
Architectures and Modeling of Predictable Memory Controllers
for Improved System Integration

Benny Akesson, Kees Goossens
Eindhoven University of Technology

{k.b.akesson, k.g.w.goossens}@tue.nl

Abstract—Designing multi-processor systems-on-chips be-
comes increasingly complex, as more applications with real-
time requirements execute in parallel. System resources, such
as memories, are shared between applications to reduce cost,
causing their timing behavior to become inter-dependent. Using
conventional simulation-based verification, this requires all con-
currently executing applications to be verified together, resulting
in a rapidly increasing verification complexity. Predictable and
composable systems have been proposed to address this problem.
Predictable systems provide bounds on performance, enabling
formal analysis to be used as an alternative to simulation.
Composable systems isolate applications, enabling them to be
verified independently.

Predictable and composable systems are built from predictable
and composable resources. This paper presents three general
techniques to implement and model predictable and composable
resources, and demonstrates their applicability in the context of a
memory controller. The architecture of the memory controller is
general and supports both SRAM and DDR2/DDR3 SDRAM and
a wide range of arbiters, making it suitable for many predictable
and composable systems. The modeling approach is based on
a shared-resource abstraction that covers any combination of
supported memory and arbiter and enables system-level perfor-
mance analysis with a variety of well-known frameworks, such
as network calculus or data-flow analysis.

Index Terms—predictability; composability; memory con-
troller; memory patterns; real-time; SDRAM; arbitration;
latency-rate servers

I. INTRODUCTION

The complexity of Systems-on-Chip (SoC) is increasing, as

a growing number of independent applications are integrated

on a single chip. These applications are mapped on het-

erogeneous multi-processor platforms with distributed shared

memory hierarchies that must strike a good balance between

performance, cost, power consumption and flexibility [1]–[4].

The platforms exploit an increasing amount of application-

level parallelism by enabling concurrent execution of more

and more applications. This results in a large number of

use-cases, which are different combinations of concurrently

running applications [5]. Some applications have real-time

requirements, such as a minimum throughput of video frames

per second, or a maximum latency for processing those video

frames. Real-time requirements are often verified by system-

level simulation at the end of the design process.
To reduce cost, platform resources, such as processors,

hardware accelerators, interconnect, and memories, are shared

between resource requestors, being the processing elements

to which applications are mapped. However, resource sharing

causes interference between requestors, making the timing-

behaviors of applications inter-dependent. This requires that all

applications in a use-case are verified together, which results

in three problems with respect to verification. 1) The number

of use-cases increases rapidly with the number of applications,

forcing industry to reduce coverage and verify only a subset of

use-cases that have the toughest requirements [3], [6]. 2) The

verification of a use-case cannot begin until all applications

it comprises are available. 3) Use-case verification becomes

a circular process that must be repeated if an application

is added, removed, or modified [7]. Together these three

problems contribute to making the integration and verification

process a dominant part of SoC development in terms of both

time and money [1], [7], [8].

We address the verification problem using two complexity-

reducing concepts: predictability and composability [9]. Pre-

dictable systems bound interference between applications.

This enables performance bounds to be provided, such as

upper bounds on latency or lower bounds on throughput. Ap-

plications in predictable systems can hence be independently

verified using formal performance analysis frameworks. The

benefit of formal performance verification is that conserva-

tive performance guarantees can be provided for all possible

combinations of initial states of resources and arbiters, all

input stimuli, and all concurrently executing applications.

The drawback is that formal approaches require performance

models of the software, the hardware, and the mapping [10],

[11], which are not always available.

Composability offers a complementary divide-and-conquer

approach to verification. Applications in a composable system

are completely isolated and cannot affect each other’s tem-

poral behaviors. This means that the interference experienced

by an application is independent of others. Note that with

these definitions predictability does not imply composability

or the other way around [9]. Composable systems address

the verification problem in the following four ways [10]:

1) Applications can be verified in isolation, resulting in a

linear and non-circular verification process [7]. 2) Simulating

only a single application and its required resources reduces

simulation time compared to complete system simulations. 3)

The verification process can be incremental and start as soon

as the first application is available. 4) Intellectual property (IP)

protection is improved, since the verification process no longer

requires the IP of independent software vendors to be shared.

These benefits reduce the complexity of simulation-based

verification, making it a feasible option with a larger number of

applications and inputs. Predictability and composability both

solve important parts of the verification problem and provide

a complete solution when combined.

978-3-9810801-7-9/DATE11/ c©2011 EDAA



Several predictable and/or composable systems have been

proposed, such as Time-Triggered systems [7], Loosely Time-

Triggered systems [12], METERG systems [13], Virtual Pri-

vate Machines [14], PRET Machines [15], the MERASA plat-

form [16], and our CompSoC [10] platform. Predictable and

composable systems are built from predictable and compos-

able resources. The CompSoC platform is a multi-processor

system with predictable and composable processor tiles [17],

memory controllers [18], network-on-chip [19], and operating

system [20] with dynamic voltage and frequency scaling [21].

This paper presents three general techniques to model

and implement predictable and composable shared resources.

1) Combining resources and arbiters, each with predictable

behaviors, resulting in a predictable shared resource for any

combination of resource and arbiter. 2) Turning the predictable

shared resource into a composable shared resource by always

emulating worst-case interference from other requestors, mak-

ing their temporal behaviors independent of each other’s actual

behavior. This implementation of composability is comple-

mentary to conventional techniques based on static-scheduling

and time-division multiplexing (TDM) and more suitable for

certain resources. 3) Using a shared-resource abstraction that

enables system-level performance analysis of the controller

with several well-known frameworks, such as network cal-

culus [22] and data-flow analysis [23], for any combination

of supported resource and arbiter. The techniques are demon-

strated in the context of the CompSoC memory controller,

which supports both SRAM and DDR2/DDR3 SDRAM, and a

wide range of arbiters. The memory controller architecture, the

underlying techniques to achieve predictability and compos-

ability, and the modeling approach are all general and useful

in other predictable and composable systems. Although both

the memory controller architecture and modeling approach

are general and support several memory types, we focus

the discussion on SDRAM, since these memories have three

important characteristics that make the implementation of

predictability and composability challenging. 1) The latency

of requests and the bandwidth offered by the memory are

highly variable and depend on other requestors [24]. 2) Some

memory requestors are latency critical and require low latency

to reduce the number of stall cycles on the processor [4], [25].

3) For cost reasons, SDRAM bandwidth is a scarce resource

that must be efficiently utilized [4], [25], [26].

This paper is organized as follows. Section II reviews

related work on predictable and composable SDRAM con-

trollers. Section III then explains why SDRAM memories are

challenging to use in real-time systems. The architecture of

our predictable and composable memory controller is then

presented in Section IV, followed by a discussion on our

shared-resource abstraction in Section V. Lastly, the paper is

concluded in Section VI.

II. RELATED WORK

Most SDRAM controllers are either statically or dynam-

ically scheduled, depending on the type of systems they

target. Statically scheduled controllers, such as [27], execute

precomputed schedules of SDRAM commands that have been

computed at design time. These controllers are predictable,

since the latency and bandwidth provided to a requestor during

a use-case can be bounded at design time by analyzing the

schedule. These controllers are furthermore composable, since

the schedule is executed in the same manner regardless of the

behavior of the applications. However, the predictability and

composability of these controllers comes at the expense of

flexibility. The precomputed schedules limit the applicability

to applications whose memory behavior can be exactly spec-

ified at design time, which is not the case for more dynamic

input-dependent applications. Furthermore, many schedules

have to be computed and stored, as the number of use-cases

grows rapidly with the number of applications [5].

Dynamically scheduled memory controllers, on the other

hand, schedule SDRAM commands at run-time based on

available requests. These controllers target high efficiency and

flexibility to fit in high-performance systems with dynamic

applications. Several of these controllers feature sophisticated

mechanisms to reduce latency or improve efficiency. Examples

involve preference for requests that target open rows in the

memory banks [28]–[32], or that fit with the current direction

(read/write) of the data bus [30]–[34]. The problem with

these controllers is that the interaction between all these

mechanisms is complex, making the controllers unpredictable.

A predictable dynamically scheduled controller is presented

in [35]. However, this approach is limited to systems that are

performance monotonic [13], meaning that local reductions

in execution time cannot result in longer overall execution

times. It is shown in [36] that this property does not hold

for all systems. Furthermore, no hardware implementation is

provided for this controller. Neither of the mentioned dynami-

cally scheduled memory controllers is composable. Traditional

approaches to dynamic composable resource sharing are based

on TDM [10]. This approach is very inefficient for resources

with highly variable latency, such as SDRAM, especially in

presence of latency-critical requestors [9].

In contrast, this paper presents a hybrid memory controller

that combines aspects of both statically and dynamically

scheduled approaches. The controller implements the three

techniques explained in Section I, resulting in a predictable

and composable controller that is more flexible than traditional

predictable designs and extends composable service to support

any combination of application, predictable resource, and

predictable arbiter. The memory controller architecture and

the techniques to implement and model predictable and com-

posable resources are general and useful in other predictable

and composable systems, such as [7], [12]–[16].

III. SDRAM OVERVIEW

SDRAM memories are challenging to use in systems with

real-time requirements because of their internal architecture.

An SDRAM memory comprises a number of banks, each con-

taining a memory array with a matrix-like structure, consisting

of rows and columns [37]. Each bank has a row buffer that can

hold one open row at a time, and read and write operations are

only allowed to the open row. As an example, a 512 megabit

DDR2-800 [38] chip with a word width of 16 bits has 4 banks,

each with 8192 rows containing 1024 word-sized elements.

The behavior of an SDRAM memory is determined by

the sequence of SDRAM commands that are communicated

from the memory controller to the memory device. These



commands tell the memory to activate (open) a particular

row in the memory array, to read or write a burst to/from

an open row, or to precharge (close) an open row and store its

contents back into the memory array. There is also a refresh

command that charges the capacitors of the memory elements

to ensure that the contents of the memory array are retained.

Scheduling SDRAM commands is not a trivial task, since

there is a considerable number of timing constraints that must

be satisfied before a command can be issued. These timing

constraints are minimum delays between issuing particular

SDRAM commands, such as two activates, or an activate and

a read or a write.

The SDRAM architecture makes the execution time of re-

quests highly variable for three reasons. 1) A request targeting

an open row can be served immediately, while it otherwise

first needs the current row to be closed and the required row

to be opened. 2) The data bus is bi-directional and requires

several cycles to switch from read to write and vice versa. 3)

The memory must occasionally be refreshed before executing

the next request. The impact of these factors may cause the

execution time of an SDRAM burst to vary by an order of

magnitude from a few clock cycles to a few tens of cycles.

IV. MEMORY CONTROLLER ARCHITECTURE

This section presents our memory controller and discusses

the techniques employed to implement predictability and com-

posability. The architecture of the memory controller, shown in

Figure 1, is divided into a front-end and a back-end. The front-

end is independent of memory technology and contains com-

ponents to implement predictable and composable resource

sharing. The back-end interfaces with the actual memory

device and makes it into a predictable resource. The back-

end is hence different for different types of memories, such as

SRAM and SDRAM, as indicated in Figure 1. The components

in the architecture are discussed in more detail throughout

this section. We begin in Section IV-A by explaining how

to make an SDRAM behave like a predictable resource.

Section IV-B then explains how we use this predictability to

provide composable service.

Predictable memories

Latency−rate arbiters

Predictable and composable memory controller

SDRAM back−end

SRAM back−end

Resource front−end

cfg

req. 1

req. 2

R
e

s
o

u
rc

e
 B

u
s

CCSP TDM (W)RR

Memory

Map

Command

Generator

cmd
SDRAM

Configuration Bus

Atomizer

Atomizer
Block

Delay

Block

Delay

Arbiter S
R

A
M

data

cmd

data

S
D

R
A

M

address

logical

address

physical

address

physical

address

logical
Mem. Map

cmd

Fig. 1. Architecture template of predictable and composable memory
controller, supporting two requestors.

A. Predictability

The general technique behind our approach to predictability,

corresponding to the first technique mentioned in Section I,

is based on combining resources and arbiters, each with

predictable behaviors. In the case of a memory, we require

useful bounds on the offered bandwidth and the time to serve

a scheduled request, since these characterize the worst-case

behavior of an unshared memory. We refer to a memory

satisfying this requirement as a predictable memory. A zero-

bus-turnaround SRAM is an example of a trivially predictable

memory, since random access is provided with constant single-

cycle latency. Any off-the-shelf back-end for such a mem-

ory is hence useful with our approach. We also require a

predictable arbiter, where the number of interfering requests

that can be scheduled before a particular request is bounded.

Combining a predictable memory and a predictable arbiter

allows the maximum time to schedule a particular request to

be computed, as later discussed in Section V, thus taking the

effects of sharing the memory into account. Our approach

is hence based on combining independent analyses of the

memory and the arbitration. The strength of this approach is

that it lets us design a general memory controller architecture

and analysis, providing predictable service for any combi-

nation of predictable memory and predictable arbiter. First,

we explain how our SDRAM back-end makes an unshared

SDRAM behave like a predictable memory. We then proceed

by discussing how to share the predictable resource among

multiple requestors.

1) Predictable SDRAM back-end: Our memory controller

uses a hybrid approach to SDRAM command scheduling that

combines elements of statically and dynamically scheduled

SDRAM controllers in an attempt to get the best of both

worlds. The hybrid concept is based on predictable memory

patterns, which are precomputed sequences (sub-schedules) of

SDRAM commands. These patterns are dynamically combined

at run-time by the command generator in the SDRAM back-

end, based on the incoming requests. The memory patterns

exist in five flavors: 1) read pattern, 2) write pattern, 3)

read/write switching pattern, 4) write/read switching pattern,

and 5) refresh pattern. The patterns are automatically gener-

ated [18] at design time based on the timing constraints of

the particular SDRAM device and the bandwidth and latency

requirements of the requestors. All requestors employ the same

set of patterns, although the concept can be generalized to use

different sets per requestor.

The patterns are created such that multiple read or write

patterns can be scheduled in sequence. However, a switching

pattern is required between a read and a write pattern, and

vice versa. The refresh pattern is scheduled periodically and

can be followed by either a read or a write pattern without

a preceding switching pattern. The mapping from requests to

patterns is illustrated in Figure 2.

Bursts /

Banks

Read Read

Read Refresh Write W/R Read Read R/W Write

0 2 31 0 2 31 0 2 31 0 2 31 0 2 31

Write Read WriteRequests

Time

patterns

Memory

Fig. 2. Mapping from requests to patterns to SDRAM bursts.



The read and write patterns consist of a fixed number of

SDRAM bursts, all targeting the same row in a bank. The

bursts are issued to the different banks in sequence, since the

data bus is shared between all banks to reduce the number of

pins on the SDRAM interface. The fixed number of bursts is

hence first sent to the first bank, then to the second, and so

forth until all banks have been accessed, as shown in Figure 2.

The reason to use bank-interleaving memory accesses in our

controller is that they enable bank-level parallelism to be

exploited by issuing activate and precharge commands to the

banks during the intervals in which they are not transferring

data. The read and write patterns are hence very efficient in

terms of bandwidth, since it is possible to hide a significant

part of the latency incurred by activating and precharging rows.

This limits the overhead cycles incurred by always precharging

a bank immediately after it has been accessed, which is

known as a closed-page policy. We implement this policy,

as it effectively removes the dependency on rows opened by

earlier requests by returning the memory to a neutral state after

every access. Removing this dependency between requests is

a key element in our approach, since it reduces the variation

in the offered bandwidth and latency, enabling tighter bounds

on bandwidth and latency to be derived.

The main benefit of memory patterns is that they abstract

SDRAM command scheduling to a higher level. This implies

a reduction of state and constraints that have to be considered,

making our approach easier to analyze than dynamically

scheduled controllers. Memory patterns allow a lower bound

on the offered bandwidth and the time to serve a request to

be determined, since we know the length of each pattern,

how much data they transfer, and how they are dynamically

combined in the worst case [24]. The use of memory pat-

terns hence gives our approach the predictability of statically

scheduled memory controllers. It also has some properties

of dynamically scheduled controllers, such as the ability to

dynamically choose between read and write requests, and

the use of run-time arbitration. This increases flexibility over

traditional predictable designs.

Although bank-interleaving memory accesses allow us to

bound the offered bandwidth, they come with three draw-

backs. The first drawback is that continuously activating and

precharging the banks increases power consumption compared

to if only a single bank is used [26], [39]. The second

drawback is that the memory is accessed with large granularity

and hence requires large requests to be efficient [24]. An

efficient access requires at least one SDRAM burst to every

bank. A typical burst size for SDRAM is eight words and

the number of banks is either four or eight. The minimum

efficient request size for a 16-bit DDR2-800 memory with four

banks is hence 64 B. For requests of this size, our solution

guarantees a bandwidth of at least 1070 MB/s, corresponding

to 66.8% of the peak bandwidth. However, if all requests are

32 B, only 33.4% the peak bandwidth can be guaranteed,

since half of the data in the patterns is discarded. Efficiency

bounds for more DDR2/DDR3 memories and request sizes are

presented in [24]. It is also shown that these bounds are tight.

The final drawback is that working with large requests in a

non-preemptive manner also results in longer latencies [24].

Choosing bank-interleaving memory accesses hence prioritizes

efficiency over latency and power.

Our approach is implemented as an SDRAM back-end, as

shown in Figure 1. The back-end accepts a scheduled request,

and translates the logical address into a physical address (bank,

row, and column) using a bank-interleaved memory map.

A command generator then issues the appropriate memory

patterns and sends the SDRAM commands to the memory

device. The implementation of the back-end is very light

weight and has a small area foot print [40].

2) Predictable arbitration: After the previous section, we

assume that we have a predictable memory, such as an

SRAM or our SDRAM back-end based on predictable memory

patterns, where useful bounds are known on both the offered

bandwidth and the time to serve a request. Next, we consider

the effects of sharing the predictable memory between mul-

tiple requestors using a predictable arbiter. There are many

predictable arbiters described in literature, such as TDM and

round robin (RR). However, most of these arbiters are unable

to provide low latency to critical requestors, making them

unsuitable for memory controllers. This problem is addressed

by priority-based arbitration, although conventional static-

priority scheduling is not starvation-free and cannot be used

to build predictable or composable systems.

To address the issue of latency-critical requestors, we

have developed a Credit-Controlled Static-Priority (CCSP)

arbiter [41]. CCSP has been specially developed to arbitrate

access to highly loaded SoC resources and has a small and

fast hardware implementation [42]. The CCSP arbiter consists

of a rate regulator and a static-priority scheduler. The rate

regulator protects requestors by enforcing an upper bound on

the provided service, according to an allocated budget, which

is determined at design time. The static-priority scheduler

schedules the highest priority requestor that is within its

budget. The combination of rate regulator and static-priority

scheduler makes the arbiter predictable, while still being able

to satisfy the requirements of latency-critical requestors. A

rate regulator creates a separation of concerns and makes

it possible to bound the latency of a requestor in a static-

priority scheduler without relying on the cooperation of higher

priority requestors. However, to be completely robust, we also

need to be independent of the sizes of scheduled requests

to prevent a malfunctioning requestor from preventing access

from others by issuing very large requests. We solve this

problem using preemptive service, which is enabled by the

atomizer [10]. The atomizer splits requests into atomic service

units, referred to as atoms, which are served by the memory

in a known bounded time. Large requests are hence chopped

up in smaller pieces, ensuring that other requestors can access

the resources within a bounded time. The size of the atoms

are fixed and determined at design time. For an SRAM, the

natural service unit is a single word, while it corresponds to the

granularity of a read and write patterns for our pattern-based

SDRAM controller. A benefit of using fixed-sized requests

in the memory controller is that it simplifies the components

in the architecture, resulting in a faster implementation. The

advantage of adding the atomizer as a separate hardware block

in front of the arbiter is that it effectively makes all predictable



arbiters preemptive on the granularity of atoms. This qualifies

any existing predictable arbiter for use with our approach.

The combination of predictable memory and arbiter results

in a predictable shared resource that enables formal perfor-

mance analysis of applications, assuming the existence of a

formal application model. However, some applications have

behaviors that are too complex to accurately express in formal

models, and have to be verified by simulation. To reduce the

verification effort of these applications, our memory controller

also provides composable service, as discussed next.

B. Composability

Composability implies that applications are temporally iso-

lated [7]. The main problem with non-composable resources

and arbitration is that they cause the time to serve a request to

depend on other requestors. This might cause an application

that satisfies its real-time requirements in isolation to miss

deadlines after integration, due to contention for shared re-

sources. This is addressed by the second technique presented

in Section I. The key idea behind this technique is to make the

system composable by delaying all signals sent to the requestor

to emulate maximum interference from other requestors [43].

A requestor hence always receives the same worst-case service

no matter what other requestors are doing, making their

temporal behaviors independent. This particular approach to

composability requires predictability, since it is not possible to

delay signals to the worst case unless it is known and bounded.

The major advantage of this approach is that is extends the

use of composability beyond resources and arbiters that are

inherently composable. Our approach is hence not limited only

to zero-bus-turnaround SRAM controllers, but can capture the

behavior of any predictable resource, such as our proposed

SDRAM back-end based on predictable memory patterns. It

furthermore supports any predictable arbiter, as opposed to

being limited to TDM or static-scheduling, enabling service

differentiation that increases the possibility of satisfying a

given set of requestor requirements. A key benefit is that the

approach does not have any restrictions on the applications.

This ensures that all applications that cannot be formally

verified can be verified independently by simulation with linear

verification complexity.

Our approach to composability is implemented by the delay

block [43], shown in Figure 1. The purpose of the delay block

is to emulate worst-case interference from other requestors

to provide a composable interface towards the atomizer. This

makes the interface of the entire front-end composable, since

the atomizer is not shared. The delay block is composable

if all signals to the atomizer exhibit composable behavior,

which implies that both the response data and the flow-control

signals must emulate maximum interference. This is achieved

by computing the latest possible time this information can be

sent, which is possible for any predictable shared memory.

To provide composable service, a delay block needs infor-

mation about the maximum interference that can be experi-

enced by its requestor. This information is typically different

for all requestors and changes between use-cases. A config-

uration bus is hence present in the architecture, as shown

in Figure 1, that allows the worst-case interference to be

(re-)programmed at run-time.

V. SHARED-RESOURCE ABSTRACTION

To simplify system-level analysis, we use a shared-resource

abstraction that captures the temporal behavior of many differ-

ent resources and arbiter types. This corresponds to the third

technique mentioned in Section I. We have chosen latency-

rate servers [44] (LR) as the shared-resource abstraction for

our system. In essence, a LR server guarantees a requestor

a minimum allocated bandwidth, ρ′, after a maximum service

latency, Θ, as shown in Figure 3. A LR server hence provides

a lower bound on the amount of data that can be transferred

during an interval, making it an abstraction of predictable

service.

A
c
c
u

m
u

la
te

d

d
a

ta

provided service

Clock cycles

requested service

min. provided service

Θ

ρ
′

Fig. 3. The LR server shared-resource abstraction.

The LR server model is very general and applies to a

wide range of shared resources, which is required to capture

a complete system in a single model. The applicability of the

LR model with respect to resources is very good, since it can

be used with any predictable resource. Example uses of the

model in literature involve modeling communication channels

in busses [45] and networks-on-chips [46]. The model also

supports a large number of arbiters. In theory, all predictable

arbiters belong to the class of LR servers, since they guarantee

that a request is scheduled within a maximum latency, making

them starvation free. However, no arbiter truly belongs to

the class until the service latency has been derived, which is

difficult for complex arbiters. The arbiters that belong to the

class of LR servers are hence a subset of the set of predictable

arbiters. It is shown in [44] that many well-known arbiters,

such as Weighted Round-Robin [47] (WRR), Deficit Round-

Robin [48], and several varieties of Fair Queuing [49] are LR
arbiters. Other examples of LR arbiters are TDM [45] and

our priority-based CCSP arbiter [18].

Each requestor in the memory controller has their own

independent LR service guarantee, enabling independent per-

formance analysis using formal methods. The bandwidth al-

located to a requestor is easily determined by comparing the

fraction of allocated service to the total available bandwidth,

which is bounded by definition for predictable resources, such

as our SDRAM back-end. In the general case, the service

latency of a requestor is computed by multiplying the service

latency of the chosen LR arbiter, corresponding to the maxi-

mum number of interfering requests, with the maximum time

to serve a scheduled request, also known for any predictable

resource. However, this results in very pessimistic service

latencies for SDRAM memories where latencies are highly

variable. We show in [24] how to reduce this pessimism by

exploiting that only a small fraction of requests are affected



by refresh and that a relatively long write/read switch has to

be followed by a shorter read/write switch.

A key benefit of the LR server abstraction is that it sup-

ports formal performance analysis using several well-known

frameworks, such as network calculus [22] and data-flow

analysis [23]. Both of these frameworks provide analysis tools

that enable formal verification of real-time requirements and

buffer sizing in systems comprising multiple resources shared

by arbiters in the class of LR servers. The mathematical

formalism of LR servers is designed to fit with the concept

of service curves that are used to characterize applications

in verification approaches based on network calculus, such

as [25], [45], [50]. It also fits with data-flow analysis by

using the data-flow component proposed in [51] that models

the behavior of a LR server. This component enables the

shared resource to be included in a data-flow graph that

represents both the task graph of the application and the

platform resources it uses in a single framework, as done

in [46], [52].

VI. CONCLUSIONS

The verification complexity of real-time systems-on-chip

is increasing. Predictable and composable systems have been

proposed to address this problem, since they enable formal

verification of real-time requirements and independent appli-

cation verification by simulation, respectively.

This paper presents three general techniques to implement

and model predictable and composable shared resources. 1)

Combining resources and arbiters, each with predictable be-

haviors, resulting in a predictable shared resource for any

combination of resource and arbiter. 2) Turning the predictable

shared resource into a composable shared resource by al-

ways emulating worst-case interference from other applica-

tions, thus decoupling their actual behaviors. This approach

extends composable service to support any combination of

application, predictable resource, and predictable arbiter. 3)

Using a shared-resource abstraction that enables system-level

performance analysis of the controller with several well-known

frameworks, such as network calculus or data-flow analysis.

The techniques are demonstrated in the context of a general

predictable and composable memory controller architecture,

supporting both SRAM and DDR2/DDR3 SDRAM and a wide

range of arbiters. The memory controller architecture as well

as the techniques to implement and model predictability and

composability are general and useful in many other predictable

and composable systems.

REFERENCES

[1] “International Technology Roadmap for Semiconductors (ITRS),” 2009.
[2] C. van Berkel, “Multi-core for Mobile Phones,” in Proc. DATE, 2009.
[3] P. Gumming, “The TI OMAP Platform Approach to SoC,” Winning the SoC

revolution: experiences in real design, 2003.
[4] P. Kollig et al., “Heterogeneous Multi-Core Platform for Consumer Multimedia

Applications,” in Proc. DATE, 2009.
[5] A. Hansson et al., “Undisrupted Quality-Of-Service during Reconfiguration of

Multiple Applications in Networks on Chip,” in Proc. DATE, 2007.
[6] L. Steffens et al., “Real-Time Analysis for Memory Access in Media Processing

SoCs: A Practical Approach,” Proc. ECRTS, 2008.
[7] H. Kopetz et al., “The time-triggered architecture,” Proc. IEEE, vol. 91, no. 1,

2003.
[8] R. Saleh et al., “System-on-chip: Reuse and integration,” Proc. IEEE, vol. 94,

no. 6, 2006.

[9] B. Akesson et al., “Composability and predictability for independent application
development, verification, and execution,” in Multiprocessor System-on-Chip —
Hardware Design and Tool Integration. Springer, 2010, ch. 2.

[10] A. Hansson et al., “CoMPSoC: A template for composable and predictable multi-
processor system on chips,” ACM TODAES, vol. 14, no. 1, 2009.

[11] E. A. Lee, “Absolutely positively on time: what would it take?” IEEE Trans.
Comput., vol. 38, no. 7, 2005.

[12] A. Benveniste, “Loosely time-triggered architectures for cyber-physical systems,”
in Proc. DATE, 2010.

[13] J. Lee et al., “METERG: Measurement-Based End-to-End Performance Estimation
Technique in QoS-Capable Multiprocessors,” in Proc. RTAS, 2006.

[14] K. J. Nesbit et al., “Multicore resource management,” IEEE Micro, vol. 28, no. 3,
2008.

[15] S. Edwards et al., “The Case for the Precision Timed (PRET) Machine,” in Proc.
DAC, 2007.

[16] T. Ungerer et al., “Merasa: Multicore Execution of Hard Real-Time Applications
Supporting Analyzability,” IEEE Micro, vol. 30, no. 5, 2010.

[17] A. Molnos et al., “A Composable, Energy-Managed, Real-Time MPSOC Plat-
form,” in Proc. OPTIM, 2010.

[18] B. Akesson, “Predictable and Composable System-on-Chip Memory Controllers,”
Ph.D. dissertation, Eindhoven University of Technology, 2010.

[19] K. Goossens et al., “The aethereal network on chip after ten years: Goals,
evolution, lessons, and future,” in Proc. DAC, 2010.

[20] A. Hansson et al., “Design and Implementation of an Operating System for
Composable Processor Sharing,” MICPRO, 2011, Elsevier.

[21] K. Goossens et al., “Composable dynamic voltage and frequency scaling and power
management for dataflow applications,” in Proc. DSD, 2010.

[22] R. Cruz, “A calculus for network delay. I. Network elements in isolation,” IEEE
Trans. Inf. Theory, vol. 37, no. 1, 1991.

[23] S. Sriram et al., Embedded multiprocessors: Scheduling and synchronization.
CRC, 2000.

[24] B. Akesson et al., “Classification and Analysis of Predictable Memory Patterns,”
in Proc. RTCSA, 2010.

[25] P. van der Wolf et al., “SoC Infrastructures for Predictable System Integration,”
in Proc. DATE, 2011.

[26] D. Dunning et al., “Tera-Scale Memory Challenges and Solutions,” Intel Technol-
ogy Journal, vol. 13, no. 4, 2009.

[27] S. Bayliss et al., “Methodology for designing statically scheduled application-
specific SDRAM controllers using constrained local search,” in Proc. FPT, 2009.

[28] O. Mutlu et al., “Parallelism-Aware Batch Scheduling: Enabling High-Performance
and Fair Shared Memory Controllers,” IEEE Micro, vol. 29, no. 1, 2009.

[29] J. Shao et al., “A burst scheduling access reordering mechanism,” in Proc. HPCA,
2007.

[30] C. Macian et al., “Beyond performance: Secure and fair memory management for
multiple systems on a chip,” in Proc. FPT, 2003.

[31] W.-D. Weber, Efficient Shared DRAM Subsystems for SOCs, Sonics, Inc, 2001.
[32] K. Lee et al., “An efficient quality-aware memory controller for multimedia

platform SoC,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 5, 2005.
[33] S. Heithecker et al., “Traffic shaping for an FPGA based SDRAM controller with

complex QoS requirements,” in Proc. DAC, 2005.
[34] A. Burchard et al., “A real-time streaming memory controller,” in Proc. DATE,

2005.
[35] M. Paolieri et al., “An Analyzable Memory Controller for Hard Real-Time CMPs,”

Embedded Systems Letters, IEEE, vol. 1, no. 4, 2009.
[36] T. Lundqvist et al., “Timing anomalies in dynamically scheduled microprocessors,”

in Proc. RTSS, 1999.
[37] B. Jacob et al., Memory systems: cache, DRAM, disk. Morgan Kaufmann, 2007.
[38] DDR2 SDRAM Specification, JESD79-2F ed., JEDEC Solid State Technology

Association, 2009.
[39] “Calculating Memory System Power for DDR2,” Micron Technology Inc., Tech.

Rep., 2005, TN-47-04.
[40] B. Akesson et al., “Predator: a predictable SDRAM memory controller,” in Proc.

CODES+ISSS, 2007.
[41] ——, “Real-Time Scheduling Using Credit-Controlled Static-Priority Arbitration,”

in Proc. RTCSA, 2008.
[42] ——, “Efficient Service Allocation in Hardware Using Credit-Controlled Static-

Priority Arbitration,” in Proc. RTCSA, 2009.
[43] ——, “Composable Resource Sharing Based on Latency-Rate Servers,” in Proc.

DSD, 2009.
[44] D. Stiliadis et al., “Latency-rate servers: a general model for analysis of traffic

scheduling algorithms,” IEEE/ACM Trans. Netw., vol. 6, no. 5, 1998.
[45] J. Vink et al., “Performance analysis of SoC architectures based on latency-rate

servers,” Proc. DATE, 2008.
[46] A. Hansson et al., “Enabling application-level performance guarantees in network-

based systems on chip by applying dataflow analysis,” IET CDT, 2009.
[47] M. Katevenis et al., “Weighted round-robin cell multiplexing in a general-purpose

ATM switch chip,” IEEE J. Sel. Areas Commun., vol. 9, no. 8, 1991.
[48] M. Shreedhar et al., “Efficient fair queueing using deficit round robin,” in Proc.

SIGCOMM, 1995.
[49] H. Zhang, “Service disciplines for guaranteed performance service in packet-

switching networks,” Proc. IEEE, vol. 83, no. 10, 1995.
[50] T. Henriksson et al., “Network calculus applied to verification of memory access

performance in SoCs,” in Proc. ESTIMEDIA, 2007.
[51] M. H. Wiggers et al., “Modelling run-time arbitration by latency-rate servers in

dataflow graphs,” in Proc. SCOPES, 2007.
[52] S. Stuijk et al., “Multiprocessor resource allocation for throughput-constrained

synchronous dataflow graphs,” in Proc. DAC, 2007.


