.

The last design decision is to issue all BC bursts to one

bank before proceeding to the next. A bank is ready to receive
the next read or write command BL/2 cycles after the first.
No read or write command can be issued to any other bank
before this time, since it would cause a conflict on the data
bus. Keeping all bursts to a bank close together may give a
bank more time between the activate command and the first
read or write command, as well as more time to precharge after
the last read or write command before the following activate
command. This makes it easier to satisfy the timing constraints
of the memory device, potentially resulting in shorter patterns.

B. Access pattern termination

We now show how to decide when an access pattern is
valid and complete, which determines what the generation
algorithms actually have to do. An access pattern is valid
and complete when it satisfies five conditions. We proceed
by explaining these conditions and how to satisfy them.

The first termination condition requires all necessary com-
mands to be included in the pattern. An access pattern consists
of one activate command and BC read or write commands
per bank. There are no precharge commands, since the last
SDRAM burst in the pattern is issued with the auto-precharge
flag according to the fourth design decision. After all com-
mands have been scheduled, NOPs are added to the end of the
generated pattern to prevent timing constraints from carrying
over into a repeated pattern, violating their independence.

The second condition is that the activate-to-activate con-
straint must be satisfied for all banks. This condition implies
that there must be at least tRC clock cycles between suc-
cessive activates to a bank when an access pattern is repeated
after itself. Since there is only one activate command per bank
in an access pattern, this constraint is automatically satisfied
if the length of the pattern is greater than or equal to tRC .

The third condition is that any window of tFAW cycles can
maximally contain four activate commands. This constraint has
to be considered during the pattern generation, but NOPs may
additionally have to be added at the end of pattern to allow it
to be repeated after itself without violating this constraint.
The fourth termination condition requires that the data

produced on the data bus by the last burst in an access pattern
does not collide with the data from the first burst in the
next. This requirement is satisfied if the corresponding access
commands are separated by at least BL/2 clock cycles, which
is the time required to finish the burst.

The last condition requires that there must be at least tRP
clock cycles between a bank is precharged and reactivated. To
satisfy this requirement, we must know in which clock cycles
the precharges of the banks actually happen. This procedure
works differently for read and write patterns. For a read
pattern, the precharge cycle a bank is determined by finding
the cycle with its activate command, tact, and the cycle with its
last read command, tlastread. The precharge cycle is then computed
according to Equation (1). Note that the precharge cycle is
computed with respect to the start of the read pattern and
may be greater than the total length of the pattern, indicating
that the precharge finishes during the execution of a later
pattern. The procedure is similar for write patterns, although
Equation (2) is used instead. Both these equations are derived
from [17], [18].



tpreread =











max(tlastread +
BL

2
+max(tRTP , 2)− 2,

tact + tRAS ) DDR2

max(tlastread + tRTP , tact + tRAS ) DDR3

(1)

tprewrite = tlastwrite + tWL+
BL

2
+ tWR (2)

C. Branch and bound scheduling

After specifying the task of access pattern generation, we
present three algorithms for efficient access pattern generation.
The first of the three access pattern generation algorithms
is a branch and bound (B&B) algorithm. This algorithm is
based on a depth-first traversal of the set of valid patterns
satisfying the design decisions in Section V-A. It is guaranteed
to find the shortest possible access patterns, as its bounding
conditions exclude only longer patterns. We start by giving
a brief introduction to the branching part of the algorithm,
before explaining how it bounds the search space.

The algorithm starts an access pattern with an activate com-
mand in the first cycle, according to our third design decision.
It then looks at the commands that can be scheduled the
following cycle. For each command that respects the timing
constraints of the memory, a copy of the pattern is made and
each command is appended to the end of a copy. The algorithm
repeats this process cycle by cycle until the first pattern is
complete. At this point, it stores the completed pattern and
returns to one of the remaining copies and continues its search
until there are no unfinished copies remaining.
The set of valid patterns complying with our design deci-

sions is very large and grows exponentially with the length
of the patterns. To speed up execution of the algorithm, we
implemented two bounding conditions that limit the size of the
design space. The first bounding condition is a sliding cut-
off point based on the pattern length. We keep track of the
length of the shortest pattern found so far, and stop pursuing
any branches longer than this value. This condition signifi-
cantly reduces the run-time and memory use of the algorithm,
while trivially not excluding the shortest pattern. The second
bounding condition is an extension of the first. Whenever, the
algorithm branches, it looks at the list of commands remaining
to be scheduled, and performs a quick sanity check to see if
the finished pattern can be shorter than or equal to the current
shortest pattern in a best-case scenario [19]. If this check fails,
then no further branches along this path are pursued. Just
like the first condition, this significantly reduces run-time and
memory usage of the algorithm without excluding the shortest
pattern from the search space.

After the search is complete, there is at least one access
pattern of each type with the shortest length. Out of these,
we choose the read and write pattern where the last read or
write command is issued as early as possible. This allows the
access pattern to hide more of the precharge time, potentially
resulting in shorter refresh pattern and switching patterns.
The benefit of the B&B algorithm is that it is guaranteed to

find the shortest possible access patterns and choose the one
that provides the shortest auxiliary patterns. The drawback of
the algorithm is that it may take a long time to search the

design space, despite the help of our two bounding conditions.
This problem begins to show itself as clock frequencies of
memory devices increase. This is because the timing con-
straints of a memory become longer, measured in clock cycles,
resulting in longer patterns [16]. Similarly, increased burst
count increases the number of commands to schedule, creating
more options and longer patterns. For practical purposes, this
algorithm is suitable up to DDR3-1600 with BC = 2. After
this point, the run-time of the algorithm moves into months
and years. This motivated us to look for a faster algorithm.

D. As-soon-as-possible scheduling

The second algorithm is a heuristic that attempts to improve
run-time over the previous algorithm. The idea behind the al-
gorithm is to schedule memory commands as-soon-as-possible
(ASAP), since this intuitively leads to the shortest access
patterns. According to our design decision, the algorithm starts
by putting an activate command in the first cycle. It then
proceeds one cycle at a time by choosing a command that can
be scheduled without violating the timing constraints of the
memory. If there are multiple candidate commands, a simple
priority scheme is used to make the choice. This contrasts to
the previous algorithm that pursues all possible options. This
priority scheme first considers read and write commands, since
these are the commands that put data on the data bus, thereby
increasing efficiency. Activate commands are considered as
second, since these enable future read or write commands,
and hence future data transfer. If none of these commands are
available, a NOP command is scheduled.

A consequence of the ASAP scheduling algorithm is that
the activate commands are scheduled early in the pattern, as
seen in Figure 3a. The reason is that activates to different
banks can be scheduled every tRRD clock cycles, which
is not a very long time (two cycles for the DDR2-400 in
the figure). However, the read and write commands must be
separated by at least BL/2 clock cycles, causing the distance
between an activate command and its corresponding read or
write command to increase, as shown in the figure. This creates
a problem, since a bank needs time to precharge after the
last read or write command has completed, before it can be
reactivated. The earliest reactivation occurs when the pattern
is repeated after itself. The critical constraint is hence the time
between the last read or write command in the pattern until
the activate command in the repeating pattern. The earlier
the activate command, the less time available to precharge.
This is why the pattern generated by the ASAP scheduling
algorithm requires five extra NOP commands to be inserted at
the end of the pattern, while the more balanced pattern, shown
in Figure 3b, does not. Clearly, scheduling commands as early
as possible is not always beneficial.

The advantage of the ASAP scheduling algorithm is that
it runs extremely fast. It generates a schedule in less than
a second for any memory and reasonable burst count, clearly
addressing the problem with the B&B algorithm. However, the
advantage in speed comes at the cost of bandwidth, mainly due
to the problem with prematurely scheduled activate commands.
Although the ASAP scheduling algorithm provides a different
trade-off between run-time and bandwidth, we consider it
rather inefficient, since SDRAM bandwidth is a scarce and



0 1 2 10 11 12 13 14 153 4 5 6 87 9cycle 16 17 18 19 20

ACT
0

NOP NOP
1

WR NOP NOP
2

WR NOP NOP
3

WRACT
1 0

WR ACT
2

ACT
3

NOP NOP NOP NOP NOP NOP NOPcmd

9 cycles

3 cycles 7 cycles

5 cycles

(a) The ASAP algorithm results in increasingly large distances between
activate commands and their corresponding write commands.

0 1 2 10 11 12 13 14 153 4 5 6 87 9cycle

ACT
0

NOP
1

WR NOP
2

WR NOP NOP
3

WR
0

WRNOP ACT
1

NOP NOP ACT
2

NOP ACT
3

3 cycles 3 cycles 3 cycles 3 cycles

cmd

(b) A pattern with balanced distances between activate com-
mands and write commands.

Fig. 3. Premature activate commands result in longer access patterns.

expensive resource. We hence look into a third algorithm,
hoping to find a suitable middle ground.

E. Bank scheduling

The bank scheduling approach is a heuristic that builds on
the lessons learned from ASAP scheduling algorithm. The
idea behind the algorithm is to keep an activate command as
close as possible to its corresponding read or write command,
thereby preventing the precharge-to-activate constraint from
extending the length of the pattern.

The bank scheduling algorithm works by scheduling one
bank at a time, as opposed to working cycle-by-cycle. It starts
by putting an activate command to the first bank in the first
cycle, and a corresponding read or write command at the
earliest possible convenience, being tRCD cycles later. Each
additional burst to the bank is then scheduled BL/2 cycles
apart to constantly keep data on the data bus. This finishes
the scheduling of the first bank. For each successive bank,
the algorithm finds the position of the latest read or write
command, and tries to schedule the next read or write BL/2
cycles later when the data bus is free. The new read or write
command can be scheduled in this position if its activate
command can be scheduled tRCD cycles earlier. This depends
on whether the cycle already has a scheduled command, and
whether the four-activate window (FAW) constraint is satisfied.
If the activate cannot be scheduled in the requested cycle, the
algorithm tries to schedule the read or write command in a
later cycle by iteratively repeating this test. Once the first read
or write command to the bank has been scheduled, the others
follow with a separation of BL/2 clock cycles. An illustration
of the algorithm is provided in Figure 4.

0 1 2 10 11 12 133 4 5 6 87 9cycle

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1data

ACT
0 0

RD

ACT
1 1

RDcmd bank 1

cmd bank 0

BL/2

tRCD

Fig. 4. Conceptual illustration of the bank scheduling algorithm for BC = 1.

The patterns generated by the bank scheduling algorithms
achieve very regular distances between the activates and
their corresponding read and write commands, addressing the
problem found with the ASAP scheduling approach. In fact,
the write pattern shown in Figure 3b was generated using
this approach. The run-time of the algorithm is similar to the

ASAP scheduling algorithm, and hence sufficiently fast. It fur-
thermore generates pattern sets that provide equal bandwidths
to those created by the B&B algorithm. Bank scheduling
hence provides a very favorable trade-off between run-time
and memory efficiency, compared to the other algorithms.

F. Generating auxiliary patterns

The auxiliary patterns can be generated as soon as the access
patterns are given by any of the access pattern generation
algorithms. We start by showing how to generate the refresh
pattern, followed by the switching patterns. The refresh pattern
starts with a number of NOPs that allow the banks to finish
precharging after the latest access pattern. The time required to
finish precharging all banks depends on the distance between
the precharge cycle of the last bank, tpreread or tprewrite from
Equations (1) and (2), and the end of the read or write pattern,
since this determines how much of the precharging time that
is hidden by the access pattern itself. The number of NOPs
required to precharge all banks may be different after a read
and a write pattern, since the values of tpreread and tprewrite are
unrelated. It is hence possible to derive two refresh patterns,
one that follows read patterns, and one that follows write
patterns. However, reducing the refresh pattern for one of these
cases with a few clock cycles has very little impact on both
bandwidth and response times and is hence not considered by
the hybrid memory controller. The refresh command is hence
placed in cycle tRP +(tpreread − tread), or tRP +(tprewrite − twrite),
whichever is larger. This is followed by a refresh command and
tRFC NOPs that are required to satisfy the refresh-to-activate
constraint before the next pattern is issued. The equation for
computing the length of refresh patterns is therefore:

tref = tRP + tRFC +max(tpreread − tread, t
pre
write − twrite) (3)

The switching patterns only consist of NOP commands that
allow the direction of the data bus to be reversed. We first ex-
plain how to compute the read/write switching pattern and then
proceed with the write/read switching pattern. The number of
NOPs in the read/write switching pattern depends both on the
SDRAM generation and the burst length. Equation (4) shows
the minimum number of clock cycles between a read and a
write command for different memories and burst lengths. This
equation is derived from the memory specifications [17], [18].
We compute the number of NOPs in the read/write switching
pattern by subtracting the number of cycles between the read
and write commands that are already built into the read and the
write patterns. The length of the read/write switching pattern is
hence computed according to Equation (5). The computation
of the write/read switching pattern is computed in a similar
manner. The minimum delay between the write and the read
command is shown in Equation (6) and the length of the
pattern is determined in Equation (7).

δread =



















4 DDR2 with BL = 4

6 DDR2 with BL = 8

tCL+ tCCD

2
+ 2− tWL DDR3 with BL = 4

tCL+ tCCD + 2− tWL DDR3 with BL = 8
(4)



trtw = max(δread − (tfirstwrite + tread − tlastread), 0) (5)

δwrite = tWL+
BL

2
+ tWTR (6)

twtr = max(δwrite − (tfirstread + twrite − tlastwrite), 0) (7)

VI. EXPERIMENTAL RESULTS

This section experimentally evaluates the worst-case mem-
ory efficiency and the run-times of the different algorithms for
three different memories with a variety of burst counts. We
start by explaining the setup used in the experiment, followed
by a discussion of the results for each of the memories in turn.

A. Experimental setup

The experiment uses the tooling of the hybrid memory con-
troller proposed in [8] together with three different memories
with different speeds: DDR2-400, DDR2-800, and DDR3-
1600. All memories have a capacity of 512 Mb and 16-bit
interfaces. The DDR2 memories have four banks, and the
DDR3 memory eight. All memory efficiencies, e, are bounded
using the approach presented in [16]. Note that this is worst-
case efficiency assuming large requests, making the results
independent of the application workload. All three algorithms
generate a set of patterns for burst counts 1, 2, and 4 with a
burst length of 8 words. We also generate pattern sets with
burst count 1 and burst length 4 for the DDR2 memories. To
reduce the run-time of the B&B algorithm, the lengths of the
access patterns generated by the bank scheduling algorithm
were used as initial shortest patterns. This significantly reduces
the search space without the possibility of removing the
shortest access patterns.

B. DDR2-400

First up is the DDR2-400 memory. Table I lists the lengths
of the resulting patterns for the different algorithms. We have
merged the results for the B&B algorithm and the bank
scheduling algorithm, since they consistently provide the exact
same pattern lengths for all tested memories. The table shows
that all algorithms provide patterns with the same length for
BL = 4. In fact, they even provide the exact same patterns.
The reason is that the low burst count and short burst length
results in short patterns, where the memory timings do not
allow a lot of options. In contrast with BL = 8, we observe
that the ASAP scheduling algorithm generates write patterns
that are five cycles longer than those generated by the other
algorithms. As explained in Section V-D, this is because
scheduling the activate commands as soon as possible causes
the distance to the corresponding write commands to gradually
increase, causing a problem with precharges. Having a longer
write pattern is not completely without advantages. We observe
that the patterns generated by the ASAP algorithm often has
shorter write/read switching patterns and refresh patterns. The
reason is that the five NOPs at the end of the write patterns
hide some of the time required to switch direction of the data
bus, or to precharge all banks.

TABLE I
RESULTS FOR THE DDR2-400 MEMORY.

BL/BC 4/1 8/1 8/2 8/4
tread 11 16 32 64
twrite 13 16 32 64
trtw 0 2 2 2
twtr 0 4 4 4
tref 27 32 32 32
e 60.5% 82.5% 89.6% 93.6%

(a) B&B & Bank scheduling

BL/BC 4/1 8/1 8/2 8/4
tread 11 16 32 64
twrite 13 21 37 69
trtw 0 2 2 2
twtr 0 0 0 0
tref 27 27 27 27
e 60.5% 74.9% 85.0% 91.1%

(b) ASAP scheduling

Table I shows how the bounds on memory efficiency
and net bandwidth vary between the different algorithms for
the DDR2-400 memory. The B&B algorithm and the bank
scheduling algorithm perform identically, having generated
patterns with the same length. However, the patterns with
BL = 8 generated by ASAP scheduling algorithm provide
lower efficiency than the other algorithms, due to the longer
write patterns. This difference is most pronounced for the
patterns with BC = 1, where ASAP scheduling results in a
reduction in memory efficiency by 1− 0.749/0.825 = 10.2%.
This shows that the choice of algorithm may have considerable
impact on how efficiently the memory controller uses the
scarce and expensive SDRAM bandwidth.

As far as the run-times of the algorithms are concerned, the
ASAP scheduling and bank scheduling algorithms provided all
results in a matter of seconds. The B&B algorithm managed
to produce patterns with low burst counts in comparable time.
However, the pattern set with BC = 4 took 8 days to generate.
Such a long run-time clearly motivates the existence of the
heuristic algorithms.

C. DDR2-800

We proceed by looking at the results for the DDR2-800,
the fastest device in the generation of DDR2 memories. The
patterns generated for this memory are listed in Table II. The
difference between the algorithms is that ASAP scheduling
again generates longer write patterns for some values of burst
count and burst length. The increase is slightly less severe than
for the DDR2-400, since the precharging constraints are more
favorable for this memory.
Looking at the memory efficiency for the different algo-

rithms in Table II, we observe that the ASAP scheduling
algorithm is not performing worse than the B&B algorithm
and bank scheduling. In fact, the longer write patterns result
in that the memory efficiency is marginally increased by 0.1%
for BC = 2! This is explained by observing that increasing
the write pattern with three cycles removes three cycles from
the write/read switching pattern, eliminating the disadvantage.
The slight increase in efficiency stems from that the longer
write pattern also allows the refresh pattern to be three cycles
shorter. This demonstrates the disadvantage of the first design
decision in Section V-A, although the impact is negligible.



TABLE II
RESULTS FOR THE DDR2-800 MEMORY.

BL/BC 4/1 8/1 8/2 8/4
tread 22 22 33 65
twrite 22 22 33 65
trtw 0 0 1 1
twtr 1 3 5 5
tref 57 57 58 58
e 0.349 0.668 0.872 0.924

(a) B&B & Bank scheduling

BL/BC 4/1 8/1 8/2 8/4
tread 22 22 33 65
twrite 22 22 36 68
trtw 0 0 1 1
twtr 1 3 2 2
tref 57 57 55 55
e 34.9% 66.8% 87.3% 92.4%

(b) ASAP scheduling

TABLE III
RESULTS FOR ALL ALGORITHMS WITH THE DDR3-1600 MEMORY.

BL/BC 8/1 8/2 8/41

tread 64 70 133
twrite 64 70 133
trtw 0 0 0
twtr 4 9 9
tref 98 103 103
e 47.7% 84.5% 91.6%

1 The B&B algorithm did not finish after 10 days for this setting.

Considering the run-times of the algorithms, just like for
DDR2-400, all patterns were generated in a few seconds
except for BC = 4, which took the B&B algorithm 32
minutes.

D. DDR3-1600

Our last memory in the experiment is a DDR3-1600. Apart
from the difference in memory generation and frequency, it
comes with 8 banks instead of 4. The generated patterns for
this memory are shown in Table III. The results from all
algorithms are merged, since they always provide patterns of
the same lengths for this memory. A possible reason for this is
that eight banks solves the precharging problem of the ASAP
algorithm, since the last activate command slips further into
the pattern. Eight bank memories also have the additional FAW
constraint, which limits the number of activate commands in
a window of tFAW cycles. This constraint helps spacing
the activate commands in the pattern more evenly, further
mitigating the precharging issue. However, this constraint does
not primarily make patterns shorter. Both access patterns with
BC = 1 have five NOP commands in the end to ensure that
the FAW constraint is satisfied also when the patterns are
repeated after themselves. The additional banks also impact
the run-time of the B&B algorithm. More banks imply more
commands to schedule, creating more possible patterns. The
B&B algorithm required 7 days to generate the pattern set
with BC = 1, although the set with BC = 2 was generated
in seconds. The algorithm had not successfully generated a
pattern set with BC = 4 after 10 days when we terminated
the experiment. As in the previous experiments, the other two
algorithms produced all results in seconds.

VII. CONCLUSIONS

Predictable systems reduce the verification complexity of
real-time systems, but they require predictable software and
hardware components, such as interconnects and memories.
A predictable SDRAM controller has been proposed that
is based on predictable memory patterns, which are pre-
computed sequences of SDRAM commands. However, these
memory patterns must be manually derived, which is a time-
consuming and error-prone process that must be repeated for
each SDRAM device and may result in inefficient use of scarce
and expensive bandwidth.
This paper presents three algorithms for automatic gen-

eration of memory patterns that provide different trade-offs
between run-time and guaranteed bandwidth. The first algo-
rithm uses a branch and bound (B&B) search and exhaustively
covers all useful parts of the design space. The other two
algorithms are heuristics that schedule commands as-soon-as-
possible (ASAP) and bank-by-bank, respectively. We exper-
imentally compare the algorithms for several DDR2/DDR3
memories and pattern configurations and draw four conclu-
sions: 1) The choice of algorithm matters, since the difference
between the best and the worst algorithm is up to 10.2% of
guaranteed bandwidth. This is a significant improvement, since
SDRAM bandwidth is a scarce and expensive resource. 2) The
B&B search provides high bandwidth, but is too slow for faster
memories with more banks. 3) ASAP scheduling executes in
seconds, but often reduces bandwidth compared to B&B for
memories with four banks, due to precharge constraints. 4)
Bank scheduling provides the same bandwidth as the B&B
algorithm in just a second, making this the preferred algorithm.

REFERENCES

[1] C. van Berkel, “Multi-core for Mobile Phones,” in Proc. DATE, 2009.
[2] P. Kollig et al., “Heterogeneous Multi-Core Platform for Consumer Multimedia

Applications,” in Proc. DATE, 2009.
[3] O. Moreira et al., “Scheduling multiple independent hard-real-time jobs on a

heterogeneous multiprocessor,” in Proc. EMSOFT, 2007.
[4] L. Steffens et al., “Real-Time Analysis for Memory Access in Media Processing

SoCs: A Practical Approach,” Proc. ECRTS, 2008.
[5] A. Hansson et al., “Enabling application-level performance guarantees in network-

based systems on chip by applying dataflow analysis,” IET CDT, 2009.
[6] S. Stuijk et al., “Multiprocessor resource allocation for throughput-constrained

synchronous dataflow graphs,” in Proc. DAC, 2007.
[7] E. A. Lee, “Absolutely positively on time: what would it take?” IEEE Trans.

Comput., vol. 38, no. 7, 2005.
[8] B. Akesson et al., “Predator: a predictable SDRAM memory controller,” in Proc.

CODES+ISSS, 2007.
[9] S. Bayliss and G. Constantinides, “Methodology for designing statically scheduled

application-specific SDRAM controllers using constrained local search,” in Proc.
FPT, 2009.

[10] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enabling
High-Performance and Fair Shared Memory Controllers,” IEEE Micro, vol. 29,
no. 1, 2009.

[11] J. Shao and B. Davis, “A burst scheduling access reordering mechanism,” in Proc.
HPCA, 2007.

[12] C. Macian et al., “Beyond performance: Secure and fair memory management for
multiple systems on a chip,” in Proc. FPT, 2003.

[13] K. Lee et al., “An efficient quality-aware memory controller for multimedia
platform SoC,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 5, 2005.

[14] S. Heithecker and R. Ernst, “Traffic shaping for an FPGA based SDRAM controller
with complex QoS requirements,” in Proc. DAC, 2005.

[15] A. Burchard et al., “A real-time streaming memory controller,” in Proc. DATE,
2005.

[16] B. Akesson et al., “Classification and Analysis of Predictable Memory Patterns,”
in Proc. RTCSA, 2010.

[17] DDR2 SDRAM Specification, JESD79-2F ed., JEDEC Solid State Technology
Association, 2009.

[18] DDR3 SDRAM Specification, JESD79-3E ed., JEDEC Solid State Technology
Association, 2010.

[19] B. Akesson, “Predictable and Composable System-on-Chip Memory Controllers,”
Ph.D. dissertation, Eindhoven University of Technology, 2010.


