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Multi-Processor Systems on Chip (MPSoC) run multiple independent applications, often developed by dif-
ferent parties. The applications share the hardware resources, e.g. processors, memories and intercon-
nect. The sharing typically causes interference between the applications, which severely complicates
system integration and verification. Even if the applications are verified in isolation, the system designer
must verify the combined behaviour, leading to an explosion in design complexity. Composable MPSoCs
have no interference between applications, thus allowing independent design and verification. For an
MPSoC to be composable, all the hardware resources must offer composability. A particularly challenging
resource is the processors, often purchased as off-the-shelf intellectual property.

In this work we present the design and implementation of CompOSe, a light-weight (only 1500 lines of
code) composable operating system for MPSoCs. CompOSe uses fixed-size time slices, coupled with a
composable scheduler, to enable composable processor sharing. Using instances of ARM7, ARM11 and
the Xilinx MicroBlaze we experimentally demonstrate the ability to provide temporal composability,
even in the presence of dynamic application behaviour and multiple use cases. We do so using a diverse
set of processor architectures, without requiring any hardware modifications. We also show how Com-
pOSe allows slack to be distributed within and between applications through a novel two-level scheduler
and slack-distribution system.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction tance. For example, many signal-processing applications have firm
Embedded systems are seeing an increasing number of applica-
tions integrated on a single chip [1–5]. A large part of the applica-
tions are from the signal-processing domain [1,4], which is also the
focus of this work. Applications in this domain, e.g. a modem, filter
or decoder, typically consist of tasks that communicate in a stream-
ing fashion by performing actions on input data and producing out-
put data. Three such applications are illustrated in Fig. 1. The
applications are realised by hardware and software Intellectual
Property (IP), e.g. processing elements and application code, and
are often developed independently, both by in-house design teams
and by Independent Software Vendors (ISV).

With growing application heterogeneity, the application
requirements are becoming more multifaceted [6], with non-
functional aspects like timeliness and security growing in impor-
ll rights reserved.

, United Kingdom.
nsson).
ors.
or soft real-time requirements, either to satisfy standards (e.g. cer-
tification) such as WiMAX and WLAN, or to deliver a certain level
of user-perceived quality, e.g. in a video or audio decoder. The
real-time requirement could relate to a target on deadline miss-
rate, or strict periodicity like a audio or video ADC or DAC. The
requirements and verification methodology thus depend on each
application. Moreover, the applications are started and stopped
at run time, creating a large number of use-cases, making the sys-
tem-level constraints increasingly complex.

During the design process, the tasks of the applications are
mapped to processing elements, typically heterogeneous, as illus-
trated in Fig. 2. The tasks communicate through the interconnect
and possibly also use it to access memory for private data/instruc-
tions. The multi-processor platform shown in Fig. 2 allows for dis-
tributing the tasks (within and between applications) across
processors to deliver sufficient performance or reduce power
consumption.

To reduce cost, hardware resources are shared by the applica-
tions within and between use-cases, as illustrated by one of
the processing elements and the interconnect in Fig. 2. However,
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Fig. 1. Application model.

Fig. 2. Different mappings for two applications onto three Processing Elements (PE).
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sharing of resources causes problems with verification of func-
tional and non-functional requirements of the application behav-
iours, as the behaviour of one application depends on all other
applications in a circular (monolithic) fashion. This pushes the
responsibility of application verification to the system integrator,
making it one of the major challenges in SoC design.

To tackle the growing design and verification complexity, a di-
vide-and-conquer approach, i.e. composability, is required. Com-
posability takes the verification responsibility away from the
system integrator and leaves it with the applications designers
and developers by providing a virtualised platform per application
[7,8]. Thus, a composable platform ensures that the behaviour of
one application is independent of all other applications. Tradition-
ally, composability placed strict limitations on the applications
[9,2], unsuitable for e.g. the consumer-electronics domain. Re-
cently, it has been shown in [10,7,11] how the on-chip intercon-
nect and memories can be shared in a composable (and
predictable) fashion. However, without a composable operating
system it is only possible to run one application per processor
(and still achieve system-level composability). Although this is rea-
sonable for a very simple RISC or VLIW processor, recent processors
from e.g. ARM, such as the ARM11 are much too powerful to have
one such processor per application.

Run-time scheduling (also known as on-line scheduling [12]) is
offered by many (probably hundreds) of different operating sys-
tems and hypervisors, and some even offer bounds on the temporal
behaviour. However, they all lack composability, due to e.g. prior-
ity-based scheduling and cache pollution. Moreover, real-time
operating systems are typically focused on one processor and do
not address the interfacing between tasks distributed across multi-
ple processors and the communication and synchronisation between
processors and memories. To achieve composable MPSoC also the
processor I/O must be considered.
In this work, our main contribution is the design and implemen-
tation of a composable operating system for MPSoCs. To share pro-
cessors in a composable fashion we ensure that tasks execute
without any interference, i.e. that the time and processor state when
an application is scheduled are independent of other applications.
This requires:

1. Pre-emption-based (enforced) sharing so that tasks are not
required to be well-behaved or well-characterised.

2. A context switch mechanism that runs in constant time, even in
the presence of instructions that take several cycles to complete
(most notably I/O).

3. Composable inter-application scheduling and cache manage-
ment.

We show how to achieve the three aforementioned require-
ments in a lean (less than 1500 lines of code) operating system
called CompOSe. It uses a novel concept based on scheduling of
fixed-size service units, implemented by means of pre-emptive
scheduling (item 1 and 2) and uses a budget- enforcing scheduler
(item 3). CompOSe also offers a two-level scheduler to enable differ-
ent task schedulers per application and a slack manager to maxi-
mally benefit from any unused capacity. The functionality of
CompOSe, and the ability to deliver temporal composability at clock
cycle resolution, is demonstrated using gate-level simulation (on a
multi-processor system) and actual hardware (on a single-proces-
sor system). We show experiments using ARM7, ARM11 and
MicroBlaze processors to demonstrate the concepts behind Com-
pOSe on a diverse set of processor architectures, both with and
without caches.

The remainder of the paper is structured as follows. We start by
introducing related work in Section 2. Next, the application soft-
ware and hardware platform is described in Section 3, including
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an introduction to composability in MPSoCs. As the major contri-
bution of this paper, a detailed description of the proposed proces-
sor tile and composable operating system is given in Sections 4 and
5. Experimental results, using different processor architectures,
abstraction levels and system instances, are presented in Section 6,
followed by conclusions in Section 7.
2. Related work

Many scheduling algorithms have been proposed and commer-
cially used in embedded operating systems. In Symbian [13], for
example, the (pre-emptive) scheduler uses priority levels and
Round-Robin inside each level. The priority-based arbitration
inherently couples the applications, making it non-composable.
Other common scheduling algorithms like Rate-Monotonic Sched-
uling (RMS) [14] and Earliest Deadline First (EDF) [15] make a large
number of assumptions on the tasks, e.g. that there are no task
dependencies, and also assume a (correct) characterisation with
respect to deadlines and execution times. In the domain of sig-
nal-processing applications this information is not always avail-
able and tasks often have data-dependent input and output
behaviour, causing significant variation in their execution times
and execution rates. Moreover, even in the presence of a correct
characterisation there are significant variations in the schedule
caused by the other applications making these approaches non-
composable.

Hypervisors, on the other hand, are used to virtualise proces-
sors, including memory accesses, file systems, interrupts, I/O, etc.
They are typically designed to run several independent operating
systems and applications without placing any restrictions on the
latter. However, commercially available hypervisors focus on the
functional behaviour and offer limited support for real-time appli-
cations. VirtualLogix VLX [16] and Open Kernel L4 [17], for exam-
ple, use priority-based arbitration and can thereby give real-time
bounds to one of the virtualised operating systems. In those ap-
proaches, the temporal behaviour depends on all higher priority
operating systems (and thus applications). Although these hypervi-
sors provide many important aspects of application isolation, there
is no commercial hypervisor that offers temporal composability,
and the real-time analysis of any general application in isolation
is rendered invalid by resource sharing. Unlike any commercial
hypervisor, our goal is to ensure that applications sharing a proces-
sor do not affect each other even on the clock-cycle level. Our work is,
however, less general and does not virtualise interrupts and conse-
quently does not allow the applications to use such functionality.

The operating system introduced in [18] aims to enable real-
time guarantees without restricting the applications running on
the processor. A budget scheduler guarantees every task a mini-
mum amount of time in a maximum interval. This is to be com-
pared with the fixed amount of time offered by CompOSe. For
well-behaved and well-characterised applications the minimum
time enables bounds on the temporal behaviour, e.g. throughput,
latency and periodicity, by means of dataflow analysis [19]. With
dataflow models, the bounds are sufficient to provide independent
application analysis, but assumes that the model is conservative
and that the implementation of the tasks is correct and bug free.
In general, the provision of a minimum budget is not sufficient to
ensure that the applications do not affect each other as the time
intervals at which the application is scheduled depends on the
other applications.

In addition to the challenges involved in sharing a single proces-
sor between multiple tasks, an operating system for an MPSoC
must also address communication and synchronisation. Neither
of the aforementioned operating systems and hypervisors account
for blocking I/O operations (e.g. a read to an off-chip SDRAM), and
either assume single-cycle memory access latencies or completely
ignores the impact on the execution time of the applications and
the scheduler.

This work extends [20], and unlike [18] our emphasis is on com-
posability rather than predictability. We do not require known
(and correct) worst case execution times, and also have weak
requirements on the task semantics in terms of input and output
behaviour. Much like the aforementioned hypervisors the aim is
to separate applications logically and thereby enable a divide-
and-conquer design methodology. In [20] code and data of tasks
are assumed to fit in the local tile memory, whereas this work
shows how it is possible to also incorporate caches in the processor
tile architecture. Compared to [20] this work gives more imple-
mentation details and shows how the concepts of CompOSe can
be applied to a diverse set of processor architectures.
3. Background

In this section, we elaborate on the application software and
hardware platform targeted for our composable operating system.
We start in Section 3.1 with a description of the existing (compos-
able) hardware platform and continue in Section 3.2 by detailing
the assumptions on the application software. We end the back-
ground description with an outline of the overall design flow in
Section 3.4.
3.1. Hardware platform

The platform used in this work is an extensions of the CoMPSoC
architecture introduced in [7]. CoMPSoC uses the Æthereal
Network on Chip (NoC) [21], which offers composability and pre-
dictability for every logical connection between pairs of memory-
mapped initiator and target ports, e.g. the six ports shown in
Fig. 2. The composable and predictable services also extend to
the shared memories (target ports) [11], thereby isolating all the
communication between the IPs (ports) in the system. However,
the CoMPSoC platform, as described in [7] does not address sharing
of the processor tiles, including both the processor itself and its ini-
tiator port(s). Both are essential in providing a complete compos-
able platform, and the latter involves the architecture of both the
processor tile and the NoC. Next we look at these two issues in
more detail.

In contrast to the VLIW processors used in [7], we use the
ARM7TDMI (hereafter ARM7), ARM1176JZF-S (hereafter ARM11)
and the Xilinx MicroBlaze, further discussed in Section 4. These
processors all support pre-emption through (precise) interrupts
and thus allow us to enforce context switches, something that is
central to the functionality of CompOSe. While the ARM7 and
MicroBlaze have no caches (in our implementation), the ARM11
architecture uses a read-only instruction cache and write-back
data cache, with software control for invalidation and flushing.
The NoC does not provide any hardware cache coherency due to
its inherent scalability issues and performance implications. As a
consequence, cache control is critical for CompOSe and one of
the challenges addressed in this work.

Composable sharing of a processor is not restricted to the pro-
cessor core (pipeline, register file, etc.), but also the I/O interface.
For all commercial processors we are aware of, the initiator inter-
face is single threaded (although protocol standards like AXI and
OCP allow multi-threading). As a consequence, synchronisation
operations and load/store operations to remote memories, i.e. an-
other tile or an external memory, cannot be interrupted. There is
consequently a strong dependency between the operating system
and the NoC, and both the processor tile and operating system
must take this into account in order to deliver composability.
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3.1.1. Composability
Composability removes inter-application interference, but not

necessarily all variation caused by the platform itself. Thus, even
though CoMPSoC offers composability, variations in the application
behaviour may occur due to, e.g. clock domain crossings, analog-
to-digital converters at the inputs, the alignment of arbiters of dif-
ferent resources, out-of-order execution and caches. Moreover, the
application itself may have input-data dependencies or timing-
dependent behaviour (e.g. drop frame if approaching deadline)
causing variations. All the aforementioned effects may cause vari-
ations in the temporal behaviour, but they are not dependent on the
other applications and the platform is still composable. We refer to
[7] for a more extensive discussion on the more subtle aspects of
composability.

In our experiments, as later shown in Section 6, we use a deter-
ministic simulator in the evaluation of the MPSoC netlists. Thus,
the aforementioned variations are the same for repeated runs. This
allows us to verify composability by looking at the difference be-
tween traces on a cycle level, although in practise this may be
impossible to achieve.

3.2. Application software

We assume that the applications can be represented as task
graphs with explicit communication and synchronisation. Most
applications in the multi-media domain lend themselves to imple-
mentation as tasks that communicate using FIFO buffers on a per-
token basis. Traditionally, a task is implemented as a never-ending
loop that reads input data, performs computation and produces
output. In our case, the input and output operation is (preferably)
left for the operating system, and the task is not a loop, but rather a
function that executes and returns (for each invocation), as exem-
plified in Listing 1. This code implements a task with two inbound
FIFOs using a token size of 12 bytes, and one outbound FIFO with a
token size of 4 bytes. As we shall see in Section 5, the I/O is handled
by CompOSe, but takes place in task time rather then operating
system time. This ensures the overhead of the operating system
is kept to a minimum.

The proposed task semantics give the operating system infor-
mation about the input and output dependencies of the task (the
enabling condition), and also provides information about task com-
pletion when the function returns. This is not a requirement, but as
we shall see in Section 5.3, these two points are essential in en-
abling the operating system to distribute slack and thus take full
advantage of CompOSe.

Note that there is no need for execution time characterisation
from the operating systems point of view. If a particular
application requires real-time guarantees it is left to the specific
application developer to verify that these guarantees are satisfied
on the virtual processor assigned to the application in question.
The on-chip interconnect and the memory controllers are predict-
able offer formal models to facilitate end-to-end verification
[22,23].

3.2.1. Limitations
One of the main limitations we impose on the applications is

that they must not use interrupts. This is due to the fact that the
number of interrupts and the time incurred serving interrupts is
Listing 1. Ta
difficult to bound. Rather than virtualising interrupts, we currently
chose to allow only one interrupt that is used by the operating sys-
tem itself to limit the length of the time slices allocated to tasks.
This limitation is discussed further in Sections 4 and 5. Many appli-
cations in the signal-processing domain are not inherently relying
on interrupts, and we therefore leave composable virtualisation of
interrupts for future work.

In addition to interrupts, the applications must not employ any
kind of resource locking, e.g. slave locking in AXI [24], of slaves
shared between applications. A shared resource that is locked vio-
lates composability unless assumptions are placed on the applica-
tion’s use of the lock (and this contradicts our design goals). To
facilitate communication and synchronisation without using locks
we use a library for inter-task communication that uses polling.
Next, we describe this library in more detail.

3.3. Inter-task communication

CompOSe is targeted at MPSoCs, with multiple copies of Com-
pOSe running on different processor. Each processor runs an inde-
pendent instance of CompOSe, and to enable distribution of one
application across multiple processors, the platform must there-
fore offer some form of inter-task and possibly inter-processor
communication. Although our hardware platform supports any
memory-mapped communication, thus giving the programmer full
flexibility, we have adopted C-HEAP [25] as our communication
API. In C-HEAP, all communication takes place via dedicated buf-
fers, using acquire and release calls in the application code, thus
making all inter-task communication explicit, in line with the task
semantics described in Section 3.2. The use of an API also makes
the application code more portable and simplifies potential reuse.

The advantage of C-HEAP compared to other communication
protocols is that it does not use atomic operations such as slave
locking or semaphores that do not scale well and complicate the
provision of composability. C-HEAP also does not use interrupts.
A C-HEAP FIFO is implemented as a circular buffer in shared
memory, which allows run-time configuration of the FIFO size.
Copies of the FIFO administration, e.g. read and write pointers,
are kept in the local memories of both the producer and consumer
to avoid polling remote memory locations, which would incur the
interconnect latency and decrease performance.

If size permits, the FIFO communication buffers are placed in
the local memory of the processing element running the consumer
task. Thereby, all inter-tile communication is using posted (non-
blocking) writes and completely avoids reading from remote mem-
ories. This is crucial for a NoC-based MPSoC with distributed mem-
ories as the read latencies to remote memories are tens to
hundreds of cycles. If a FIFO is too large to fit in the local memories
of the processors tiles, e.g. the reference frames in a video decoder,
the FIFO data can be mapped to one of the dedicated memory tiles,
as shown in Fig. 2. The FIFO administration is still mapped in the
local memories, to keep the administration close to the processor
for low latency reads. Using distributed memories, however, re-
quires a memory consistency model that guarantees that the admin-
istration is updated only after a token is actually produced and in
the FIFO memory. Furthermore, when remote memories are used
to store the FIFO data and the processors access the contents more
than once, e.g. when decoding an image, it is beneficial to use the
sk code.
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data cache for increased performance. This raises the issue of cache
coherency. The on-chip interconnect used in this work offers
release consistency but no hardware cache coherency [7,26]. We
return to discuss how to solve the issues of memory consistency
and cache coherency when discussing the implementation of
CompOSe in Section 5.
3.4. Design flow

Although CompOSe is centred around composable sharing of a
single processor, it is aimed at MPSoCs and applications distributed
across multiple processing elements and memories. A major design
flow challenge is the application mapping and scheduling, and
although it is outside the scope of this work, CompOSe plays a cen-
tral role in this problem as: (1) the applications must conform with
the application model in Section 3.2 and (2) the tools in the design
flow should be able to reason about the outcome of scheduling
decisions.

Looking at the two problems in turn, the applications could be
provided by parallelisation tools like [27,28] or by hand, as done
in [29]. Many algorithms in the signal-processing domain are con-
veniently described in a form very suitable for the application
model of CompOSe, and automatic parallelisation is an active re-
search area.

Once the applications are provided, the mapping and schedul-
ing can be done by a tool aimed at dataflow models, e.g. [30]. Even
in the absence of execution times, deadlock freedom can be proven
by [31] and buffers (in the network and between the tasks) sized
accordingly. CompOSe does not enforce a predictable processor
architecture (or application), but in the presence of worst-case exe-
cution times, the aforementioned dataflow tools can also reason
about the end-to-end temporal performance together with models
of the NoC [22].
2 The VFCU is also able to change the clock frequency, but this functionality is
utside the scope of this work.
4. Processor tile

The primary goal of CompOSe is composability and the key idea
to achieve it is: (1) the use of Time Division Multiplexing (TDM)
with fixed-size (constant duration) service units, coupled with (2)
a context-switching mechanism that guarantees a well-defined
zero state that is independent of the applications running on the
processor, e.g. with no outstanding I/O and cold caches.

To achieve fixed-sized service units, the tasks have to be inter-
rupted at fixed moments in time. Consider processor p2 in Fig. 2. If
the task a2 of application a would be able to monopolise the pro-
cessor for a variable duration, the composability would be compro-
mised, i.e. the temporal behaviour of application b would depend
on how much a executes. Note that the inability to bound the time
to serve the timer interrupt is equivalent with an application
monopolising the processor.

In addition to the tasks, the operating system should also exe-
cute in constant time. Naturally, the operating system execution
time depends on the number of applications and task it has to
schedule. Thus, if the operating system execution time is not forced
to take a constant (worst-case) duration, the starting times, and
implicitly the temporal behaviour of an application would depend
on the presence or absence of other applications in the system,
again compromising composability.

In this section, we discuss the various options how to construct
a processor tile well-suited for achieving this functionality. First, in
Section 4.1, we discuss the options to generate and interface with a
timer as required by CompOSe. Second, we look at the possibilities
of clock-gating during idle periods in Section 4.2. Third, in Sec-
tion 4.3 we look at how to limit the number of outstanding I/O
transactions and bound their worst-case finishing time. Finally,
we discuss the implications of adding caches to the processor tile
in Section 4.4.

As shown in Fig. 3, we exemplify multiple points in this design
space, with the ARM11 tile (Fig. 3) having an internal timer,
instruction and data caches, no clock-gating, and no Direct Mem-
ory Access (DMA) functionality; and the MicroBlaze tile (Fig. 3)
having an external timer, no caches, clock-gating-based delay
and DMAs for external I/O transactions.

4.1. Timers

To track the length of the service unit time slots, CompOSe
needs a timer. In the general case this is implemented with a ded-
icated external timer accessed via a memory-mapped peripheral
bus or instruction-mapped accelerator port, as exemplified by
the MicroBlaze in Fig. 3. This approach is generally applicable to
any processor architecture, and as discussed in Section 4.2, the pro-
cessor can enter a low-power state during idle periods without
stopping the timer.

The ARM11, shown in Fig. 3 has an internal cycle counter that
can be used as a timer. The cycle counter is a programmable
32-bit counter, counting upwards on every clock cycle and on over-
flow the output-pin nPMUIRQ is pulled low. No additional hard-
ware is used and it is easy to manipulate the instruction-mapped
timer. However, it is no longer possible to enter a low-power state
(or gate the clock) as this stops the timer, resulting in a complete
processor stop.

In both approaches, the timer generates an interrupt signal that
is connected back to the processor. In the case of the ARM11 to the
nFIQ port and for the MicroBlaze to the IRQ.

4.2. Halting

As we shall see in Section 5, a critical step in achieving constant
time service units is to delay further execution until the worst-case
duration is reached. The easiest way to achieve this, which is also
implemented in the ARM instance of CompOSe is to simply idle
and execute NOP in a loop. The idling is also generally applicable
to any processor tile architecture. In the presence of an external
timer, as we have seen in the previous section, it is possible to ex-
tend the functionality with a Voltage Frequency Control Unit
(VFCU). This is implemented in our MicroBlaze tile, as shown in
Fig. 3. The VFCU provides the processor clock and is able to (un)-
gate the clock at a future moment in time, or to immediately gate
the clock [20].2

4.3. Communication latency

A bounded interrupt latency requires interruptible instructions
in the processor’s pipeline or a bounded, preferably short, maxi-
mum time to finish in-flight instructions. Thus, the maximum de-
lay till serving an interrupt is the maximum time it takes to
execute an instruction, which is in the order of a few cycles, except
for synchronisation operations and load/store operations to remote
memories, i.e. another tile or an external memory. We avoid the
conventional synchronisation operations to exclude the implica-
tions of an interrupt being raised during those. Instead, synchroni-
sation is implemented by polling checks for data and space
according to Section 3.3. The I/O operations to remote memories,
however, remain an issue.

Our platform is built around a composable and predictable on-
chip interconnect and memory hierarchy according to Section 3.1.
o
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It is thus possible to find an upper bound for the delay of any load/
store operation. The bound does, however, depend on all applica-
tions sharing the processor, interconnect, and memories, and their
resource allocations. Moreover, such a bound is quite conservative
(thousands of cycles) which incurs a large performance penalty.
For every context switch we have to budget for the worst-case out-
standing I/O.

To reduce the impact of external I/O, each processor tile has a
local instruction and data (also communication) memory. The
operating system and its data structures, and the FIFO administra-
tion used in the communication API are thus always accessible
from local memory, reducing the worst-case time to a few cycles.
For the ARM11 the operating system is in a single cycle tightly cou-
ple memory (ITCM and DTCM) and for the MicroBlaze we use a lo-
cal data memory (dmem) with similar functionality.

To reduce the bound on the interrupt latency it is possible to
make all load/store operations local with the introduction of a
DMA block [20]. Hence, instead of a potentially long load/store
operation, the processor initiates a DMA transfer between the lo-
cal and external memories, and polls until the DMA finishes the
transfer. The processor is interruptible after each polling (local
read) operation, thus the interrupt latency is kept short and is
independent of the resource allocation of any other application.
However, as all external memory access must take place via
the DMA, the task data and instructions must fit in the local
memory. Additionally, the DMA requires explicit access to remote
memories, e.g. through the use of the API introduced in
Section 3.3. By embedding the interaction with the DMA in the
communication API its use is transparent to the application
programmer.

The DMA offers improved performance, but places strict
requirements on the communication model and requires the
tasks to fit in the local memories. It is also possible to not use a
DMA and thus avoid the aforementioned restrictions. The draw-
back is reduced performance, due to the potentially large bound
on outstanding transactions. As a major advantage, the absence
of the DMA allows a more flexible placement of data and instruc-
tions and also enables the use of caches, about which more
presently.
4.4. Caches

Caches have the ability to significantly improve processor
performance. However, caches present a problem to CompOSe
as the applications affect the cache state as they execute, but
must not interfere with each other. From a composability point
of view, we distinguish between two types of cache interference
[32]:
� Intra-task (intrinsic) interference occurs when a task overwrites
its own cache lines, mainly because of the relatively small size
of the cache as compared with the tasks memory demands.
Intra-task interference occurs on both single- and multi-tasking
execution platforms.
� Inter-task (extrinsic) interference occurs when in a multi-task-

ing environment context switches swap out cache contents of
previous applications, often resulting in a burst of cache misses.

Both intra- and inter-task interference make it hard to calculate
worst-case execution times. To achieve composability, however,
there is no need to bound execution times, and only the inter-task
interference must be removed. In addition to the issues concerning
composability, the inclusion of caches also raise the issue of cache
coherency. CompOSe is tailored for a NoC-based MPSoC platform
without hardware support for cache coherency. As a consequence
that responsibility is shifted to the software. We show in Sec-
tion 5.2 how composable cache sharing and software cache coher-
ency is accomplished in CompOSe.
5. CompOSe

After having described the hardware architecture, we now de-
scribe the implementation of our proposed operating system. Note
that each processor runs an independent instance of CompOSe,
without any knowledge of the other processors in the system.
Thanks to the NoC, each processor can run on its own clock and
be completely decoupled from other processors and memories.
Each scheduler takes local decisions, and is not aligned or syn-
chronised with any other scheduler in the system. All task commu-
nication and synchronisation is using C-HEAP and is composable
thanks to the NoC.

We start by describing the data structures used by CompOSe in
Section 5.1 and continue by looking at the functionality in
Section 5.2.
5.1. Data structures

The key data structure elements of CompOSe are shown in
Fig. 4. At the top we have the Processor Control Block (PCB), fol-
lowed by the Application Control Block (ACB), Task Control Block
(TCB) and FIFO Control Block (FCB). The data structure for each pro-
cessor is dynamically allocated on the heap (in the local memory of
the processing element) during system initialisation (or reconfigu-
ration). Note that there is no system level in the data structure. In
other words, each processor is unaware of tasks or applications
running on other processors, even tasks belonging to the same



Fig. 4. Data structure organisation.
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application. Consider for example Fig. 2 where the p1 is only aware
of a1 despite a2 being part of the same application (a).

As seen in Fig. 4 the application-level scheduler is hardcoded to
TDM, with the period, slot length and schedule being part of the
PCB. The PCB also holds the slack-distribution matrix, about which
more in Section 5.3. The PCB also points to a circular linked list of
applications. On the application level we see that each ACB has a
function pointer, thus allowing it to have a per-application choice
of task scheduler. Note, however, that the scheduler runs in the
operating system execution time unit, which we return to in the
following section, and must hence be trusted (and characterised).
The ACB also holds information about all the FIFOs and tasks that
reside on the processor in question.

The TCB contains pointers to instructions, stack and heap start
of the task (in remote and possibly cached memory). Each TCB also
points to its input and output FIFOs, so that CompOSe knows what
conditions must be satisfied for the task to run. In addition to the
tasks created by the user, there is always a default task, os_idle,
that is connected to each application. This task, when invoked,
immediately finishes (by returning). As we will see, the idle task
is important for the slack management.

It is possible for a host processor to create and modify the data
structure by manipulating the memory locations directly. We have
also implemented a reconfiguration application that executes on
each processor and receives reconfiguration messages from one
or more hosts (currently for the ARM platforms only). We discuss
this further in Section 6.

5.2. Functionality

In this section, we describe the functionality of CompOSe and
how it makes use of the processor tile and data structures. The core
of CompOSe is the functional loop shown in Fig. 5. As seen in the
figure, it consists of two major parts, the Operating System (OS) unit
and the service unit. The operating system unit is responsible for
saving the context of the previous task on its stack, to schedule a
new application and along with it a new task. The service unit is
where the task is allowed to execute. In the following sections,
we traverse the complete cycle and explain the individual steps.

5.2.1. Interrupt handling
An interrupt from the system timer marks the start of a new cy-

cle, marked with (1) in Fig. 5. The processor switches to the corre-
sponding execution mode, stores the current program counter,
disables further interrupts and starts execution from the relevant
exception vector. On our platform the execution mode entered is
the fast interrupt mode for the ARM7 and ARM11. This is due to
the system timer implementation explained in Section 4.1. The
MicroBlaze uses normal IRQs. The exception vector contains a
branch instruction forcing the program counter to the beginning
of the os_contxtsw function.

5.2.2. Context saving and task reset
In os_contxtsw (2), the context of the interrupted task is saved

onto its stack and the stackpointer saved in the TCB. The task is re-
set to its original state (3), if it is marked as finished. The original
state is defined as the state that the task was in when the system
was first started. This implies resetting all the task registers, which
are now located on its stack.

5.2.3. Application and task scheduler
Next, the application-scheduler selects an application (4), using

the TDM schedule of the PCB. The curr_app pointer in the PCB, is
updated to point out the scheduled application. When the applica-
tion-level scheduler has decided what application to run next, the
task-level scheduler takes over (5).

The task scheduler is a per-application selectable algorithm that
can use any scheduling strategy. The task- scheduler is specified
via a function pointer, and takes a pointer to the calling application
as argument. Three algorithms are implemented; Round-Robin,
TDM and Credit Controlled Static Priority [33]. Round-Robin,
TDM are compared in Section 6. When deciding on a task, the
scheduler only considers tasks that are eligible to execute, i.e. tasks
that have data available in all input FIFOs and space available in all
output FIFOs. A task without FIFOs is always considered eligible.
Note that all the available schedulers guarantee a minimum rate.
A task that is eligible will consequently be scheduled eventually
(in contrast to purely priority-based arbitration). Progress is there-
by guaranteed on the task level (as well as on the message and
packet level in the interconnect), thus ensuring deadlock freedom
if all buffers are sized properly [7,31].

5.2.4. Clean cache
If the processor is using caches, they have to be dealt with to

achieve composability. The easiest way of including caches, and
the method CompOSe implements, is to clean and invalidate the
instruction cache, data cache and Translation Look-aside Buffer
(TLB) (6). This gives the tasks cold (empty) caches upon each acti-
vation, thus removing any influence of previous applications. It
does, however, result in a burst of cache misses, lowering the exe-
cution speed. More complex ways to achieve composability while
the caches are activated include cache partitioning [34] and cache
locking. The official ARM compiler does not support cache parti-
tioning, and cache locking restricts the number of tasks to the
number of cache-ways (on our chosen ARM11 that gives a maxi-
mum of four tasks). Moreover, when the task does not entirely fit
in the cache, intra-task interference will take place and the appli-
cation composability is lost.

To reduce the performance impact of the cache invalidation we
make it conditional and do not clean the caches if the previous appli-
cation scheduled is the same as the next one. This removes the bursts
of cache misses in this case, while keeping the composability
among applications.

5.2.5. Constant execution time
As mentioned, constant operating system execution time (7) is

crucial for achieving composability. This worst-case operating sys-
tem duration must accommodate all time required to service the



Fig. 5. Functional flowchart.

A. Hansson et al. / Microprocessors and Microsystems 35 (2011) 246–260 253
interrupt, reset the task, run the application scheduler, run the task
scheduler.

A possible way to remove the variation in duration, is to halt or
clock gate the processor after the operating system execution, up
to its worst-case duration. This is the approach used for our Micro-
Blaze processing element. When a halt instruction is not available,
the processor can poll on a timer as in Listing 2. In both cases, i.e.
end of halt instruction or the timer value reached, there are still
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variations due to the fact that the reading of the timer, and the loop
that performs the check does not run in zero (or even constant)
time. The processor might leave the loop up to seven cycles after
the desired value has been reached. This polling window is not
dependent on the application, but rather the uncertainty of the
platform and does not have to be eliminated to achieve compos-
ability. However, to verify our implementation we choose to also
remove this effect and thus enable us to demonstrate composabil-
ity by looking at the cycle-level behaviour, as shown in Section 6.

It is very important that the code is located in a memory with
zero wait-states and that the targeted processor executes NOP
instructions in a single cycle. It is also important that the system
timer runs at the same speed as the processor, otherwise the cycle
accurate control is lost.

In case the timer is external and the processor clock can be con-
trolled (e.g. in the MicroBlaze tile) instead of polling on the timer,
the operating system variations can be removed by gating the clock
of the processor till an absolute moment in time. Fig. 6 presents the
Listing 2. Tim

Fig. 6. MicroBlaze service units a
time line with the main events in task switching (using the enu-
meration from Fig. 5: (1) timer interrupt raise, (7) waiting up to
operating system worst-case duration, and (8) program timer for
next interrupt, as described in the functional flow.

As the last step of the operating system unit the timer is pro-
grammed for the next interrupt (8) and the execution continues
with the service unit.

5.3. Slack management

One of the drawbacks with the fixed-size time slices (central to
the ability to provide composability) is that slots might be left un-
used. For this reason, we provide slack management as an optional
addition to CompOSe. At the start of the service unit, the slack
manager is invoked (9) if the next task is os_idle. In CompOSe
we distinguish between two types of slack: internal and external.
Internal slack arises when a task finishes its work (firing) before
the end of a service unit. In Fig. 7, a2 in application a finishes in
er poll.

nd task switching time line.



Fig. 7. Schedule with internal and external slack.
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the middle of the service unit, leaving the processing element idle
until the next scheduling decision. External slack, on the other
hand, is introduced when an application is scheduled, but has no
eligible tasks to execute. As a prerequisite, the operating system
must be aware of the eligibility, i.e. firing rules of the task. Fig. 7
also illustrates this case, where a complete service unit is spent idle
due to the lack of input data or output space for a2.

CompOSe is able to detect and distribute the external slack
using a slack distribution graph, as shown in Fig. 8. The slack dis-
tribution graph defines which application can give slack which to
other applications, and it is determined at application initialisation,
with information from the application designer. A key observation
for slack management in a composable system is that interference
is an unidirectional relation. The application that offers its unused
resources is not affected by other applications. Conversely, the exe-
cution of the application that receives the slack suffers from inter-
ference from the slack-donating applications. Hence it is possible
to have a system where some applications are composable (i.e.
have no interference from other applications), and other applica-
tions are not composable, as they receive slack.

The distribution of internal slack to another task (potentially
belonging to another application) would imply an extra scheduling
and slack management decision (OS invocation) at task iteration
finish. To respect the fixed-size time slots, this OS invocation
should not take place if the internal slack is not larger than the
OS slice. However, the amount of internal slack is known only at
run time, thus managing the internal slack may complicate the
application timing analysis for which the number of OS invocation
should be known as design time. Moreover, extra OS invocations
lead to extra overhead. Hence CompOSe does not manage internal
slack similarly to the external slack. However, for a processor with
an external timer and controllable clock frequency unit (as in our
MicroBlaze-based platform) the processor can be clock gated to
utilise internal slack to save power.

As a result of the slack manager CompOSe may schedule an eli-
gible task in the current service unit instead of idling.
5.3.1. Buffer management and task execution
Before executing the task, CompOSe potentially copies input

data from remote locations to local buffers (10). This step is op-
Application 2

Application 1

Application 4

Application 3

Fig. 8. Slack distribution graph and slack m
tional and is a user choice. It is possible to use remote buffers ca-
ched (we invalidate cache lines when acquiring data) or non-
cached, but the best performance is achieved if the buffers fit in lo-
cal memory and no additional copying is necessary.

Once the input data is available, the task is restored (11) and
execution from its previous state (12). This is where the actual user
task code is run.

If the task returns before the timer interrupt, then CompOSe
optionally copies the output data from local memory to the phys-
ical location of the output FIFOs. Once the data is written to the tar-
get memory, the local and remote FIFO administration is updated.
If both the data and the remote administration are in the same
memory the ordering of data and synchronisation transaction is
guaranteed. This is, however, not the case when data and synchro-
nisation have different QoS budgets in the interconnect [35]. For
this purpose we include an ARM Data Memory Barrier (DMB) oper-
ation in the release call, or a read back of the last written value for
processors without such functionality. This ensures that all out-
standing explicit memory transactions (i.e. to the FIFO buffer) com-
plete before any following explicit memory transactions begin (i.e.
to the FIFO administration). As our platform implements cache
coherency in software we also flush cache lines when data is re-
leased. The implementation is hidden in the communication API,
and is transparent to the user.

Once the I/O is complete CompOSe continues to wait for the
interrupt (14) marking the end of the service unit.
6. Experimental results

In this section, we put CompOSe to the test and demonstrate
three different instances using a range of processors and tile archi-
tectures, as introduced in Section 4. First, in Section 6.1, we present
an ARM7 single-processor system illustrating the effects of choos-
ing different task-level schedulers. Next, we continue with an
ARM11 multi-processor system with caches in Section 6.2 and
show how CompOSe delivers composability on a cycle level. Final-
ly, in Section 6.3, we show similar results for an FPGA implemen-
tation built around MicroBlazes.

6.1. Single-processor board implementation

The microcontroller used in this experiment is a NXP LPC2129,
including one ARM7 core together with a variety of peripherals, e.g.
256 KB on-chip Flash ROM and 16 KB RAM, vectored interrupt con-
troller, real-time clock and general purpose I/O pins. The rather big
ROM in the LPC2129 can hold task code together with the complete
CompOSe. This memory is not single cycle, thus by scatter gather-
ing time critical code (the operating system and the schedulers) are
executed from RAM. The initialisation code copies the time critical
code from ROM into RAM before calling main.
1
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4

1 2 3 4
to application
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application

RR token Slack on/off
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Fig. 9. Two applications mapped on to the ARM7 processor.
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A small CompOSe console application has been developed. It al-
lows editing of the application schedule, and also the slack-matrix.
The console application uses a serial-port connection for communi-
cation with the outside world, allowing a PC to be used as a host.
The console application can be mapped into a free TDM slot with-
out interfering with any other applications, but we choose to make
it a strict best-effort application and let it run purely on slack. For
this to work there has to be a sufficient amount of slack that the
console application can utilise.
6.1.1. Scheduler comparison
Here, two simple task-schedulers are presented, using two

applications as illustrated in Fig. 9. Application 1 is a LED applica-
tion where the first task reads a potentiometer, letting the value
change the workload, as shown in Listing 3. The on-board LED cor-
responding to the task is switched on and upon completion the LED
is switched off again. The workload is communicated to the follow-
ing task in the pipeline that switches on the corresponding LED and
passes the value along to the next task, etc. Application 2 is a sim-
ple sound generator that toggles two I/O ports to drive an on-board
buzzer. We can thus change the workload of Application 1
(through the potentiometer) and observe the frequency of the
sound omitted, and this way hear if there is any change in Applica-
tion 2.

In addition to merely listening to the effects of the schedulers,
the traces from tasks 1 through 4 in Figs. 10 and 11 illustrate the
state of the LED variable from Application 1. The LED variable will
stay at 1, even if the task is pre-empted. The traces shows how this
workload is transported through a pipeline among the four tasks.
Listing 3. Ta
The difference between the two simulations is the task-scheduler
used in Application 1. Notice that task 5 in application 2, is not af-
fected by the switch of task-scheduler in Application 1. The smaller
latency introduced by the Round-Robin scheduler can be observed
in the graphs.

6.1.2. Performance
The CompOSe overhead is processing time consumed by the

operating system itself, i.e context switching and scheduling
decisions, including the time required to wait until the worst-case
in-flight instructions finish and resetting the processor state. A
context switch, without slack management, takes about 1600
ARM assembly instructions. The small overhead is due to the local
memories (small worst-case time for in-flight instructions) and the
absence of caches and TLBs. On the ARM7 implementation, running
at 60 MHz, the overhead for using CompOSe when using a 100 Hz
system tick is only 0.3%. Raising the clock to 1kHz gives, due to lin-
ear scaling, 3% overhead.

6.2. Multi-processor system netlist

In addition to the single-processor implementation, CompOSe is
evaluated on a ARM11-based MPSoC, for which the netlist is avail-
able. The system contains three ARM11 processors and a large
external memory. In contrast to the single-processor system, this
evaluation also includes the inter-processor communication
through C-HEAP. To verify composability we map two applications
to the three processors, similar to what is shown in Fig. 2. Next we
run two simulations, where the second application is modified
sk code.



Fig. 10. Task invocation using TDM task scheduler.

Fig. 11. Task invocation using Round-Robin task scheduler.
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between the two runs. Traces in Fig. 12 show the interface of the
middle processor, executing tasks from both applications. Traces
from two different simulations are overlaid. The diagonally striped
(red) area indicate cycles that differ between the two. The nFIQ sig-
nal indicates where the service cycle starts and stops. The compar-
ison between the two traces clearly shows that the only differences
take place in the time slots of the changed applications (third and
fourth service cycle) and in the operating system unit when access-
ing the data structure (in the beginning of each service cycle). See-
ing that the behaviour on a cycle level remains the same clearly
indicates that temporal composability is achieved by CompOSe
and the NoC (and memories).
6.3. Multi-processor system FPGA implementation

We implement CompOSe also on a MicroBlaze-based FPGA pro-
totype. This experimental platform consist of two processor tiles as
described in Section 4, communicating through an Æthereal net-
work on chip [10]. The workload exercised on this platform con-
sists of three applications: two synthetic ones (A1, A2), having
the same task graph structure but different execution times, and
a parallel H264 decoder (H264) obtained using PNGen [36].
Fig. 13 presents the task graphs of these applications and their pro-
cessor mapping. H264 and A2 are scheduled using TDM, and A1 is
scheduled using Round-Robin.



Fig. 12. Signal trace ARM11.

Fig. 13. Applications executed on the MicroBlaze-based platform.

Fig. 14. Signal trace MicroBlaze.
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We measured the execution time of the H264 tasks in two
cases: (1) the H264 executing alone on the platform, and the
H264 executing together with A1 and A2. We observed that the exe-
cution times of each one of the H264 tasks are identical, regardless
the presence or absence of A1 and A2 in the system. This suggests
that temporal composability is achieved.

Similar simulation traces as in the previous subsection are com-
pared also for the MicroBlaze platform in Fig. 14. We compare five
signals of one MicroBlaze core in two different runs. The diagonally
striped (red) area indicate cycles that differ between the two. In
first run A1 is scheduled using Round-Robin, and in the second
one it is scheduled with TDM. The int_out signal indicates where
the service cycle starts and stops. One can see that some of the ser-
vice units completely differ because in those units different tasks of
A1 execute in the two different runs. However, the rest of the ser-
vice units are cycle-level identical, as A2 and H264 have the same
scheduling policy over the two runs. Thus this traces comparison
suggests that the system is temporally composable at cycle-level.

On the MicroBlaze, the worst case execution time of CompOSe
(when scheduling three applications, each having at most five
tasks) is 1300 cycles, representing an overhead of 6.5%, when the
service unit is 20,000 cycles long, as in the experiments of this
subsection.
Our empirical evidence does not prove the ability to provide
composable processor sharing. However, by having multiple differ-
ent hardware and software instances, our experiments cover a
large space of compilers, processor architectures, and applications.
The many design points together serve as a strong indication that
our goals are achieved.
7. Conclusions

In this work, we introduce CompOSe, an operating system that
enables composable sharing of processors, extending an existing
network-based composable hardware platform with hardware
and software support. With a temporally composable system, on
both a hardware and a software level, we reduce the design and
verification effort by a divide-and-conquer approach. The need
for verification is reduced from the system level, down to an appli-
cation level.

CompOSe uses a novel concept based on scheduling of
fixed-size service units, implemented by means of pre-emptive
scheduling using a budget- enforcing scheduler. In contrast to many
other operating systems, an application need not be characterised,
only adhere to the task interface with explicit communication.
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CompOSe also provides slack management, and uses a novel two-
level arbitration scheme to separate inter- and intra-application
arbitration. We demonstrate CompOSe on a range of processor
architectures and show its applicability in network-based multi-
processor systems with release consistency, software cache coher-
ency and distributed memories. Our experiments, using netlist
simulation and an FPGA prototype, suggest that temporal compos-
ability is achieved.
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