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Networks-on-chip have evolved as the natural solution for a scalable interconnect that can be automat-
ically generated to suit the needs of the desired application. In this study we focus on improving the effi-
ciency of on-chip networks using alternative routing strategies. We focus on a multi-path slot allocation
method in networks with static resource reservations, in particular TDM NoCs. The simplicity of these
networks makes it possible to implement this routing scheme without significant hardware overhead.
Our proposed method, although displaying large variations between test cases, provides significant over-
all gains in terms of increased bandwidth or reduced working frequency or area. Our tests show that
when using multipath routing the same communication requirements can be mapped on networks work-
ing on average at frequencies lower by 24.55% on average, while in individual cases the largest reduction
was 60.04%. At the same time we are avoiding problems like deadlock and out-of-order delivery, com-
monly associated with multipath routing.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Designing an efficient on-chip interconnect for systems-on-chip
presents the engineer with multiple challenges. In addition to the
raw performance requirements in terms of bandwidth and latency,
the system designer has to consider possible interference between
applications, the effect of crossing clock domains and guarantees
regarding real-time system behavior. On the other hand the hard-
ware requirements and power consumption of the interconnect
have to be maintained at the minimum possible levels.

Networks-on-chip or NoCs represent the emerging paradigm for
a scalable chip interconnect [1,2]. Among these, Circuit-switching
NoCs [3–5] are an attractive solution as they are able to both iso-
late tasks from interfering with each other and they can provide
communication channels with guaranteed bandwidth and latency.
The time-division-multiplexing (TDM) technique employed in
combination with circuit switching offers the means to divide
the link bandwidth between channels with fine granularity and
with discretionary budgets allocated to each channel.

We base our experiments on the Æthereal network [3,6]. Æthe-
real uses overall knowledge about the system behavior at design
time to dimension the network and create allocations for each
channel for each of the desired use cases. The allocation itself is
performed by automatic tools which resemble in function the
ll rights reserved.
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circuit routing tools, the main difference being that time is used
as a degree of freedom in addition to space.

In the Æthereal implementation, the bandwidth of each link is
split, in the time domain, into discrete allocation units called time
slots. Typically, the entire bandwidth of each communication
channel is allocated in one or more time slots along a single phys-
ical path. There may be the case though that no path is found that
can satisfy the communication requirements. The designer is then
forced to increase the hardware resources allocated to the net-
work or its working frequency. As an alternative, it may be pos-
sible to divide the traffic of the channel that could not be
handled using a single-path allocation over multiple physical
paths.

In this study we evaluate the performance of an allocation flow
which makes use of multi-path allocation in addition to the typical
single-path algorithm. Communication channels are allocated one-
by-one as in the traditional approach, but whenever the single-
path search fails an allocation over multiple paths is attempted.
This approach is shown to produce on average reductions in the
working frequency of the NoC of 24.55% or alternatively can be
used to reduce the size of the network necessary to support the
communication requirements.

The rest of the paper is organized as follows. In the following
section we present related work, and usage of multipath routing
in other domains than networks-on-chip. Section 3 illustrates the
hardware changes necessary to support our proposal. The TDM slot
allocation algorithms are presented in Section 4. Experimental re-
sults are presented in Section 5 while the last section presents our
conclusions.
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Fig. 1. Flit-level synchronization.
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2. Related work

In large scale networks, multipath routing has already been in
use for a long time, for example in Internet traffic engineering [7]
The problem presents other challenges though than the small-scale
networks found on-chip. Buffering is in general plentiful by com-
parison and in-order delivery is not a requirement, because the
protocol stack implements reordering in another layer, before the
data is delivered to the user.

The problem of multipath routing in networks with resource
reservation ie. asynchronous transfer mode or ATM was studied
by Cidon et al. [8,9], and was shown to provide a benefit in terms
of connection establishing time, while having mixed results from
the bandwidth point of view.

Multipath routing in NoCs has been previously proposed in [10],
however, the method presented there requires a complex mecha-
nism for ensuring in-order delivery. Sequence identifiers are as-
signed to the packets and an arbiter rearranges them in the
proper order at the point where the different paths converge. In
contrast, in our solution the entire schedule of packets in-flight is
known at design time and in-order delivery can be ensured entirely
by selecting proper insertion time for each packet.

Multipath routing is also found in the various forms of adaptive
routing or other forms of non-deterministic routing [11], largely
addressed by studies of multiprocessors and now also applied to
networks-on-chip [12–16]. The target of these studies is mainly
guaranteeing deadlock freedom while maximizing utilization, but
without explicitly addressing the costs of in-order delivery.

Our study targets NoCs that support resource reservation using
time-division-multiplexing, in particular the Æthereal network [3].
Our algorithm performs both routing and slot allocation. Routing
and slot allocation in a similar TDM setup is also studied in [17,18].

The same technique can also be applied to other TDM networks
described in the literature, like the Nostrum network [5], aSoC [19]
and the TDM test delivery in [20], the more flexible TDM technique
of [21] and perhaps also to networks using space division circuit
switching like [22].

A solution for performing mapping, single path routing and slot
allocation in the Æthereal networks is presented in [23,24] per-
forms in addition topology selection but using another network
model which does not require slot allocation. The authors of [25]
propose a graph coloring algorithm to solve a slot allocation prob-
lem in a similar network implementation but with more relaxed
timing constraints.
Fig. 2. Architecture of a network interface, the slot table dictates which channel is
allowed to transmit at any given time; an additional table of paths selects the path
to be used by the currently active channel.
3. Hardware architecture

The Æthereal network-on-chip implementation that we use in
this study employs a routing model called contention-free routing
[3,26]. Under this model, arbitration is avoided at the router level
by ensuring at design time that packets only travel through the
network according to a fixed schedule, which does not allow con-
flicts. The usage of each link is divided into fixed size time slots and
each connection receives exclusive use of a subset of these time
slots.

For proper functioning of the TDM schedule it is necessary that
network elements are synchronized with their neighbors at flit le-
vel and agree on what is the current flit position within the sche-
dule. In a typical synchronous implementation, a flit is composed
of three words and thus transmitted during three clock cycles.
One cycle would be spent for crossbar traversal, one on link tra-
versal and one in the input buffers of the routers. However, it is
not necessary that the network is synchronous at clock cycle level,
even between direct neighbors. While the routing decision and
crossbar traversal has to be simultaneous for all inputs of the
router, asynchronous input buffers can be used and the time spent
in buffers can vary to compensate for clock skew and link traversal
time, as illustrated in Fig. 1.

Two main approaches are possible for implementing routing in
compliance with this schedule. One consists of storing the routing
information in a distributed manner in all routers and network
interfaces (NIs) and the other employs source routing for deciding
the path each packet should take. In both cases the NI is responsi-
ble for injecting packets into the network only in the allowed time
slots.

3.1. Distributed routing

In the distributed routing implementation [27] each router is
synchronized to a global clock at flit level and contains a routing
schedule which specifies to which of the outputs each input has
to be routed during each time slot. Once the slot tables are config-
ured into the routers, the destination of each packet is determined
solely by its time of insertion into the network.

Under this implementation, no modifications to the hardware
are necessary in order to support multipath routing. Programmed
with the right schedules, the routers can lead the packets on a vari-
ety of paths to destination. There is no cost related to the number
of different paths used by a single connection and there is an addi-
tional benefit in that no headers are necessary for routing the pack-
ets, thus increasing the size of the useful payload.

The absence of routing headers reduces the cost of the multi-
path approach, however in our tests we have conservatively as-
sumed the presence of these headers.

3.2. Source routing

The entire communication is performed in a predetermined
manner, usually computed at design time. At run-time the path ta-
ken by packets and the time when one connection is allowed to use
the physical links are read from tables inside the network interface.
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This pre-determined behavior allows the network elements to run
at high frequencies because the data can be read in advance as
needed. The additional hardware required by multipath consists
of enlarged tables for storing the routes and selecting the proper
route at the proper moment in time (Fig. 2).

The changes in Fig. 2 have been implemented in hardware, and
synthesized using Synopsys tools in 65 nm technology. We have
found the overhead to be of 7.6% in terms of area for a network
interface kernel with four channels and 16-word buffers, when
four distinct paths are supported for each channel.

We have tested our design in FPGA in a setup with a MicroBlaze
processor communicating over a 2 � 2 mesh network with a mem-
ory placed in the opposite corner of the network. Two distinct
paths were setup for communication and we have verified in sim-
ulation that indeed both paths were used.

3.3. Freedom from deadlock and in-order delivery considerations

Two common problems associated with adaptive/multipath
routing are the out-of-order delivery of packets and deadlock.
Out-of-order delivery can arise when some packets take longer
paths than others or are queued behind packets belonging to other
streams in contention situations (Fig. 3a). Solutions to this problem
consist of the reordering of packets at some point of convergence
within the network or at destination, however this can result in
the even more dreadful problem of network deadlock. If packets
belonging to two different communication streams A and B, arrive
out of order on two links, in such a manner that the first packet of A
is queued behind the second packet of B and vice-versa (Fig. 3b),
the router or NI producing the reordering will block, unable to ser-
vice any of them. Even worse, because the size of buffers in net-
works-on-chip is always small, packets A1 and B1 might not even
arrive in the queues of the element in charge of reordering, but in-
stead they may be blocked somewhere upstream. This situation is
similar to reassembly deadlock discussed in [28].

Our implementation avoids both of the mentioned problem. Be-
cause the employed mechanism is circuit switching and no arbitra-
tion takes place within the network deadlock cannot arise.
Furthermore, even the set-up phase used to reserve the channels
employs dedicated, circuit-switched connections and deadlock
cannot arise even in the set-up phase. The lack of contention inside
the network means the time taken by the packets for traversing the
network is known beforehand, and even though some of them may
take longer paths a schedule can be computed in such a way that
‘‘fast” packets never overtake ‘‘slow” ones. The algorithms for com-
puting this schedule are presented in the following section.
4. Slot allocation algorithms

The problem of finding a slot allocation for a set of connections
is similar to the problem of routing physical wires in integrated cir-
cuits. Compared to the wire routing problem, the number of con-
nections our algorithm has to handle is relatively low, in the
range of hundreds compared to tens of thousands of wires in dig-
ital IC design, but further complications arise from the fact that
connections do not have equal bandwidth and the resources that
need to be allocated to each connection vary.

Because this computation is expensive, it is generally performed
at design time. Although we are currently investigating run-time
(a) (b)

Fig. 3. Different delay causing out-of-order delivery (a) and deadlock situation (b).
allocation, which was independently demonstrated by [29,30],
we consider it beyond the scope of this study. We would like to
emphasize though that by performing the allocation at design time
has the advantage that the run-time system behavior becomes
completely predictable and can be easily modeled and verified.

The solution to the routing problem consists of successively
allocating channels using a simple path-finding technique, while
at the same time avoiding conflicts with other previously allocated
channels. A possible extension consists of tearing down previously
allocated channels obstructing the current path and reallocating
them later. This approach is used by tools performing physical
routing of wires, however in the current study we have not inves-
tigated this technique, instead focusing on improvements in the
allocation of individual channels.

We perform our tests using three allocation algorithms. The
first one attempts to allocate the entire communication bandwidth
of each channel on a single path between source and destination,
the second consists of iteratively applying the first technique and
increasing the allowed path length until the bandwidth con-
strained is satisfied, while the third uses a flow algorithm to deter-
mine the slot allocation.

4.1. Single path

The technique used is the exhaustive search using a depth-lim-
ited backtracking. We first perform a breadth-first search using the
Dijkstra algorithm to determine the shortest path from all nodes to
destination.

The search considers the available bandwidth of each link but
does not yet consider the alignment of the available slots. This step
provides a bound on the minimum number of hops necessary for
reaching the destination and also offers an early warning for cases
when a solution does not exist at all. The real benefit of this search
consists of the fact that it allows us to exclude solutions early dur-
ing the depth-first exploration.

Consider the example graph in Fig. 4 representing a network
topology on top of which several communication channels have al-
ready been allocated. Consider the problem of finding a path from
the local NI of Router 20 to the local NI of Router 03. Furthermore
consider that links R01–R02 and R21–R22 are already loaded to the
extent that the bandwidth of the current communication channel
cannot be satisfied regardless of the slot alignment. The distances
to the destination NI, found by the breadth-first search are shown
on the bottom-left side of each router.

The backtracking search starts at the source NI with a limit on
the path length of 7. The backtracking algorithm constructs all pos-
sible paths leading to the destination computing at each node that
is reached the subset of slots that can be used on the given path.
The sum of the length of the path already traversed and the
minimum distance to the destination as computed by the
breadth-first search is not allowed to exceed the path length limit.
This way the algorithm is forced to examine paths with a lower
number of hops first.
Fig. 4. Pathfinding example.



Fig. 5. In-order delivery is ensured through the use of guard-slots.
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If a solution is not found, the path length limit is iteratively in-
creased up to 16 more than the initial distance or until more that
10 million partial paths have been analyzed. These limits are nec-
essary because the complexity of the backtracking algorithm grows
exponentially with the number of steps and the downside is that
the solution space searched is somewhat restricted.

The algorithm can be easily extended with further require-
ments, like restricting turns, allowing or disallowing the return
to previously visited nodes or different cost functions for the tra-
versal of different links.

4.2. Iterative maximum bandwidth search multipath

When only part of the desired bandwidth could be allocated for
a communication channel we may attempt to allocate the remain-
ing bandwidth over one ore more different paths using the same
pathfinding algorithm. Slots already used are masked so that con-
flicts do not arise on links which are common to several paths, and
guard slots are inserted before allocated slots when the maximum
search path length is increased in order to guarantee that packets
using shorter paths will not overtake the ones using longer paths.

The insertion of guard slots prevents the link from being used by
the current communication channel, but it does not consume link
bandwidth, in the sense that the same slot can be used by other chan-
nels instead.

In the example in Fig. 5 a packet sent in slot 2 will travel on a
path with two intermediate hops and arrive in slot 5. If another
path of length 4 is subsequently found, allowing a packet to depart
in slot 1 would result in out-of-order arrivals, thus, a number of
slots equal to the difference in path length also needs to be
masked, although they are not in use on any of the traversed links.

Another tradeoff to be made is between the allocation of a lar-
ger number of shorter paths or of fewer longer paths. In this study
we always give preference to shorter paths. The exact steps taken
are presented in Algorithm 1.

Algorithm 1. Iterative Maximum Bandwidth search algorithm

maxPathLen = length of shortest path from source to
destination;

set path search limit (maxPathLen);
while More bandwidth to be allocated do

Attempt to allocate all remaining bandwidth;
if succeeded then

finish;
end
Attempt to allocate any bandwidth;
if succeeded then

subtract allocated bandwidth from desired bandwidth;
mask allocated slots;
continue;

end
if maximum number of paths reached then

fail;
maxPathLen = maxPathLen + 1;
set path search limit (maxPathLen);
if path length limit exceeded then

fail;
end
add guard slots to mask;

end

To reduce the number of paths used, a single-path allocation is
first run separately and the result is compared with the result of
the multi-path allocation. The multi-path solution is used when
the single path search fails, or when produces a better result. We
consider the multi-path flow better if the total number of allocated
slots over all edges is lower than the number of slots produced by the
single-path search. Over all tests, we have found that the multi-path
solution is used in only 1.67% of the cases, of which only one quarter
was caused by a failure in the single-path allocation. This is impor-
tant, because it implies that the hardware cost can be relatively
low as the paths tables need to contain entries only for the paths
actually used. Furthermore, in 81% of the cases only two paths were
used, with three paths used in 16% of the cases and 4 in less than 3%.

4.3. Flow algorithm

While for the previously presented algorithms physical edges
on a path represent physical links, the flow algorithm uses individ-
ual slots of each physical link as the basic unit of allocation. All
nodes and links in the original topology graph are split into a num-
ber of sub-nodes and links equal to the number of time slots as rep-
resented in Fig. 6 and are allocated independently.

The Edmonds–Karp flow algorithm [31] is used to allocate paths
of one-slot bandwidth at a time, always having the minimum length
allowed by previous allocations. Compared to sequential allocations
over several paths, the flow algorithm has the advantage that it can
displace previously allocated paths to make space for new ones. We
also make use of heuristics to reduce the number of different paths
used. For more details the reader is referred to [32].

The in-order delivery is verified after each allocation, and if nec-
essary paths that would produce out-of-order messages are dis-
carded. As with the iterative approach, if a single path solution
exists and has lower cost in terms of allocated slots, it is used in-
stead. On average, the solution produced by the flow algorithm is
used in 3.61% of cases.

4.3.1. Path selection for in-order delivery
When a conflict exists between paths generated by the flow

algorithm in the sense that they would produce out-of-order arriv-
als, we choose to discard some of the paths so that the remaining
ones would only produce in-order deliveries. For selecting which
paths should be discarded and which should not be, we use a
deterministic algorithm based on dynamic programming.

The problem can be formulated as a Monotonic Subsequence
Problem [33], for which optimal solutions exist with polynomial
time complexity. The paths are ordered by slot departure time
and the solution must comprise of a subsequence with only
increasing arrival times.

Further complications arise from particularities of our problem.
Because consecutive slots have a different payload efficiency (con-
secutive slots do not need to repeat the packet header), the items
in the sequence need to be weighted, and, the algorithm needs to
take into account the wrap-around that occurs at the end of the slot
table.

The associated weight for each path does not introduce
significant changes to the algorithm, but in order to cope with
the wrap-around, the algorithm will have to be applied repeatedly
in a window which slides over the list of paths. In some respects
the wrap-around problem is similar to the one described in [34].

A formal description of the algorithm is given in Algorithm 2.
The algorithm is optimal in the sense that it provides the highest
possible bandwidth for the given set of paths.



Fig. 6. Nodes split in graph.

Fig. 7. Slot table wrap-around.
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Algorithm 2. In-order path selection

Data : set of paths with given departure time slot, count of
allocated slots and length

Result : reduced set of paths with in-order delivery
s number of time slots;
Duplicate paths p1, . . . ,pn as pn+1, . . . ,p2n with delay s;
solution ;;
for "i 2 {1,2, . . . ,n} do

consider set Q={pi, . . . ,pi+n�1};
Q Qn{pj 2 Qjpj arrives later than pi+n�1};
Q is the working window;
initialize t1, . . . , t2n,t; = 0;
for all flows pj 2 Q do

best ;;
for all flows pq 2 Q,q < j do

if pq arrives before pj and tq > tbest

best i;
predecessorj q;

end
end
tj tbest + bandwidth of pj;
bf iIf tj is best solution so far then

solution solution reconstructed by following the
chain of predecessors of j;

end
end

end
4.3.2. Proof of optimality for in-order path selection
In the following, by path we will refer to a path from source to

destination and an associated set of contiguous available slots on
that path.

Let A be the set of all paths A = {pijpi is a path}. In the following
we will assume that A has at least one element.

Let us assume, without any loss of generality, that within a
frame of the size of the slot table m, pi departs before pi+1,
"i 2 {1,2, . . . ,n � 1}. We say without loss of generality because
the indices i of pi can be chosen in such a way that the departure
times of paths p1, . . . ,pn are chronologically ordered. Let bi > 0 be
the bandwidth delivered by path pi and ri the arrival time of path
pi when considering a particular slot table revolution starting at
p1 (Fig. 7). The bandwidth takes into account the header overhead.
Definition 1. A solution to the problem is a non-empty set X # A
which ensures in-order delivery.

We formalize the requirement for in-order delivery as:

8pi; pj 2 X with i < j ! ri < rj ^ rj < ri þ s

where s is the duration of one slot table revolution. Note that all sets
containing a single path, that is, all sets of the form X = {pq} are solu-
tions because a single path cannot produce out-of-order deliveries.
Using the previous formalization we observe that the implication is
always true since there is no i < j among the valid indices.

Let nX be the set of all solutions.
Let us denote BðXÞ ¼

Ppi2X
8i bi

Definition 2. We call an optimal solution A 2 nX , a solution that
maximizes BðAÞ

BðAÞ ¼max
X2nX

BðXÞ

Let nA be the set of all optimal solutions.

Let Xi 2 nX be a solution with the property that pi 2 Xi, let nXi
be the

set of all solutions containing pi, and Ai an optimum over the set nXi
.

Lemma 1

BðAÞ ¼ max
i2f1;...;ng

BðAiÞ
Proof. We use the following property of the maximum:

max
x2A[B

f ðxÞ ¼maxðmax
x2A

f ðxÞ;max
y2B

f ðyÞÞ

We show that nX ¼
S

i2f1;...;ngnXi
, Obviously nXi

# nX ;8i since nX is the
set of all solutions, and also

S
i2f1;...;ngnXi

# nX . For the reverse impli-
cation, if X 2 nX, according to Definition 1, there is at least one ele-
ment pj 2 X, but then X 2 nXj

because nXj
is the set of all solutions

that contain pj. h

This implies that by finding the maximum in each set nXi
and

selecting the highest value found, we obtain the global maximum.
It also implies that the element in nXi

for which this maximum is
achieved is a global optimum.

Explanation: In Algorithm 2, the outer loop iterates over the lo-
cal optima Ai.

We show how the optimum can be found over the set nX1
. The

solution can be easily generalized since the table of slots is periodic
and a period with the length of one slot table revolution can be
chosen so that it starts with any of the paths pj.

Explanation: In the practical implementation of the algorithm,
this is achieved by duplicating the list of paths with the proper
increment in arrival time and selecting n paths starting at posi-
tion i. As an optimization, paths that are already known to con-
flict with path pi in terms of order of arrival are already
discarded at this point.

Let Q1,j be a subsets of A so that Q1,j = {pi 2 Aj1 6 i 6 j}.
Let X1,j with j 2 {1, . . . ,n} be a solution with the property that

X1,j # Q1,j and p1 2 X1,j and pj 2 X1,j. Let nX1;j
be the set of all such

solutions.
Note that an X1,j does not necessarily always exist, as p1 and pj

may produce out-of-order deliveries thus nX1;j
may be the empty

set, but a solution exists at least for j = 1 which is X1,1 = {p1}.
We define A1;j as an optimal solution within the subset nX1;j

, thus
BðA1;jÞ ¼ max

Y2nX1;j

BðYÞ

Since nX1;1
has only one element, which is {p1}, A1;1 ¼ fp1g.

Lemma 2. For any k > 1, if A1;k exists, we can compute
A1;k ¼A1;j [ fpkg by selecting j < k which maximizes BA1;j with
the restriction that pj and pk produce in-order delivery.
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Proof. We first prove that the in-order delivery condition for pj

and pk is sufficient for ensuring in-order delivery for the entire
set A1;k. If A1;j is a solution, rj > ri, "i < j) rk > rj > ri, "i with the
property that pi 2A1;j. Since we are only interested in the case
where A1;k exists, rk < r1 + s, but r1 < ri, "i with the property that
pi 2A1;j ) rk < ri þ s, for the same values of i, which is the second
property required by Definition 1.

We prove by mathematical induction that this method of
constructing A1;k ensures the optimality criterion. A1;1 ¼ fp1g is
obviously optimal, since when a single path is available no more
bandwidth can be delivered than that provided by the path itself.

We prove the induction step by contradiction. Assume
A1;1; . . . ;A1;k�1 are optimal sub-problem solutions as earlier
described. If A1;k were not an optimal solution, there exists A01;k
so that BðA0

1;kÞ > BðA1;kÞ.
A01;k contains at least one element pj where j < k. Let pj be the

element with the highest index j < k. Let A01;j ¼A01;k n fpkg. A01;j is a
set containing only elements from Q1,j and provides in-order
delivery because its superset A1;k provides in-order delivery.

{pj, pk} provides in-order delivery for the same reason, which
implies that A1;j [ fpkg respects the requirements for in-order
delivery. It follows that A1;k is at least as good a solution
as A1;j [ fpkg and as a result BðA1;kÞP BðA1;jÞ þ bk, but
BðA01;kÞ > BðA1;kÞ ) BðA01;jÞ þ bk > BðA1;kÞP BðA1;kÞ þ bk ) B

ðA01;jÞ > BðA1;jÞ which is impossible, because A1;j was already
assumed to be an optimal solution to the nX1;j

subproblem (from a
previous induction step, as j < k). h
Lemma 3

BðA1Þ ¼ max
i2f1;...;ng

ðBðA1;iÞÞ
Proof. We again use the property that: maxx2A[B f(x) = max
(maxx2Af(x), maxy2Bf(y)). We show that nX1

¼
S

i¼1;...;nnX1;i
. It is first

of all obvious that nX1;i
# nX1

as any element of nX1;i
is a solution

and it contains p1, therefore
S

i¼1;...;nnX1;i
# nX1

. For the proving the
reverse implication nX1

#
S

i¼1;...;nnX1;i
, consider an element

X1 2 nX1
. Since n is a finite value, we can find j< = n so that j is

the highest index of an element pj 2 X1, that is 9= k > j, pk 2 X1. It
results that X1 # Q1,j, but at the same time we also know that
p1 2 X1, pj 2 X1 and X1 is a solution, therefore X1 2 nX1;j

. h

This implies that by finding the maximum in each set nX1;j
and

selecting the highest value found, we obtain the maximum over
nX1

. It also implies that the element in nX1;j
for which this maximum

is achieved is a optimum over nX1
and based on Lemma 1 also a glo-

bal optimum.

4.3.3. Algorithm complexity
In this study we have used the exhaustive search as a basis for

comparison for our multipath algorithm. This can represent a prob-
lem, since the number of possible paths between two nodes may
be very large, even when the length of a path is bounded. For
example, on a mesh network, the number of paths between two
nodes situated at distance of m and n in the x and y directions

respectively is m
mþ n

� �
which lays in the range of thousands for

an 8 � 8 mesh, if the worst case corner-to-corner communication
is considered, and can increase above one hundred million on a
16 � 16 mesh. Allowing paths longer than the minimal one also in-
creases the number of choices.

It is also possible to use a heuristic with polynomial time com-
plexity for the single-path allocation, as we have already demon-
strated in [32]. In this case, the advantage of the flow algorithm
is only higher when compared to the weaker heuristic algorithm.
By replacing the branch-and-bound exhaustive search from the
previous study with a backtracking technique we were able to eas-
ily run the algorithm for larger networks. If the size of the network
is to be further increased beyond the possibilities of the exhaustive
search we believe the heuristic to be a viable solution. The iterative
multi-path search has the same complexity in asymptotic notation
[35] as single-path algorithm, regardless of the algorithm chosen,
assuming the number of paths is bounded by a constant.

In comparison, the advantage of the multi-path flow algorithm
is that it runs in polynomial time complexity. Our implementation,
based on optimizations by Edmonds and Karp [31] has a complex-
ity of O(ES2) where E is the number of links and S the number of
slots. The algorithm looks for a maximum of S augmenting paths.
This is lower than the Edmonds–Karp bound of O(VE) because of
the particular structure of our graph, more precisely due to the fact
that each augmenting path uses one more slot out of the total of S
slots available. Each search for an augmenting path is performed in
a graph with ES edges and has a complexity of O(ES).

The in-order path selection algorithm consists of three nested
loops performing a maximum of k iterations with k being the num-
ber of paths and therefore has a complexity of O(k3). Since the
number of paths is bounded by the number of slots S, the worst-
case complexity is O(S3). The in-order path selection algorithm
has a negligible effect to the total run-time of the algorithm.

5. Experimental results

We have considered two sets of tests for our experiments. For
both sets, the communication channels are between IPs randomly
chosen with equal probability with the restriction that each IPs has
to be connected by at least one communication channel. The band-
width is chosen randomly with a uniform distribution in the range
of 100–400 MBps. Mesh topologies of sizes varying between 4 � 4
and 8 � 8 were tested with a number of network interfaces be-
tween 1 and 4 connected to each router, without exceeding a num-
ber of 64 network interfaces in total.

The Æthereal network supports both multiple IPs per NI and
multiple NIs per router. Using more NIs per router provides a high-
er bandwidth between the IPs and the actual network mesh.
Although there is no intrinsic limit to the maximum number of
NIs that one router can support, we choose a value of 4 because
intuitively this allows a good floorplanning. It is also the value sug-
gested by [36].

In our experiments the number of time slots was fixed to 32 and
we used the default link width of 37 bits [37]. Twenty random use-
cases were constructed for each tested topology.

The first set consists of fixed-size usecases, in which 64 IPs are
connected to networks of varying sizes and the required communi-
cation bandwidth is fixed regardless of the size of the network. This
allows us to explore the tradeoff between area and performance,
however it should be noted that an aliasing effect may be present,
caused by the fact that the number of IPs cannot always be evenly
divided among the available network interfaces.

In the second set the number of IPs is equal to the number of
network interfaces and the average number of communication
channels per IP (total count of ingoing plus outgoing) is three. This
test allows us to compare how the relative performance of the
algorithms scales on networks of varying sizes under similar load.

We use as a performance measure the working frequency of the
network necessary to support the entire communication load. The
frequency is determined using a binary search technique.

5.1. Fixed communication requirements

Fig. 8. With only two paths a large percentage of usecases pro-
duce a better result than with a single path available to each com-
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ig. 10. Minimum frequency (MHz) allowed by the single-path allocation com-
ared to the flow allocation; each point represents one usecase-topology pair.

Fig. 8. Percentage of usecases in which one algorithm outperforms another.
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munication channel. It should be noted even in this case not all
channels are allocated using two paths, but only when the normal
allocation fails. Further increases in the number of paths show
diminishing returns.

The relative performance of the single path and multi-path allo-
cation algorithms may show high variations depending on usecase.
We plot a chart of the minimum frequency obtained by the single-
path algorithm versus the minimum frequency obtained using the
four paths and flow algorithm in Figs. 9 and 10 respectively. The
highest reduction in frequency using four paths in a single usecase
stands at 32.9% while the best result for flow algorithm was a
reduction of 60.04%.

When analyzing the variation of performance across topologies
of different sizes (Fig. 11), we find that when the communication
requirements are fixed (and relatively high for the given topolo-
gies) the average improvement does not present high variations.
One factor that clearly influences the relative performance of the
single path and multipath algorithms is the number of NIs con-
nected to the same router. This is because in networks with a sin-
gle network interface per router it is more likely for the link from
the network interface to the network to become congested first.
Since this link has to be shared by all paths even in multi-path
mode, that effectively sets a limit on the improvement that can
be obtained.
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Fig. 9. Minimum frequency (MHz) allowed by the single-path allocation compared
to allocation on four paths; each point represents one usecase-topology pair.
In order to give each usecase the same weight we have averaged
after computing the ratio of frequencies. The ratio is computed as
(fhigh � flow)/fhigh.
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Fig. 13. Percentage of usecases on topologies of varying sizes in which one
algorithm outperforms another.

Fig. 15. Average reduction in frequency for each tested topology.
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Fig. 12 presents the average frequency that is necessary for allo-
cating one of the fixed-size usecases on a network of a given size.
The figure shows how frequency can be traded for area. The same
figure suggests that using the multipath approach may allow map-
ping usecases on smaller networks when a fixed frequency is con-
sidered. For example, using the multipath approach an usecase
that would normally require a network of size 5 � 7 or 6 � 6 in or-
der to run at 600 MHz can be mapped on a 5 � 5 network when
using the multipath approach.

5.2. Scaled communication requirements

When considering communication requirements that are scaled
with the size of the network, we find that for similarly loaded net-
works the relative performance of the multipath algorithm in-
creases with network size. This can be explained by the fact that
larger networks provide a larger path diversity.

The percentage of usecases which produce a better result in
terms of frequency using the multipath approach is presented in
Figs. 13 and 14. For small networks especially, the benefit of a lar-
ger number of paths is reduced, in particular, for the 4 � 4 and
5 � 5 meshes using a maximum of four paths instead of three only
produced a benefit in 1 out of 20 usecases. The trend indicates that
for larger networks increasing the number of paths even further
can still be beneficial.
Fig. 14. Percentage of usecases over all scaled tests
In terms of frequency reduction, we can observe a similar trend
in Fig. 15. The observation that larger gains are obtained for net-
works with more network interfaces connected to the same router
also remains true in this case. Under the decreased load compared
with the fixed usecase, the highest improvement obtained with the
four-paths algorithm was of 31.42% and with the flow algorithm of
51.66%.

5.3. Algorithm running time

One additional concern is the running time of the algorithm, as
the complexity of exhaustive search is exponential with the distance
between nodes. In our tests this was not found to be a problem as the
average running time stayed below 1 s, even for the larger topolo-
gies (Fig. 16). The larger spike for the 7 � 7, 7 � 8 meshes was caused
by single usecases which ran for 28 and 12 s respectively.
6. Conclusions and future work

In this study we have analyzed the performance of a slot alloca-
tion tool based on multipath routing, in conjunction with the hard-
ware costs and benefits from employing such a technique. We have
found our technique to allow reductions in terms of frequency of
up to 60.04%, with an average of 24.55% over all considered use-
cases. The benefit can also be expressed in terms of area savings
in which one algorithm outperforms another.



a

Fig. 16. Average algorithm running time.
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by allowing the same communication requirements to be satisfied
by a network of smaller size.

Although multipath routing may present significant challenges
in the case of a generic packet switched NoC we show that it can
be implemented with moderate cost in the Æthereal circuit
switched TDM NoC.
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