
An improved algorithm for slot selection in the Æthereal
Network-on-Chip

Radu Stefan
Delft University of Technology

R.A.Stefan@tudelft.nl

Kees Goossens
Eindhoven University of Technology

K.G.W.Goossens@tue.nl

ABSTRACT
The rapid development in the electronics industry leads to
a design process dominated by time-to-market constraints.
The balance is shifted from logic design to packaging of al-
ready existing IP which results in a search for solutions for
interconnecting the IP blocks. Networks-on-chip allow the
rapid development a scalable interconnect and with the use
of Circuit switching they can also provide guarantees for the
speed of communication between IPs. In the current paper
we demonstrate an improvement in the allocation algorithms
for a Time-Division-Multiplexing Circuit-Switching scheme.
We prove our algorithm to be optimal and we find that it
provides an improvement of up to 26.7% compared to the
previously proposed algorithm. The gain is more attractive
as it comes at no cost for the actual hardware implementa-
tion.

1. INTRODUCTION AND BACKGROUND
The exponential growth in integration density that the

electronics industry has sustained for the last five decades
has led to a corresponding increase in design complexity.
Although advances in design tools have mitigated to some
extent the increased cost of designing more complex circuits
the problem is by no means solved.

One way to address design complexity is through IP reuse.
Current designs and to an even larger extent future designs
[1] consist of IP blocks that have been previously deployed
and verified in other products.

It not always certain though that an IP block which was
tested and validated in isolation also works when connected
together with other IPs. Arbitration to shared resources
may cause for example delays which interfere with the proper
functioning of the modules. Putting parts together and in-
terconnecting them is therefore an important step in the
design process and more so as the number of components
increases.

Networks-on-Chip or NoCs are the emerging paradigm for
the on-chip interconnect [5, 3]. They promote modularity,
and IP reuse, they support scalability and in some cases they
provide guarantees on communication performance which
can be used to verify that an IP will perform properly once
integrated in a larger system.

In this study we make use of the Æthereal Network-on-
Chip which employs a Time-Division-Multiplexing (TDM)
Circuit-Switching mechanism to provide bandwidth and la-
tency guarantees. We show an improvement in the algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INA-OCMC ’11, January 23, 2011, Heraklion, Greece
Copyright 2011 ACM 978-1-4503-0272-2 ...$10.00.

for TDM slot selection as we will describe in the following
sections.

The core of the Æthereal network provides transport-level
services [6] in the form of guaranteed bandwidth and latency
communication channels between IPs, while Network Inter-
face Shells at the boundary of the network are in charge of
translating the bus protocol used by the IP to the internal
network packet format (Figure 1).

Figure 1: Æthereal Network

In the circuit switching implementation communication
channels are established between connected IPs and receive
exclusive use of some of the network resources throughout
their entire lifetime.

The basic resource allocated to communication channels
is the TDM time slot. The bandwidth of each link is split
into a number of timeslots (the same number for each link)
and internal network state tables describe who has access to
each of the slots according to a schedule (a TDM slot wheel).

The sequence of allocated slots determines communica-
tion parameters like bandwidth and the scheduling latency
as we will explain in section 3. In Æthereal the other com-
ponent of latency, the network traversal latency is directly
proportional to the path length as the latency at each hop
is always fixed.

In this paper we present an improved algorithm for the
allocation of slots. The paper is organized as follows. In the
following section we present related work. The proposed
TDM slot allocation algorithms are presented in Section 3.
Experimental results are presented in Section 4 while the
last section presents our conclusions.

2. PREVIOUS WORK
The problem or routing in NoCs has been widely studied

[2, 4, 10, 11]. Our algorithm is related to the routing prob-
lem but instead of spatial allocation it deals with allocation
along the time axis. It is expected to be used in conjunction
with an algorithm for route selection in a TDM network for
optimizing latency.

Our technique applies in general to NoCs using TDM, like
Nostrum [15], aSoC [12] and [19]. Although some imple-
mentation details like the computation of header overhead
are specific to the Æthereal implementation we believe that
similar problems arising in other implementations could be
solved by the same algorithm.

A related algorithm achieving both path and slot allo-
cation is presented in [14]. However it only optimizes for

bandwidth and does not consider latency nor the complex
header overhead found in Æthereal .

The algorithm previously proposed for solving this prob-
lem is presented in [7], we use this to compare the perfor-
mance of our algorithm. An algorithm improvement involv-
ing path rip-up and reallocation on top of the normal Æthe-
real algorithms is presented in [18]. While we do not directly
investigate this technique we consider our algorithm to be
compatible with it.

An online allocation method for the Æthereal network is
proposed in [16] however the details of the allocation al-
gorithm are not provided and could not be included in a
comparison. Our algorithm is more complex than algorithm
in [7], but it still runs in polynomial time and is not entirely
unsuitable for online allocation.

An analysis of communication latency after the slots have
been selected is provided in [17], while [9] details the re-
lation between communication performance and the overall
application behavior.

In a similar network implementation with more relaxed
constraints on slot alignment, a graph coloring algorithm is
proposed by [13] to solve a slot allocation problem. Our
algorithm is to a large extent motivated by the restriction
that in Æthereal slots need to be forwarded on the next link
without delay. However other TDM networks may choose to
do this even when it is not mandatory, for improving latency.

3. PROPOSEDALLOCATIONALGORITHM
The allocation procedure in the Æthereal tool-flow con-

sists of two steps. The first one, detailed in [8] is in charge
of finding proper paths. The second is typically executed
inside the optimization loop of the first and consists of se-
lecting timeslots on that path so that the latency and band-
width constraints are met.

We do not attempt here to detail the pathfinding algo-
rithm, but instead focus on the method of slot-selection.

The slot selection algorithm is given the set of available
slots on a path has the task of identifying a minimal subset
of slots that provide the required bandwidth and latency.

For simplifying the implementation, the bandwidth bw is
always expressed in terms of words/slot table revolution.
The number of words per slot table is derived from the band-
width of a link, the size of the slot table and the required
bandwidth, by rounding up to the nearest integer value.

Particularities of the Æthereal implementation slightly com-
plicate the computation of delivered bandwidth. In partic-
ular, for consecutive slots belonging to the same channel,
headers need to be inserted periodically to allow the trans-
mission of credits for flow control. In our tests we assumed
the period to be of 3 slots which is also the default value.
The algorithm however is in no way tied to this particular
value and can even ignore the presence of headers entirely.

The maximum latency l, expressed in units of the length
in time of a slot is obtained by subtracting from the latency
required by the application the latency that is due to net-
work traversal, which is computed from the path length.

Figure 2: Problem formulation

The previously proposed algorithm addresses the two re-
quirements (the latency requirement and the bandwidth re-
quirement) separately. Furthermore it is a greedy algorithm
taking optimal decisions only locally. We propose instead
an algorithm which simultaneously optimizes according to

both criteria and furthermore we show it to be optimal in
that it uses a minimal number of slots.

A formal description of the algorithm is given in Algo-
rithm 1.

Algorithm 1: Optimal slot selection

Data: set of available slots A ⊂ S = {s1..sn}
l maximum allowed latency measured in slot periods
Br required bandwidth
Result: A which minimizes |A| while satisfying bandwidth

and latency constraints

if Br > BA ∨ Latency(A) > l then1

fail;2

end3

small← slotSize− headerSize;4

large← slotSize− headerSize;5

solution A ← A;6

BA ← BA;7

for ∀i ∈ {1, 2, ...n} do8

reorder original A,S to start with slot si, si becomes s1;9

if s2 ∈ A then10

A2,1,1 ← {s2};11

BA2,1,1
← short;12

for ∀k ∈ {3, 4, ...n} do13

for ∀i ∈ {0, 1, 2}, ∀j ∈ {1..k − 1} do14

Ak,i,j ← ∅;15

BAk,i,j
← 0;16

end17

i=1;18

for ∀j ∈ {2..k − 1} do2020

/* adding one non-consecutive slot */
for21

∀x ∈ {0, 1, 2}, ∀y ∈ {max(2, k − l)..k − 2} do
if BAk,i,j

< BAy,x,j−1
+ small then22

// update best known Ak,i,j

BAk,i,j
← BAy,x,j−1

+ small;23

Ak,i,j ← Ay,x,j−1 ∪ sk;24

end25

end26

end27

for ∀i ∈ {0, 1, 2}, ∀j ∈ {2..k − 1} do2929

/* add consecutive slot */
x = (i− 1) mod 3;30

gain← large;31

if i = 1 then32

gain← small;33

end34

if BAk,i,j
< BAk−1,x,j−1

+ gain then35

// update best known Ak,i,j

BAk,i,j
← BAk−1,x,j−1

+ gain;36

Ak,i,j ← Ak−1,x,j−1 ∪ sk;37

end38

end39

end40

for ∀k ∈ {n− l + 1, 4, ...n} do4242

/* limiting the search to n− l + 1 ensures
that the latency limit is obeyed at
wrap-around */

for ∀i ∈ {0, 1, 2}, ∀j ∈ {1..k − 1} do43

if Br ≤ BAk,i,j
then44

if j < |A| ∨ (j = |A| ∧ BA < BAk,i,j
)45

then

/* note that |Ak,i,j | = j */
A ← Ak,i,j ;46

BA ← BAk,i,j
;47

end48

end49

end50

end51

end52

end53

We first restrict solutions to a list of slots starting with

one non-selected slot followed by one selected slot. By iter-
ating over all rotations of the slot table, with wrap-around,
we ensure the coverage of the entire solution space, one ex-
ception being a table with all slots selected, which is treated
as a separate case.

We then build a set of partial optimal solutions. For each
slot position k we build the set of partial optimal solutions
with for each: (modulo 0..2 consecutive slots before slot k
and 1..k − 1 slots used in total) Figure 3. The solutions are
optimal in that they provide the best bandwidth given the
constraints. All partial solutions obey the latency limit and
can be constructed from the partial solutions for the nodes
n− latency + 1..n.

For k = 1 no partial solution can be constructed since we
already assumed the first slot is not used. For k = 2 only
one partial solution exists which is {s2} and therefore this
solution is optimal considering the given restrictions.

Let us formalize the previous algorithm description. We
will already assume solutions starting with one unselected
and one selected slot, the solution with all slots selected is
trivial.

Let S be the set of all slots {s1, s2, ..sn}, and let A ⊆ S
be the set of available slots A = {si ∈ S|si is not occupied}.
Let Ak,i,j be a subset of {s2, s3..., sk} with sk ∈ Ak,i,j , hav-
ing exactly j elements (|Ak,i,j | = j and ending with q se-
lected slots, where q mod 3 = i, in other words sk−q 6∈ Ak,i,j

and {sk−q+1, sk−q+2..., sk} ⊂ Ak,i,j . 3 is the maximum num-
ber of slots after which the header needs to be repeated. It
can be replaced in the algorithm by any other constant.

Figure 3: Building partial solutions

The reason behind the classification of partial solutions
by their modulo 3 number of ending slots is that it enables
us to compute the bandwidth obtained by attaching one
additional slot at the end of the partial solution, that is,
if the bandwidth delivered by Ak−1,i,j−1 is BAk−1,i,j−1

, the
bandwidth delivered by Ak−1,i,j−1 ∪ sk is:

BAk,i,j
=

{

BAk−1,i,j−1∪sk + slotSize-headerSize when i = 0
BAk−1,i,j−1∪sk + slotSize otherwise

(1)
When attaching one slot to a solution in which the last slot

is not selected (a non-consecutive slot, line 29 in Algorithm
1), we always pay the header penalty and the number of
slots at the end of solution becomes 1.

BAk,1,j
= BAk−m,i,j−1∪sk + slotSize-headerSize

where m > 1
(2)

It is easy to see that any solution having at least two slots
Ak,i,j ; j ≥ 2 can be build from a solution Ax,y,j−1 by adding
a new slot on the position k, and the delivered bandwidth
can be computed using one of the equations 1, 2.

3.1 Proof of optimality
Let us denote Ak,i,j a set Ak,i,j that is optimal in that

for the given k, i, j it provides the largest bandwidth. We
argue that Ak,i,j , if it exists can only be obtained by adding
a slot k to one optimal set Ax,y,j−1. Indeed, if that was not
the case, then Ak,i,j would be obtained from a non-optimal

Ax,y,j−1 as Ax,y,j−1∪{sk} and BAk,i,j
= BAx,y,j−1

+q where
q is a constant dependent only on x and k, derived from
equations 1, 2. Note that k − x < latency to obey the
latency requirement.

But sinceAx,y,j−1 is not optimal ∃Ax,y,j−1 so that BAx,y,j−1
>

BAx,y,j−1
⇒ BAx,y,j−1∪{sk} + q > BAk,i,j

and Ak,i,j is not
optimal, which would contradict the hypothesis.

It results from here that if we generate all feasible Ax,y,j−1

sets (or at least one set for each (x, y, j−1)) we can generate,
if it exists, any Ak,i,j set.

An optimum to our original problem, that is, a subset
of S which satisfies the latency bound l, and has a mini-
mum required bandwidth bw, can always be expressed as a
set Ak,i,j , by properly selecting values for k, i and j, but
since Ak,i,j uses the same number of slots, j and it provides
bandwidth as high as any of the Ak,i,j sets, Ak,i,j is also
an optimal solution, with the added benefit that among the
solutions that use j slots it also provides the highest possi-
ble bandwidth, which was not one of the original problem
requirements.

In our algorithm, the optimum is found by enumerating
all Ak,i,j sets and selecting the one which:

1. Provides the necessary bandwidth
2. Obeys wrap-around latency requirement
3. Has the lowest j value (number of used slots)
4. For the lowest j value has the highest BAk,i,j

We have also verified the optimality of our solution experi-
mentally by comparison against an exhaustive search for slot
table sizes up to 24.

3.2 Algorithm complexity
Consider the following notation for the calculation of com-

plexity: n is the number of slots in the slot table; m is the
number of free slots m ≤ n, worst case m = n; l is the
maximum distance between slots; p is the maximum num-
ber of consecutive slots after which the header needs to be
repeated.

The dynamic programming algorithm is run m times for
each rotation of the slot table in which the second slot is
available (as explained previously). Each of these runs in-
volves building a table of partial solutions (Ak,i,j) of size
n2 ∗ p. When slot k is available (which happens for m of
the slots) Ak,1,j is computed based on l∗p other values, and
Ak,i,j with i 6= 0 is computed based on one other value. The
complexity for computing the table is O(m2 ∗ l ∗ p) and the
total algorithm complexity O(m3∗l∗p) which is in the worst
case O(n3 ∗ l ∗ p). The memory complexity is dominated by
the size of the tables mentioned and is O(n2 ∗ p).

This is higher than the original algorithm which had a
complexity of O(n), in practice however it does not represent
a problem since allocation is typically performed at design
time.

4. EXPERIMENTAL RESULTS
In this section we compare our proposed algorithm with

the original greedy algorithm. We perform the comparison
using sets of occupied and unoccupied slots, and iterating
over all feasible bandwidth/latency pairs for each pattern.
At each design point we employ 1000 random samples of
background traffic, and we report the improvement of our
algorithm against the algorithm in [7].

The average improvement for a slot table sizes of 32 is
plotted in figure 4 against the background utilization (the
number of slots that were already marked as occupied when
the slot selection algorithm was run). We have also per-
formed experiments for table sizes of 8-40 but due to lack of
space we cannot present them here.

The improvement can take two forms: in some cases, the
dynamic programming algorithm can deliver the required
bandwidth and latency while using fewer slots than the greedy

Figure 4: Improvement in slot utilization vs back-
ground utilization

algorithm. We call this slot improvement. When not pro-
ducing slot improvement, there is still a chance that the
dynamic programming algorithm delivers more bandwidth
than is required due to the granularity of slots and this band-
width is in some cases higher than the one provided by the
greedy algorithm. This is called Bandwidth improvement in
the figures.

Obviously little gain can be obtained when the slot ta-
ble is essentially empty or when it is completely full. Some
improvement exists though for a completely empty table be-
cause the original algorithm does not properly take into ac-
count bandwidth gain at wrap-around. The largest gains
are in the middle section of the interval, which we consider
likely to be found in practice.

This is however the gain averaged over all requested la-
tency/bandwidth values. Figures 5 and 6 detail the 25% and
50% background utilization scenarios over the range of re-
quested latency and bandwidth values. We can see that for
very tight latency constraints there is hardly any gain since
there is very little flexibility in choosing the needed slots.
Also very little gain is made when the required bandwidth
is very low or very high. For the first case it means that
for latency-only constraints the initial greedy algorithm is
performing very well, for the latter obviously when the en-
tire bandwidth needs to be allocated only one solution exists
and that consists of allocating all the available slots.

Figure 5: Detailing improvement under 25% utiliza-
tion vs. latency/bw requirements

It is noticeable that for the lower bandwidths the graph
curve is independent of bandwidth. This is because the slots
allocated because the latency constraint are sufficient to also
satisfy the bandwidth constraint.

5. CONCLUSIONS
We conclude with the observation that the original algo-

rithm was on average quite efficient, but the proposed algo-
rithm can nevertheless show some improvement and in ad-
dition by being optimal it provides a bound on performance.
The new algorithm does not incur any cost on the hardware

Figure 6: Detailing improvement under 50% utiliza-
tion vs. latency/bw requirements

implementation, the disadvantage, if any, is a slight increase
in algorithm running time which is completely negligible if
performed at design time.

6. REFERENCES
[1] The international technology roadmap for

semiconductors, 2009. www.itrs.net.
[2] G. Ascia et al. A new selection policy for adaptive

routing in network on chip. In EHAC, 2006.
[3] L. Benini and G. De Micheli. Networks on chips: a

new SoC paradigm. Computer, 35(1), Jan 2002.
[4] W. J. Dally and H. Aoki. Deadlock-free adaptive

routing in multicomputer networks using virtual
channels. IEEE TPDS, 4(4), 1993.

[5] W. J. Dally and B. Towles. Route packets, not wires:
On-chip inteconnection networks. In DAC, 2001.

[6] J. D. Day and H. Zimmermann. The OSI reference
model. 1995.

[7] A. Hansson. A Composable and Predictable On-Chip
Interconnect. PhD thesis, TU Eindhoven, 2009.

[8] A. Hansson et al. A unified approach to mapping and
routing on a NoC for both best-effort and guaranteed
service traffic. VLSI Design, 2007.

[9] A. Hansson et al. Enabling application-level
performance guarantees in network-based systems on
chip by applying dataflow analysis. IET-CDT, 3(5),
2009.

[10] J. Hu and R. Marculescu. Exploiting the routing
flexibility for energy/performance aware mapping of
regular NoC architectures. In DATE, 2003.

[11] J. Hu and R. Marculescu. DyAD: Smart routing for
networks-on-chip. In DAC, 2004.

[12] J. Liang et al. aSOC: A scalable, single-chip
communications architecture. In PACT, 2000.

[13] J. Liu et al. Interconnect intellectual property for
network-on-chip (NoC). J. Syst. Arch., 2004.

[14] Z. Lu et al. TDM Virtual-Circuit configuration for
Network-on-Chip. TVLSI, 2008.

[15] M. Millberg et al. Guaranteed bandwidth using looped
containers in temporally disjoint networks within the
Nostrum network on chip. In DATE, 2004.

[16] O. Moreira et al. Online resource management in a
multiprocessor with a network-on-chip. In ACM-SAC,
Seoul, Korea, 2007.

[17] A. T. Nelson. Conservative application-level
performance analysis through simulation of a
multiprocessor system on chip. Master’s thesis, TU
Eindhoven, 2009.

[18] S. Stuijk et al. Resource-efficient routing and
scheduling of time-constrained streaming
communication on NoC. J. of Sys. Arch., 2008.

[19] Y. Wang et al. Dynamic TDM virtual circuit
implementation for NoC. In APCCAS, 2008.

