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Abstract A growing number of applications are integrated on the same System on Chip in
the form of hardware and software Intellectual Property (IP). Many applications have firm
or soft real-time requirements and require bounds on latency and throughput. To accommo-
date the growing number of application requirements, the on-chip interconnect must offer
scalability on the physical, architectural and functional level.

Networks on Chip (NoC) are proposed as a scalable communication architecture that is
also able to deliver guaranteed performance. Traditionally, NoCs focus on delivering phys-
ical and architectural scalability. The functional scalability, i.e. the ability to satisfy an in-
creasing number of increasingly demanding requirements with a constant cost/performance
ratio, is often overlooked. The onus is on the interconnect design flow that translates user
requirements to an interconnect instance. While mature tooling exists for many of the IPs,
interconnect design flows are an active research area, with few concrete examples, and few
large-scale case studies.

As the main contribution of this work, we demonstrate a complete operational intercon-
nect design flow for multiple real-time applications, and quantitatively evaluate the func-
tional scalability on two large-scale industrial case studies. We illustrate the steps of the
flow, going from requirement specification all the way to simulation of synthesised netlists
in a 90 nm and 65 nm low-power standard-cell technology. We show that the interconnect
and design flow offer scalability, on the physical, architectural as well as the functional level.
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1 Introduction

Systems on Chip (SoC) grow in complexity with an increasing number of independent ap-
plications on a single chip [67]. The applications are realised by hardware and software
Intellectual Property (IP), e.g. processors and application code, and many applications have
real-time requirements on their end-to-end behaviour [15]. One of the major challenges in
SoC design is ensuring that all application real-time requirements are fulfilled under all cir-
cumstances [25]. In a firm real-time application, such as a software-defined radio [53], dead-
line misses are highly undesirable due to standardisation, e.g. upper bounds on the response
latency in wireless standards, or steep quality reduction in the case of misses. Soft real-time
applications, e.g. an MPEG-2 decoder [55], can tolerate occasional deadline misses with
only a modest quality degradation. The growing number of applications and the increasing
requirements require a system architecture that is scalable on the physical, architectural and
functional level [39].

Networks on Chip (NoC) are proposed to overcome the scalability issues of traditional
interconnects like crossbars and buses [18]. NoCs address the physical scalability by split-
ting the interconnect into multiple segments with relaxed timing requirements [16, 64] and
offer architectural scalability through a structured and modular architecture [6]. It is thus
possible to implement a network that scales with the number of IPs in the design [43, 72].
NoCs also offer guaranteed services, i.e. latency and throughput bounds, through various
resource-reservation schemes [3, 9, 26, 40, 45, 50, 59, 60, 66, 74]. However, physical and
architectural scalability coupled with the availability of guaranteed services does not neces-
sarily imply that the interconnect scales with increasing requirements.

The difference between architectural scalability and functional scalability lies in the abil-
ity to not only provide a hardware capability, but actually translate that capability into useful
work, i.e. satisfied requirements. Compare this situation to e.g. a modern general-purpose
multi-core computer architecture where advanced compiler technology is needed to exploit
the hardware [20]. Similarly for a NoC, we need design tools that can turn requirements
into an interconnect instance. While mature tooling exists for the computation and storage
elements of the SoC, interconnect design tools is an active research area [25]. Compared to
traditional interconnects, a NoC is typically tailored for a given set of applications, and one
of the more complex parts of the SoC. As such, it also plays an important role in defining
the area and power consumption, and design effort of the overall system [48]. Thus, a oper-
ational tool flow is a critical, but often overlooked, part of on-chip interconnect design, and
key to functional scalability.

As the main contributions of this work, we: (1) describe a complete design flow to in-
stantiate and verify application-specific interconnect instances, (2) quantitatively evaluate
the entire architecture and design flow using the communication requirements of two large-
scale industrial case studies, and (3) investigate the functional scalability of the proposed
interconnect by looking at the cost/performance ratio of hundreds of complete interconnect
instances as the requirements change. Our two examples are both high-end chips with a
high degree of IP integration. The first example resembles a digital TV set-top box ASIC
in the line of designs described in [24, 41]. The second example is based on an automotive
info-tainment ASIC [51, 61]. In both examples, the architecture consists of one or more mi-
crocontrollers, supported by several domain- or function-specific hardware cores, needed to
achieve a high computational performance at an acceptable power consumption.

The remainder of this paper is structured as follows. First we review related work in
Sect. 2, also highlighting the important properties of our interconnect architecture. Then,
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Sect. 3 gives an overview of the proposed design flow, using the digital TV SoC as the run-
ning example. We continue with an in-depth evaluation of the TV SoC in Sect. 4, followed
by the automotive system in Sect. 5. Finally, we conclude in Sect. 6.

2 Related work

We review related work in a bottom-up fashion, based on the levels of scalability. First, we
look at how different interconnects address physical scalability, i.e. the ability to scale the
interconnect to larger die sizes (transistor count, wire delay) without impairing the perfor-
mance. Thereafter we raise the level and look at architectural scalability, i.e. the ability to
add more IPs without negatively affecting the performance. Lastly, we turn to the functional
scalability, i.e. the ability to translate a growing number of (more demanding) application
requirements into a hardware and software interconnect instance.

2.1 Physical scalability

Many networks [26, 45, 50, 60] rely on a (logically) globally synchronous clock. While
techniques such as link pipelining have been proposed to overcome link latency [64, 70],
the cycle-level synchronicity severely constrains the clock distribution [78] and negatively
affects the scalability [12]. A range of asynchronous networks [3, 10, 66] completely re-
move the need for a clock, and aim to leverage the characteristics of asynchronous circuits
to reduce power and electromagnetic emissions. While offering physical scalability, these
networks rely on not yet well-established design methodologies and verification techniques.
They also complicate the provision of guaranteed services. To overcome the disadvantages
of global synchronicity, but still enable a traditional synchronous design style, the networks
in [12, 27, 36, 47, 59, 75, 78] use mesochronous links between synchronous network el-
ements. By allowing local phase differences, clock distribution and placement is greatly
simplified [78]. Moreover, the global phase difference is allowed to grow with chip size.

The constraints on the clock distribution within the interconnect apply also to the (global)
control infrastructure. Thus, dedicated interconnects [49, 80] that rely on global synchronic-
ity impair the overall physical scalability and must be avoided. By reusing one and the same
interconnect for both user data and control, as proposed in [28, 60], the problem is reduced
to providing one scalable interconnect.

In addition to relaxing the constraints on the clock distribution within the interconnect
and control infrastructure, it is crucial for physical scalability that IPs are able to use inde-
pendent clocks (from each other as well as the interconnect). While asynchronous networks
natively offer a Globally Asynchronous Locally Synchronous (GALS) design approach at
the IP level, e.g. through the use of pausable clocks [4], synchronous and mesochronous
networks must add Clock Domain Crossings (CDC) at the interfaces to the IPs. Solutions
based on bi-synchronous FIFOs are proposed in [11, 26, 29, 59]. Such a clock domain cross-
ing, e.g. [76], is robust with regards to metastability and offers a simple protocol between
synchronous modules, while still allowing every module’s frequency and voltage to be set
independently [42].

In this work we use the logically synchronous Zthereal [26] network with mesochronous
links [34]. Figure 1 shows a part of an example instance showing the architectural building
blocks, e.g. routers (R), Network Interfaces (NI), shells, and buses. The blocks are presented
in detail in [29] and we return to discus their functionality in Sect. 3.1. The mesochronous
(and possibly pipelined) links inside the network alleviate the designer from strict require-
ments on clock skew and link delay, thus enabling an effective distributed placement of the
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Fig. 1 Interconnect architecture overview

network components even for larger die sizes. Furthermore, clock domain crossings between
the network and the IPs enable a GALS design approach. The same interconnect is used for
both data and control, as described in [28].

2.2 Architectural scalability

In bus-based interconnects, e.g. the Silicon Backplane [79], the performance decreases as
the amount of sharing increases. In crossbar-based interconnects, e.g. Prophid [44], a grow-
ing number of IPs lead to a rapid growth in silicon area and wire density. This in turn causes
layout issues (e.g. timing and packing) and negatively affects performance [64]. Although
the problem can be mitigated by using a partial crossbar [54], the key to architectural scala-
bility is a distributed multi-hop interconnect.

In a multi-hop interconnect, e.g. Sonics MX [69] that uses a hybrid shared-bus and cross-
bar approach, the individual buses and crossbars are not scalable on their own. Rather, the
architectural scalability comes from the ability to arbitrarily add more buses and crossbars
without negatively affecting the performance of other parts of the interconnect. A segmented
bus [16, 62] achieves architectural scalability by partitioning a bus into two or more seg-
ments, operating in parallel, and connected by bridges. NoCs extend on the concepts of
segmented buses and offer a structured approach to multi-hop interconnects [6, 18].

From the perspective of architectural scalability, there is an important distinction to be
made between NoCs where arbitration is performed at every hop (routers), e.g. [3, 10, 59,
64, 66] and those where arbitration only takes place only at the edges (NIs) of the network,
as done in Nostrum [50], aSoC [45], ZEthereal [26], and TTNoC [60]. The works in [3, 10,
59, 64, 66] use virtual channels to provide connection-based services. As a consequence, the
router area grows quadratically with the number of connections passing through the router.
Moreover, the maximum frequency of the router is also reduced, and the router is likely
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to be part of the critical path of the network. In contrast to the NoCs that rely on virtual
channels, the NoCs in [26, 45, 50, 60] all have stateless [71] routers. Thus, the router is
independent of the number of connections in terms of area (number and depth of buffers)
and speed (arbitration). This moves the router out of the critical path and pushes the issue of
scalability to the NIs, which can be heavily pipelined without being in the critical path [29].

In this work we use a small and fast router design [34], with no restrictions on the net-
work topology. The architectural scalability stems from the ability to arbitrarily add more
links, routers, NIs, shells and buses without negatively affecting the services of the existing
components [29]. Memory-mapped initiator ports that use distributed memory communica-
tion, e.g. the ARM in Fig. 1, may even use different NIs for the connections to different
targets. Similarly, a memory-mapped target port that is shared by multiple initiators may
distribute the connections across multiple NIs. Thus, as we shall see in Sects. 4 and 5, it is
possible to push the point of contention all the way to the IP ports and offer arbitrarily low
latency and high throughput in the interconnect, limited only by the intrinsic throughput and
latency of a single link.

2.3 Functional scalability

Much work focus on generating, exploring, evaluating, formalising, and comparing NoC ar-
chitectures and instantiations [2, 5, 8, 14,22, 25, 38, 39, 45, 48, 52, 63]. However, only a few
works address guaranteed services [25, 39, 45], and most works are limited to evaluations
of a single small-scale example, or only a few steps of the design flow, as exemplified by the
overview in [48]. Moreover, the evaluation of the design flows is predominantly done using
high-level simulation or analytical models rather than actual implementations.

A few NoC design flows have been demonstrated on FPGA [2, 22, 33, 43, 52], predomi-
nantly using simple media-centric applications like M-JPEG [33] and MPEG-2 [43]. In ad-
dition to FPGAs, complete NoC-based SoC ASICs are presented in [7, 17, 72] together with
a post-layout evaluation. However, neither of the works evaluate the scalability and instead
focus on a single design point. Moreover, rather than considering the IPs given, the works
in [2, 22, 43, 52, 72] customise the entire system to fit with the NoC, e.g. by modifying the
IPs [43] or adding NoC-specific instructions [72]. In an industrial context this is often not
possible and the interconnect has to accommodate a wide range of IP interfaces [29]. Most
works also do not provide any real-time guarantees.

A number of works move from the architecture and connection level and look at perfor-
mance analysis of actual applications when mapped to the NoC [13, 35, 68]. By modelling
the applications, the works also solve the problem of buffer sizing, which is closely linked
to the end-to-end performance requirements. Probabilistic analysis, using stochastic self-
similar traffic models, is used in [13, 68], whereas [35] is based on dataflow models and
analysis proposed in [77]. The two approaches are complementary and can be used in par-
allel in our current work, depending on the application. All works [13, 35, 68] focus on
application models and buffer sizing and do not discuss the implications on scalability.

The composable and predictable multi-processor SoC presented in [33] demonstrates an
interconnect design flow, based on [25], that is able to provide real-time guarantees, also on
the application level [35]. The work focuses on the qualitative concepts and studies a few
applications in detail. No evaluation is made of the scalability in terms of requirements.

In this work, we focus on quantitatively proving functional scalability of NoC design,
using large-scale examples that represent state-of-the-art SoCs for consumer multimedia
applications. We consider the IPs and the requirements given and demonstrate a complete
flow that is able to satisfy the real-time requirements. Using the examples, we evaluate the
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Fig. 2 Interconnect hardware and software design flow

quantitative aspects of the proposed interconnect and also look in greater detail on the scal-
ability of the hardware architecture as well as the design flow, about which more presently.

3 Design flow

One of the main contributions of this work is the design flow depicted in Fig. 2, introduced
here and discussed in detail in Sects 3.1 through 3.4. Note that many of the steps are previ-
ously published in part, but no complete overview is given, and the design flow as a whole
is not evaluated. In the figure, white boxes denote specifications (stored in XML files [23])
and the grey boxes denote (collections of) tools that manipulate the specifications. As shown
in the figure, the flow takes as its starting point the specification of the physical interfaces
that are used by the IPs, i.e. everything outside the interconnect in Fig. 1. An example (based
on the digital TV SoC in Sect. 4) is shown in Listing 1. The specification starts by declar-
ing the clocks, giving them symbolic names and setting the period (in ns). This is followed
by the various IPs and their ports. Each IP (and potentially port) either specifies a clock
name (as done by U2 on line 17) or uses the default global clock (like the host). A port
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l<architecture id="85500_inspired >

2  <!— Global parameters —>

3 <parameter id=’clk’ type="string ’ value=’global_533MHz’/>
4

5 <!— Clocks (period in ns) —>

6 <clk id="global_533MHz’ period="1.87" />

7 <clk id="tm_450MHz’ period="2.19" />

8 <clk id=’vid_200MHz’ period="5" />

9 <clk id="mem_200MHz’ period=’'5" />

10 ..

12 <!— IPs (port width in bits) —>
13 <ip id="host’ type="Host’ >

14 <port id="pi’ type=’Initiator ’ protocol="MMIO_DTL’ />
15  </ip>

16 <ip id="U2" type="I1P >

17 <parameter id=’clk’ type=’string ’ value='vid_200MHz’ />
18 <port id="sl’ type=’Initiator ’ protocol="MMIO_DTL’ />
19 <port id="s2’ type=’Initiator ° protocol="MMIO_DTL’ >

20 <parameter id=’width’ type="int’ value="8" />

21 </port>

22

23 </ip>

24  <ip id="mem_ddr’ type="IP’>

25 <parameter id=’clk’ type=’'string ’ value='mem 200MHz’ />
26 <port id="pl’ type=’Target’ protocol="MMIO_DTL’ >

27 <parameter id=’width’ type=’"int’ value="64" />

28 </port>

29 <port id="p2°’ type=’Target’ protocol="MMIO_DIL’ />

31 </ip>

32 ...

33

34 <!— Placement constraints (as regular expressions) ——>

35 <constraint id=’groupl’ port="U2.x" />

36 <constraint id="group2’ port="mem_ddr.x’ nis="NIx(012)yOn[0—1]"/>
37 ...

38 </architecture >

Listing 1 Architecture specification

specifies whether it is an initiator or a target, and what protocol it uses [1, 19, 57]. A data
width of 32 bits is assumed for the ports unless the default is overridden by a parameter (line
21 and 27). The last part of the user architecture specification is the placement constraints
that enable the user to group IP ports and thereby enforce a common NI (selected from a
subset that can also be specified). The constraints use regular expressions to specify both the
ports and the NIs (as shown on line 36).

The architecture description is complemented by the communication requirements of the
applications, specified per application as a set of logical interconnections between IP ports,
each with bounds on the maximum latency and minimum throughput. Listing 2 shows a sub-
set of the connections for the digital TV SoC. Each connection is assigned a logical identifier
and specifies which initiator port and target port it connects. The temporal behaviour is spec-
ified separately for reads and writes (both or only one as shown on line 23). In both cases,
the throughput specification is given in Mbyte/s and the latency requirement in ns. Together
with the ports’ protocol, the (minimum) burst size (given in bytes) is used to bound the
overhead of the interconnect serialisation, as we shall see in Sect. 3.2. The last part of the
communication specification is the use-case constraints, determining how the applications
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l<communication>

2 <!'— Applications —>

3 <application id=’storage >

4 <connection id=’0’>

5 <initiator ip=’U2" port="sl’ />

6 <target ip="mem_ddr’ port="pl’ />

7 <read bw=’150" burstsize='256" latency="1500" />
8 <write bw="100" burstsize="256" latency="900" />
9 </connection>

10 <connection id=’1’>

11 <initiator ip='U2" port='s2" />

12 <target ip="mem_ddr’ port="pl’ />

13 <read bw="100" burstsize="256" latency="1500" />
14 <write bw="100" burstsize="256" latency="900" />
15 </connection >

16

17 </application >

18

19 <application id=’vid_dec’>

20 <connection id=’0’>

21 <initiator ip='vliw’ port="instr’ />

22 <target ip="mem2_ddr’ port="ptm’ />

23 <read bw="50" burstsize="128" latency='50" />
24 </connection >

25

26 </application >

27

28 <!— Use—case constraints —>

29 <constraint type="allow’ appl=’storage’ with=".%" />
30 <constraint type=’allow’ appl="vid_dec’ with=".%x" />
31 ...

32 </communication>

Listing 2 Communication specification

may be combined temporally. In this example, all applications are assumed to be running
concurrently (e.g. allow to run with all on line 29 and 30), but it is possible to benefit from
mutually exclusive applications [31].

The architecture and communication specification are assumed to be given by the ap-
plication and system designer, referred to as the user in Fig. 2. The interface specifications
follow directly from the choice of IPs, and the use-case constraints are part of the early sys-
tem design. It is less obvious, however, where the temporal requirements on the interconnect,
i.e. the latency and throughput requirements of the connections, stem from. Depending on
the application, the desired throughput and latency may be analytically computed [35], the
outcome of high-level simulation models of the application, or simply guesstimates based
on back-of-the-envelope calculations or earlier designs [41]. The design flow makes no dis-
tinction of the real-time character, e.g. if the requirement reflects an average case or a worst
case. The requirement will be satisfied (assuming the IPs have the right characterisation)
and the interconnect is robust with respect to potential over-asking from the IPs.

Section 3.1 begins our bottom-up description of the design flow, introducing the design-
time dimensioning of the interconnect. This is followed by a discussion on the compile-time
allocation of resources in Sect. 3.2. Section 3.3 describes how the resources and allocations
come together in an instantiation at run time. Next, Sect. 3.4 outlines how the intercon-
nect hardware and software comes together in an analysis model, and how it is applied in
buffer sizing and formal verification of the end-to-end application behaviour. Throughout
the design flow, there are many opportunities for successive refinement, as indicated by the

@ Springer



A quantitative evaluation of a Network on Chip design flow 167

iteration in Fig. 2. Iteration is either a result of failure to deliver on requirements or a re-
sult of cost assessment, e.g. silicon area or power consumption. It is also possible that the
specification of requirements changes as a result of the final evaluation. The outcome of the
proposed design flow is a complete SoC interconnect architecture (hardware) and a set of
resource allocations (software) that together implement the requirements specified by the
user. As we shall see plenty examples of in Sects. 4 and 5, the resulting platform is instan-
tiated (in SystemC or synthesisable HDL), together with the software libraries required to
configure and orchestrate use-case switches (in Tcl or ANSI C).

3.1 Dimensioning

The dimensioning constitutes Step 1 in Fig. 2 and is responsible for adding and connect-
ing hardware resources, pushing the complexity of allocating and using the resources to
the later parts of the design flow. Nevertheless, the dimensioning is split into three steps,
corresponding to three tools in the design flow.

The first step of the dimensioning (busdim) bridges between the network and the IP
ports by dimensioning buses together with atomisers and protocol shells, i.e. everything
belonging to the interconnect but not the network in Fig. 1. Initiator and target buses are
added to the IPs that make use of shared and distributed memory, respectively. The dimen-
sioning of these buses is driven by the maximum number of concurrent connections for the
IPs (based on the communication requirements). In Fig. 1, for example, the ARM has two
concurrent connections to distributed memories, and the SRAM is shared by two concurrent
connections. Shells are added based on the IP port protocol and the atomisers are placed
in front of shared target ports (in combination with initiator buses) to ensure a fixed burst
size [29]. Clock domain crossings are inserted where necessary. Listing 3 shows examples
of the modules that are added to the architecture, all described in more depth in [29]. Note
that the entire specification from Listing 1 is still included and the interconnect components
are appended. The initiator bus (line 21) serves to exemplify a parametrisable IP. The ports
of the initiator bus also show how identifiers are added to distinguish between the ports. At
this point, the architecture also contains a number of connects, representing wires between
two (compatible) ports.

The following step (netwdim) dimensions the network topology, adding the NIs, the
routers and links, as shown in Listing 4. This step is based on a user specification of the
router topology, the link pipeline stages and the number of NIs per router. As detailed
in [34], the network uses three-word flits, wormhole switching and source routing. A few
basic topology types, e.g. meshes, tori and rings, are supported by the dimensioning to sim-
plify the task. It is possible to customise the output or to specify a fully custom topology
by editing the XML file. The resource allocation guarantees deadlock freedom both on the
network and transaction level [32]. Note that the NIs, at this point, are connected to a router
and have a control port, but no ports connecting them to the IPs.

The final part of the interconnect dimensioning is the addition of the control infrastructure
(ctrldim), as shown in Listing 5. One control bus (line 28) is instantiated for each NI and
the control ports of all (user and interconnect) IPs are connected to the control buses. The
necessary ports are added to the NIs (line 8 to 15), and shells are added to connect the
FIFO ports of the NIs and the memory-mapped ports of the control buses. The appropriate
connects are added to enable a host IP access to the control infrastructure and the address
map of the control buses is determined according to user specification. This step also adds
control connections to the communication requirements [28]. The control connections are
automatically added as an independent application (not shown for brevity) and allocated
resources like any user connection by the succeeding steps of the design flow.
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l<architecture id="85500_inspired >
<!— Everything from Listing 1 —>

<!— Shells —>

<ip id="U2_s1_shell’ type="TrgtShell ">
<parameter id=’clk’ type=’string ’ value=’vid_200MHz’ />
<port id="pt’ type=’'Target’ protocol="MMIO_DIL* />
<port id="pst’ type='Target’ protocol="FIFO_AE’ />

10 <port id=’psi’ type=’Initiator ’ protocol="FIFO_AE’ />

11 </ip>

12 <ip id="U2_s2_shell’ type="TrgtShell ’>

13 <parameter id="clk’ type=’string ’ value=’'vid_200MHz’ />
14 <port id="pt’ type=’'Target’ protocol="MMIO_DIL’ />

15 <port id="pst’ type=’Target’ protocol="FIFO_AE’ />
16 <port id="psi’ type=’'Initiator ’ protocol="FIFO_AE’ />
17 </ip>

18 ...

19

20 <!— Buses —>

21 <ip id="mem_ddr_pl_bus’ type=’InitBus’'>

22 <parameter id=’clk’ type=’string ’ value="mem_200MHz’ />
23 <parameter id="arbiter’ type=’string’ value="CCSP’ />
24 <port id="pi’ type=’Initiator ’ protocol="MMIO_DTL’ />
25 <port id="pt0’ type=’'Target’ protocol="MMIO DIL’ >

26 <parameter id=’portid’ type="int’ value="0" />

27 </port>

28 <port id="ptl’ type="Target’ protocol="MMIO_DTL >

29 <parameter id=’portid’ type="int’ value="1" />

30 </port>

31

32 </ip>

3 ...

34

35 <!— Clock domain crossings —>

36 <ip id="mem_ddr_pl_bus_ptl_shell_pst_cdc’ type="CDC >
37 <port id="psi’ type=’Initiator ’ protocol="FIFO_AE’>
38 <parameter id=’clk’ type=’string ’ value="mem_200MHz’ />
39 </port>

40 <port id='pst’ type=’Target’ protocol="FIFO_AE’ />
41  </ip>

42 ...

43

44  <l— Connects —>

45 <connect>

46 <endpoint ip="mem_ddr_pl_bus’ port="pi’ />

47 <endpoint ip="mem_ddr’ port="pl’ />

48 </connect>
49 <connect>

50 <endpoint ip="mem_ddr_pl_bus_ptO_shell * port="pi’ />
51 <endpoint ip="mem_ddr_pl_bus’ port="pt0’ />

52 </connect>

53

54 </architecture >
Listing 3 Architecture with shells and buses
At this point, the streaming ports of the IPs and shells are not yet connected to NIs.

It is more efficient to do the mapping of IPs to NIs as part of the path finding and slot
allocation [30] and we therefore delay this step, about which more next.
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l<architecture id="85500_inspired >

2 <!— Everything from Listing 3 —>

3

4

5 <!— Routers —>

6 <ip id="Rx0y0’ type='Router’>

7 <port id="p0O_in’ type=’Target’ protocol="FLIT_AE’>
8 <parameter id=’portid’ type="int’ value="0" />

9 </port>

10 <port id="pO_out’ type=’Initiator ’ protocol="FLIT_AE’>
11 <parameter id=’portid’ type="int’ value="0" />

12 </port>

13 <port id="pl_in’ type=’Target’ protocol="FLIT_AE’>
14 <parameter id=’portid’ type="int’ value="1" />

15 </port>

16 <port id="pl_out’ type=’Initiator '’ protocol="FLIT_AE’>
17 <parameter id=’portid’ type=’int’ value="1" />

18 </port>

19

20 </ip>

21

22

23  <!— Pipelined links —>

24  <ip id="Rx0y0_pl_out_0’ type=’'Link’>

25 <port id="trgt’ type=’Target’ protocol="FLIT_AE’ />
26 <port id="init’  type='Initiator > protocol="FLIT_AE’ />
27 <lip>

28

29

30 <!— NIs —>

31 <ip id="NIx0yOn0’ type="NI">

32 <port id="pO0_in’ type=’Target’ protocol="FLIT_AE’ />
33 <port id="pO_out’ type=’Initiator ’ protocol="FLIT_AE’ />
34 <port id="pgm’ type='Target’ protocol="MMIO_DTL’ />
35 </ip>

36

37

38 <!— Connects —>

39 <connect>

40 <endpoint ip="Rx0y0’ port="pO_out’ />

41 <endpoint ip="Rx0yl’ port="pO_in" />

42  </connect>

43 <connect>

44 <endpoint ip="NIxOyOnO’ port="pO_out’ />

45 <endpoint ip="Rx0y0’ port="p2_in’ />

46  </connect>

47 <connect>

48 <endpoint ip="Rx0y0’ port="pl_out’ />

49 <endpoint ip="Rx0y0O_pl_out_0’ port="trgt’ />

50 </connect>

51

52 </architecture >

Listing 4 Architecture with network

3.2 Allocation
After dimensioning the interconnect, the application requirements area translated into re-

source allocations, based on the temporal requirements and the use-case constraints. This
constitutes Step 2 in Fig. 2 and involves deciding what bus ports, NIs, paths and time
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l<architecture id='85500_inspired >
<l— Everything from Listing 4 —>

2
3
4
5 <!— NIs —>
6 <ip id="NIxOyOn0’ type="NI'>
7
8

B

<port id="NIxO0yOnO_cfgbus_rmt_shell_ps_in’ type=’'Target’

9 protocol="FIFO_AE’ >

10 <parameter id=’iqsz’ type=’int’ value=’3" />
11 <parameter id=’portid’ type=’int’ value="0" />
12 </port>

13 <port id="NIx0yOnO_cfgbus_rmt_shell_ps_out’ type=’Initiator ’
14 protocol="FIFO_AE’ >

15 <parameter id=’oqsz’ type=’int’ value=’3" />
16 <parameter id=’portid’ type="int’ value="0" />
17 </port>

18  </ip>

19 ...

20

21 <!— Shells —>
22  <ip id="NIx0yOnO_cfgbus_rmt_shell * type="TrgtShell '>

23 <port id=’pt’ type=’Target’ protocol="MMIO DIL’ />

24 <port id="pst’ type='Target’ protocol="FIFO_AE’ />

25 <port id="psi’ type=’'Initiator ’ protocol="FIFO_AE’ />

26  </ip>

27 ...

28

29 <!— Control buses with fixed address decoders —>

30 <ip id=’NIx0yOnO_cfgbus’ type="TrgtBus’'>

31 <parameter id=’default_port’ type="int’ value="0" />

32 <port id="pt’ type=’'Target’ protocol="MMIO_DIL’ />

33 <port id="lcl’ type=’Initiator ’ protocol="MMIO_DTL’ >

34 <parameter id=’addr_equal’ type="int’ value=’0x80000000" />
35 <parameter id=’addr_mask’ type=’"int’ value="0xfffffc00’ />
36 <parameter id=’portid’ type="int’ value="0" />

37 </port>

38 <port id="rmt’ type=’Initiator ’ protocol="MMIO_DTL’ >

39 <parameter id=’addr_equal’ type="int’ value=’0x80004000" />
40 <parameter id=’addr_mask’ type="int’ value="0xffffc000’ />
41 <parameter id=’portid’ type="int’ value="1" />

42 </port>

43 </ip>

44 ..

45

46 <!— Connects —>

47 <connect>

48 <endpoint ip="host’ port="pi’ />

49 <endpoint ip="NIxO0yOnO_cfgbus’ port="pt’ />

50 </connect>
51 <connect>

52 <endpoint ip="NIxO0yOnO_cfgbus’ port="rmt’ />

53 <endpoint ip="NIxOyOnO_cfgbus_rmt_shell > port="pt’ />
54 </connect>

55

56 </architecture >

Listing 5 Architecture with control infrastructure
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slots to use. Allocations are created and verified at design or compile time. Hence, run-
time choices are confined to choosing from the set of fixed allocations. While limiting the
run-time choices to a set of predefined use-cases, this is key as it enables us to guarantee,
at compile time, that all application constraints are satisfied, and that all the use-cases fit on
the given hardware resources.

The allocation part of the flow is split into two tools. The first step (busalloc) allocates
ports on the initiator and target buses. In Sect. 3.1 we only dimensioned the buses, i.e. we
only decided the number of bus ports, and did not yet decide what connection uses what port
in what use-case. In case of distributed memory communication, we allocate an initiator port
on the target bus. Similarly, we allocate a target port on the initiator bus in case of shared
memory communication. The selection of a bus port implicitly selects a shell on each side
of the network (as there is a one-to-one mapping between shells and bus ports).

Listing 6 shows the output of the bus allocation. The allocation of bus ports is made by
a greedy heuristic that iterates over the applications, based on the number of use-cases they
span. The intuition behind this ordering is that the ports used by an application cannot be
used by any other application that runs concurrently. Hence, the more use-cases an applica-
tion spans, the more restrictions are imposed on the not yet allocated applications. After the
bus allocation, each connection from Listing 2 is split into a request channel and a response
channel between two pairs of streaming ports. In case of a memory-mapped protocol, these
streaming ports are located on the shells. For a streaming protocol, on the other hand, the
ports are those of the IP itself. After performing the bus-port allocation, the succeeding steps
of the allocation flow looks at requirements in terms of channels between streaming ports.
As seen in Listing 6, each channel has a data rate (in Mbyte/s) that includes the effects of
serialisation in the protocol shells. In addition to the user-specified connections the alloca-
tion flow also assigns resources to the control connections (line 30 and onwards). Listing 6
also shows the arbiter settings of the initiator bus.

After the bus ports are assigned to connections, the second step (netwalloc) decides
the spatial mapping [37, 58] of streaming ports to NIs, i.e. where in the given network topol-
ogy to connect the IPs, and also determines the channels’ paths and time slots. The mapping
of IPs to NIs is obviously only possible if the resource allocation is done at design time
(since it changes the interconnect hardware). If the allocation is done at compile or run time,
the given mapping is left unchanged. The allocation selects paths through the router network
and allocates an appropriate set of time slots on the selected paths such that the throughput
and latency requirements are met. As discussed in [30], we exploit the close correspondence
between the two spatial allocation problems and let the path-selection algorithm take the
mapping decisions by incorporating the streaming ports (shells and streaming ports of IPs)
in the path-selection problem formulation. Similarly, we include the slot allocation in the
path pruning to guarantee that a traversed path is able to satisfy a channel’s requirements.
The resulting architecture is shown in Listing 7, showing the newly added NI ports and the
connects between the shells and NIs. Note that the input and output queues of the Nls at
this point have a default size, here 255 words each. The corresponding network resource
allocation is shown in Listing 8, with the additions compared to Listing 6 (paths and slots)
highlighted.

The allocation together with the dimensioning is central to the functional scalability of
the interconnect as these steps are responsible for instantiating and then finding appropriate
resources to satisfy the application requirements. As we shall see in Sects. 4 and 5 the tools
are indeed able to satisfy a growing number of requirements with a constant cost/perfor-
mance ratio. However, despite the use of heuristics, the core of the path selection is A*Prune
which is known to have exponential growth in run time for certain problem instances [46].
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l<allocations >

2 <!'— Allocations for user applications —>

3 <allocation application=’"storage >

4 <connection id=’0’>

5 <channel type=’request’>

6 <from ip="U2_sl_shell’ port="psi’ />

7 <to ip="mem_ddr_pl_bus_ptO_shell’ port="pst’ />

8 <parameter id=’drate’ type='double’ value="109.375" />
9 </channel >

10 <channel type=’response’>

11 <from ip="mem_ddr_pl_bus_ptO_shell ° port="psi’ />

12 <to ip="U2_sl_shell’ port="pst’ />

13 <parameter id=’drate’ type='double’ value="150" />
14 </channel >

15 <initbus bus="mem_ddr_pl_bus’ port="pt0’>

16 <parameter id=’numerator’ type='int’ value='3" />
17 <parameter id='denominator’ type='int’ value=’51" />
18 <parameter id=’initialCredits ’ type="int’ value=’51" />
19 <parameter id=’priority ’ type="int’ value='0" />

20 </initbus >

21 </connection >

22

23 </allocation >

24

25

26 <!— Allocations for the control application —>

27 <allocation application="control >

28 <connection id="0">

29 <channel type=’request’>

30 <from ip='NIx0yOnO_cfgbus_rmt_shell’ port="psi’ />
31 <to ip="NIx0yOnl_cfgbus_pt_shell’ port="pst’ />

32 <parameter id='drate’ type='double’ value=’6e—06" />
33 </channel >

34 <channel type=’response’>

35 <from ip='NIx0yOnl_cfgbus_pt_shell’ port="psi’ />
36 <to ip="NIx0yOnO_cfgbus_rmt_shell’ port="pst’ />

37 <parameter id='drate’ type='double’ value="1le—06" />
38 </channel >

39 </connection >

40

41 </allocation >
42 </allocations >

Listing 6 Allocation of bus ports

Note that this does not impair the functional scalability, looking only at the outcome and
not the run-time. The complexity is reduced by using a path-selection algorithm based on
Dijkstra, as proposed in [30], but this on the other hand compromises the quality of the so-
lution and might cause the allocation to fail. For contemporary systems, with hundreds of
IPs and connections, the proposed algorithms are sufficient, but other approaches might be
necessary as the problem size grows.

After the final allocation step, every connection is allocated an NI on the initiator and
target side of the network and the resulting allocation of slots and paths adheres to the
channel’s throughput and latency requirements. The interconnect hardware and software can
thus be instantiated. However, the allocation algorithm takes a network-centric approach and
excludes the effects the buses and IPs (and also flow control between these components)
have on the end-to-end temporal behaviour. We return to this in Sect. 3.4 where we also
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l<architecture id="85500_inspired >
<!— Everything from Listing 5 —>

2
3
4
5 <l— NIs —>
6 <ip id="NIx0yOn0’ type='NI’>
7
8
9

<port id="U2_s1_shell_ps_in’ type="Target  protocol="FIFO_AE’>
<parameter id='iqsz’ type=’int’ value='255" />

10 <parameter id=’portid’ type="int’ value="1" />

11 </port>

12 <port id="U2_s1_shell_ps_out’ type=’Initiator ’ protocol="FIFO_AE’>
13 <parameter id=’oqsz’ type=’int’ value=’255" />

14 <parameter id=’portid’ type="int’ value="1" />

15 </port>

16 <port id="U2_s2_shell_ps_in’ type="Target’ protocol="FIFO_AE’>
17 <parameter id=’iqsz’ type='int’ value=’255" />

18 <parameter id=’portid’ type=’int’ value=’2" />

19 </port>

20 <port id="U2_s2_shell_ps_out’ type=’Initiator ’ protocol="FIFO_AE’>
21 <parameter id=’oqsz’ type=’int’ value=’255" />

22 <parameter id=’portid’ type="int’ value="2" />

23 </port>

24 </ip>

25 ...

26

27 <!— Connects —>

28 <connect>

29 <endpoint ip='vliw_instr_shell ’° port="psi’ />

30 <endpoint ip="NIxOyOnl’ port=’"vliw_instr_shell_ps_in’ />

31 </connect>
32 <connect>

33 <endpoint ip="U2_sl_shell’ port="psi’ />

34 <endpoint ip="NIxlylnl’ port="U2_sl_shell_ps_in’ />
35 </connect>

36

37 </architecture >

Listing 7 Architecture with NI mapping

demonstrate how to incorporate the end points (shells, buses, IPs, etc.) and dimension the
NI buffers using dataflow analysis techniques.

3.3 Instantiation

The instantiation, corresponding to Step 3 in Fig. 2, takes its starting point in a complete
specification of the architecture and resource allocation, and addresses the challenges in-
volved in turning the specification into a hardware and software realisation. Turning high-
level specifications into HDL and C code is a tedious and error prone job. The instantiation
flow greatly simplifies the task by fully automating this process. We see examples of the
automation in later sections where entire system instances are created in a matter of hours.

To instantiate the hardware, the appropriate blocks must be created and interconnected.
Many blocks are parametrisable and require the appropriate values to be set. In addition
to the instantiation of individual library modules, such as buses and routers, these modules
must also be connected according to the architecture description. On the network and in-
terconnect level we thus have to generate instance-specific hardware. All of this is done
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l<allocations >

2 <!'— Allocations for user applications —>

3 <allocation application=’"storage >

4 <connection id=’0’>

5 <channel type=’request’ slots="0" path="32’>

6 <from ip="U2_sl_shell’ port="psi’ />

7 <to ip="mem_ddr_pl_bus_ptO_shell’ port="pst’ />

8 <parameter id=’drate’ type='double’ value="109.375" />
9 </channel >

10 <channel type=’response’ slots="0 1’ path="4 2’>

11 <from ip="mem_ddr_pl_bus_ptO_shell ° port="psi’ />

12 <to ip="U2_sl_shell’ port="pst’ />

13 <parameter id=’drate’ type='double’ value='150" />
14 </channel >

15 <initbus bus="mem_ddr_pl_bus’ port="pt0’>

16 <parameter id=’numerator’ type='int’ value='3" />
17 <parameter id=’denominator’ type='int’ value=’51" />
18 <parameter id=’initialCredits ’ type="int’ value=’51" />
19 <parameter id=’priority ’ type="int’ value='0" />

20 </initbus >

21 </connection >

22

23 </allocation >

24

25

26 <!— Allocations for the control application —>

27 <allocation application="control >

28 <connection id="0">

29 <channel type='request’ slots="0" path="3">

30 <from ip='NIx0yOnO_cfgbus_rmt_shell’ port="psi’ />
31 <to ip="NIx0yOnl_cfgbus_pt_shell’ port="pst’ />

32 <parameter id='drate’ type='double’ value="6e—06" />
33 </channel >

34 <channel type=’'response’ slots="0’ path="2">

35 <from ip='NIx0yOnl_cfgbus_pt_shell’ port="psi’ />
36 <to ip="NIx0yOnO_cfgbus_rmt_shell ’ port="pst’ />

37 <parameter id='drate’ type='double’ value="1le—06" />
38 </channel >

39 </connection >

40 </allocation >
41 </allocations >

Listing 8 Allocation of network paths and time slots

by a tool (vhdlinst) that also generates a set of auxiliary files that are required by the
ASIC/FPGA tools for e.g. HDL elaboration, simulation and RTL synthesis.

The hardware is of no use without the appropriate (host) software. The resource alloca-
tions are thus translated into source code (cinst) and linked with the appropriate run-time
libraries that enable a host processor to open and close connections [28]. At run-time, the
host then instantiates these allocations as a result of trigger events [56]. The run-time instan-
tiation, in its current form, limits the interconnect scalability as it uses a centralised host.
However, the proposed run-time libraries do not inherently limit the scalability, and it is
possible to distribute the work across multiple hosts.

In addition to the instantiation tools, the design flow also includes an area-estimation tool
that quickly shows the total area requirements of the interconnect based on the area models
described in [29]. The important observation about the silicon area is that the interconnect is

@ Springer



A quantitative evaluation of a Network on Chip design flow 175

dominated by the NIs, that in turn are dominated by their buffers. Buffer sizing is therefore
of utmost importance, as discussed next.

3.4 Verification

The verification constitutes Step 4 in Fig. 2 and serves as a robust design-rule checker based
on the given architecture and allocation XML files, which could have been generated, pro-
vided or edited by hand.

Even in the case where the files are automatically generated by the flow, the allocation of
communication requirements only covers the network and excludes the effects of end-to-end
flow control. When NI ports are added as part of the dimensioning and allocation, all buffers
are given a default size, and until now we have assumed that the buffers are sufficiently large.
If this is not the case, the application performance suffers, and conversely, if the buffers are
unnecessarily large they waste power and area [11, 21, 35, 65]. In addition to the network,
also the clock domain crossings, shells, atomisers and buses affect the performance and
must be considered. Furthermore, the communication requirements are merely a result of
higher-level application requirements, and it remains to verify that the applications have the
expected functional and temporal behaviour when they are executed on the system instance,
i.e. taking the interdependencies between the applications, the IPs, and the interconnect
into account. Thus, for an existing interconnect instance, we must be able to determine the
temporal behaviour of the applications mapped to it, given fixed NI buffer sizes. On the
other hand, if we are designing an interconnect specifically for a set of applications, then it
is desirable to determine sufficiently large NI buffers.

The verification (buf £dim) is performed using dataflow models of the interconnect [35]
and the IPs. The dataflow models bound the combined behaviour of the interconnect archi-
tecture and resource allocation, even for data-dependent applications [77]. Currently our
design flow assumes a homogeneous analysis of all applications, using dataflow analysis.
However, as discussed in Sect. 2, it is possible to use other buffer-sizing approaches where
appropriate, e.g. stochastic traffic models [13, 68]. This diversity enables the designer to
capture a wide range of application behaviours and requirements, and is made possible by
the composability of our interconnect [33]. Listing 9 shows the resulting architecture spec-
ification, highlighting the changes compared to Listing 7. After the buffer dimensioning,
the interconnect hardware and software can be instantiated anew. The verification thus com-
pletes the interconnect design flow, and we now continue to design interconnects for our two
case studies.

4 Digital TV

We now put the proposed design flow to use with an example inspired by NXP’s PNX85500,
which is a complete one-chip digital TV, aimed at the cost-sensitive midrange market. The
PNX85500 delivers multi-standard audio decoding and multi-standard analogue and dig-
ital video decoding. The front-end video processing functions, such as DVB-T/DVB-C
channel decoding, MPEG-2/MPEG-4/H.264 decoding, analog video decoding and HDMI
reception, are combined with advanced backend video picture improvements. One of the
key differentiators is the video enhancement algorithms, e.g. Motion Accurate Picture Pro-
cessing (MAPP2), Halo reduced Frame Rate Conversion and LCD Motion Blur Reduction.
The MAPP2 technology provides state-of-the-art motion artifact reduction with movie jud-
der cancellation, motion sharpness and vivid colour management. High flat panel screen
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l<architecture id="85500_inspired >
<!— Everything from Listing 7 —>

2
3
4
5 <l— NIs —>
6 <ip id="NIx0yOn0’ type='NI’>
7
8
9

<port id="U2_s1_shell_ps_in’ type="Target  protocol="FIFO_AE’>
<parameter id=’iqsz’ type=’int’ value=’67" />

10 <parameter id=’portid’ type="int’ value="1" />

11 </port>

12 <port id="U2_s1_shell_ps_out’ type=’Initiator > protocol="FIFO_AE’>
13 <parameter id=’oqsz’ type='int’ value="65" />

14 <parameter id=’portid’ type="int’ value="1" />

15 </port>

16 <port id="U2_s2_shell_ps_in’ type="Target’ protocol="FIFO_AE’>

17 <parameter id=’iqsz’ type='int’ value="67" />

18 <parameter id=’portid’ type=’int’ value=’2" />

19 </port>

20 <port id="U2_s2_shell_ps_out’ type=’Initiator > protocol="FIFO_AE’>
21 <parameter id=’oqsz’ type=’int’ value="66’ />

22 <parameter id=’portid’ type="int’ value="2" />

23 </port>

24 </ip>

25

26 </architecture >

Listing 9 Architecture with minimal NI buffer sizes

resolutions and refresh rates are supported, including 1366 x 768 and 1920 x 1080 at
100 Hz/120 Hz. This is coupled with multiplexing of multiple high-definition streams, mul-
tiple video outputs and multiple audio outputs. The SoC supports a rich set of I/O standards
(e.g. PCI, USB, Ethernet, UART) and opens many possibilities for new TV experiences with
IPTV and Video On Demand (VOD).

We consider the processor cores and IP blocks given, and a schematic architecture is
shown in Fig. 3 [41]. As shown in the figure, the SoC contains multiple programmable pro-
cessors with caches: a MIPS for control, three TriMedia processors for audio/video, one
MIPS DSP, and a 8051 processor for power management and control. The TriMedia VLIWs
are used for computation (and communication) intensive image processing, e.g. Halo Re-
duced Frame Rate Conversion, with on-the-fly compression of video traffic to and from the
off-chip SDRAM. In addition to the processors, the SoC contains a large number of function-
specific hardware IP cores. Those accelerator IPs are used for e.g. audio and video decoding,
video scaling and enhancement, graphics, and I/O (LVDS, HDMI, Ethernet, USB, Flash,
SPI, PCI and I12C). Finally, the SoC has a range of peripherals for clocking, debug, timers,
etc. As seen in the block diagram, the SoC is built around a physically centralised mem-
ory architecture. Two central off-chip memory controllers connect with two large external
SDRAMs, with a 16-bit and 32-bit wide data path respectively. The SoC contains 11 chiplets
and five major frequency domains, from 27 MHz (many IPs) to 200 MHz (majority of IPs) to
over 450 MHz (processors). The complete XML description of the IP architecture occupies
roughly 250 lines, with a subset shown in Listing 1.

A major design challenge is the on-chip communication, with 110 memory-mapped ports
distributed across the IPs (the majority read-only or write-only), contributing to almost 100
logical connections. Predictability is a design constraint. A majority of the connections have
relaxed latency requirements (>1000 ns), as the function-specific hardware IP cores make
use of prefetching read accesses and posted write accesses. The deep pipelining makes these
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Fig. 3 Digital TV SoC block diagram [41]

connections latency tolerant. Processor instruction fetches (from cache misses), on the other
hand, have very low latency requirements (<100 ns) and have relatively small transaction
sizes, but require a limited throughput. Some accelerators, e.g. the display controller are also
latency constrained. With the most critical low-latency connections implemented through
direct connections to the memory controller, and several low-throughput peripheral connec-
tions merged, this translates to 53 physical ports, and 45 logical interconnections for the
on-chip interconnect. A part of the 260 line specification is shown in Listing 2.

Figure 4 shows the distribution of throughput requirements for the 45 connections, with
a total of 4402 Mbyte/s (1461 Mbyte/s write, 2941 Mbyte/s read). Note that this is the
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Distribution of throughput requirements
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Fig. 4 Write and read throughput distribution (number of connections vs. throughput in Mbyte/s)

data throughput for the memory-mapped communication, not accounting for commands and
addresses, byte masks, etc. Burst sizes vary from 64 bytes through 128 and 256 bytes, with
the majority of the IPs using the latter (with a mean of 240 bytes). Including the additional
address and command signals results in a raw throughput of 4560 Mbyte/s to be delivered
by the network.

It is worth noting that this particular case study does not make use of the reconfigura-
bility offered by the interconnect. The reason is that the specification is determined without
assuming any such functionality (which is unique for NoCs). All connections are thus as-
sumed to be concurrent, and a re-design with reconfigurability in mind could benefit from
mutually exclusive applications and connections.

4.1 Experimental results

As discussed in Sect. 3.1, topology selection is not an automated part of the design flow.
The tools do, however, aid in translating a high-level topology description into an XML
specification. For this example we chose a 2 by 3 mesh network (six routers) with two NIs
connected to all routers but one (11 NIs in total). The router arity is thus kept at five for a
single router and four for the remaining ones. This topology offers one NI for each chiplet.
The network is clocked at 533 MHz, which is the highest IP clock frequency.

The latency requirement, as discussed in Sect. 3.2, for low-latency connections is spec-
ified to 50 ns (not including the memory scheduler and controller). Given the requirements
of the connections and the physical topology, a resource allocation for the single use-case
is found with a slot table size of 24. The resulting allocation XML file occupies just over
1000 lines and the corresponding architecture description is almost 4000 lines, all automat-
ically generated by the design flow in a few minutes. As the final part of the dimensioning,
the NI buffers are sized using the approach from Sect. 3.4, and the distribution of the NI
queue sizes is shown in Fig. 5. The large burst sizes lead to increased buffering in the NIs,
and a total of 2249 words (of 37 bits) in output queues and 2232 words in input queues
(3060 on the initiator side and 1621 on the target side). In total the NI buffers store roughly
24 kbyte, and the buffers have a big influence on the area requirements which we evaluate
next.
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Distribution of NI queue sizes

35 | Input queve ]
Output queue I

30 |+

25 +

20 |+

Frequency of occurence

! 1@@5a@

1 >64
Fig. 5 NI queue size distribution in 37-bit words
Table 1 Area requirements > ,
Module Instances Area (mm~) Discrepancy
Router 6 0.08 +10%
NI 11 0.41 —10%
Shell 54 0.23 —8%
Bus 6 0.08 +9%

Using the same synthesis setup as described in [29], i.e. Cadence Ambit with Philips
90 nm Low-Power technology libraries, the synthesised interconnect occupies a cell area
of 5.5 mm? with 4.7 mm? (85%) in NI buffers. The large fraction in buffers is due to the
register-based FIFO implementation, and with FIFOs based on dual-ported SRAMs the area
is reduced to roughly 2.6 mm? with 1.7 mm? (65%) in buffers. Further reduction is possible
with dedicated FIFOs [76], which results in a total area of 1.6 mm? with 0.7 mm? (44%) in
buffers. A break down of the remaining area is shown in Table 1, including a comparison
with area estimation models based on the synthesis of the individual blocks in [29]. As seen
in the table, the area estimation is within 10% of the result reported by the synthesis tool.
Note that the area reported is cell area only, thus before place and route, and clock-tree
insertion.

To get further insight into the area requirements and the power consumption of the in-
terconnect instance, we synthesise the design using Synopsys Design Compiler Ultra in
topographical mode. The synthesis uses TSMC’s low-power 65 nm libraries (9 track with a
raw gate density of 0.85 Mgate/mm?) employing mixed Voltage Threshold (VT) synthesis
with both high- and low-VT libraries. The synthesis is performed on a flattened design with
multi-stage clock gating enabled, using integrated clock gates from the technology library.
The power minimisation is driven by activity traces captured in RTL simulation using traffic
generators to mimic the IP behaviour.

The total area after synthesis is estimated at 2.5 mm? (9781 cells). Once again the FIFO
implementation used is the register-based FIFO, leading to a dominant part of the area spent
in buffering. The area of the buffers is, however, reduced by the clock gating as many mul-
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tiplexers in the FIFOs can be replaced. A total of 7500 clock gating elements are inserted,
resulting in 97% of the 251588 registers in the design being gated. At a global (worst-case)
operating voltage of 1.08 V the cell power is estimated at 79.5 mW and the net switching
power at 43.3 mW. The total dynamic power, under worst-case conditions, is 122.8 mW and
the leakage power is estimated at 3.2 mW (or roughly 2.5% of the total power consumption).
Roughly 22% of the dynamic power is spent in the clock tree. We can conclude that the low-
power libraries, in combination with mixed-VT synthesis and leads to an implementation
where leakage-minimisation techniques like power gating, which is costly in level shifters,
are not worthwhile.

Next, we evaluate the behaviour of the generated interconnect hardware and software
by simulating an instance of the entire system using traffic generators to mimic the IP be-
haviour. Instrumentation is (automatically) inserted in SystemC and VHDL testbenches re-
spectively to observe the utilisation of the different modules, the latency of individual pack-
ets in the network, and the end-to-end latency and throughput between the IPs. The cycle-
accurate SystemC simulation executes with a speed of roughly 50 kcycles/s on a modern
Linux machine (1 ms of simulated time in less than 20 s). The corresponding VHDL test-
bench is roughly 200 times slower, with 0.2 kcycles/s. Simulation of the synthesised netlist
is again a factor 100 slower, reducing the speed to roughly a cycle per second.

First, looking at the critical low-latency connections (specified to 50 ns as previously
mentioned) they consistently have an average network latency of 19 ns and a maximum
across all the connections of 42 ns. For a specific low-latency connection, the end-to-end
latency for a 128 byte read transaction, including the memory controller and memory access,
is 280 ns on average and 308 ns for the observed worst case (corresponding to 190 processor
cycles at 533 MHz). All the 45 connections have an observed throughput and latency that
meets the user-specified requirements, and this behaviour is consistent in both SystemC and
VHDL simulation. Comparing SystemC, behavioural VHDL and netlist simulation we see
slight differences in the statistical traffic profile. The reason for the discrepancies is the use
of different traffic generators for the SystemC and VHDL testbenches. The results, however,
looking at the end-to-end latency and throughput, are within +3%.

Next, we look at the utilisation of the interconnect, as observed during simulation. The
TDM-based arbitration of the network requires low-latency connections to reserve a larger
number of appropriately spaced time slots. As a consequence, these slots are often unused.
The utilisation does hence not reflect the reserved slots, but rather the slots that are actually
used at run time. We first look at the ingress and egress links of the network, i.e. links that
connect an NI to a router. Since the NI is comparatively more expensive, the chosen topology
aims to minimise the number of NIs. The ingress and egress links are therefore more likely
to have a high utilisation compared to the average over the entire network. For the TV SoC,
the average NI link utilisation is 49%, with a minimum of 27% and a maximum of 64%.
This is to be compared with an overall network link utilisation of 22%. The link with the
lowest utilisation is only used 12% of the time. The relatively low utilisation of the network
stresses the importance of using clock gating as part of the logic synthesis. The register-
level and module-level clock gating ensures that the power consumption is proportional to
the usage of the gates rather than the sheer number of gates. As already mentioned, the total
interconnect power consumption, under worst-case conditions, is estimated at 125 mW.

4.2 Scalability analysis

Having evaluated our proposed interconnect in the context of the contemporary digital TV
SoC, we now continue to look at how the interconnect scales with the requirements, and how
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Fig. 6 Scalability of throughput requirements

suitable it is for future generation multimedia applications. As discussed in [41], the number
of latency-critical connections has stayed low and fairly constant during the past six gener-
ations of TV Socs in the Nexperia platform. The total bandwidth, however, and the number
of latency-tolerant function-specific hardware IPs grows over time. These key trends are a
result of stable functional subsystems being moved to latency-tolerant implementations as
the functionality matures. The latter is a necessary trend to fit more functionality on a sin-
gle SoC and still be able to serve the latency-critical connections within acceptable bounds.
The on- and off-chip throughput is scaling with the generations, but the latency (in absolute
time) is fairly constant, leading to growing memory access latencies (measured in processor
cycles). With a growing number of latency-critical connections the communication pattern
would be inherently non-scalable.

Our first scaling experiment fixes the IPs and their 45 connections, and only scales the
throughput requirements (leaving the latency untouched). For each design point, we re-run
the entire interconnect design flow using the new (scaled) requirements. For each point, we
evaluate two different network topologies. First, a minimum mesh, determined by a simple
loop that increases the dimensions until a feasible resource allocation (one that satisfies all
requirements) is found. For simplicity, the number of NIs is fixed at three per router. Sec-
ond, a point-to-point topology where each connection is mapped to two unique NIs inter-
connected by a router (to allow for instantiation of the resource allocation during run-time).
A maximum of 32 TDM slots is allowed in both cases. Once a resource allocation is found,
we determine sufficiently large buffer sizes (also verifying the performance bounds using
dataflow analysis) and estimate the required area using the models from [29]. Thus, for ev-
ery point we determine two complete hardware and software interconnect instances that are
guaranteed to satisfy all the requirements.

Figure 6 shows the area, both with and without buffers, for the two topologies as the
throughput requirements are scaled from 0.2 to 3.4. The area estimates once again assume
a 90 nm process and register-based FIFOs and are thus overly conservative. However, as
we are interested in the scaling the absolute numbers are not critical. What is more inter-
esting is the trend as the scaling factor is increased. For scaling factors below three, the
total area is growing linearly for both topologies, with the area of the mesh being roughly
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25% smaller than the point-to-point topology (75% smaller when excluding the buffers).
Although not visible in the figure, the mesh area excluding the buffers is increasing in a
stair case as the number of routers and NIs grow. Increased throughput leads to different
mapping and routing decisions as the connections are balanced on a larger interconnect. As
expected, the point-to-point topology area is constant when the buffers are not considered.
With scaling factors above three, the mesh area is increasing faster, approaching the area of
the point-to-point topology, and after 3.4 no feasible resource allocation is found for either
of the two topologies. This is due to the inherent sharing of the IP ports, i.e. the memory con-
trollers, where the scaled requirement eventually saturate the port capacity. Thus, the point
of contention is pushed to the IPs ports and there exist no possible topologies and resource
allocations, for any NoC architecture or design flow.

We have seen that the interconnect scales linearly with the throughput requirements when
the number of connections is kept constant. Now we look at how the interconnect scales with
the number of latency-tolerant connections. Rather than extrapolating a next-generation TV
SoC, we randomly select a subset of the connections of the original example, and do so for
fractions ranging from O to 1 in increments of 0.1. For each design point (belonging to a
specific fraction) we repeat the random selection 10 times. As a result, for each point we
re-run the entire design flow 10 times with (potentially) different subsets of the communi-
cation specification. For each run we determine the minimum mesh as before. After finding
a feasible resource allocation the buffers are sized and the interconnect area estimated for
each one of the 100 instances.

Figure 7 shows the area estimates with and without buffers, with each point showing the
average of the 10 runs together with the standard deviation. Once again, the absolute num-
bers are not particularly important as they depend heavily on the chosen technology node
and buffer implementation. What is important is that both Figs. 7(a) and 7(b), show a clear
linear trend. This suggests that the interconnect architecture and design flow is providing
functional scalability and thus able to accommodate a growing number of connections with
a roughly constant cost/performance ratio.

5 Automotive radio

Our second example is a software-defined radio SoC, aimed at the automotive industry.
Although mobility, connectivity, security and safety drive the automotive industry, there
is an accelerated adoption of consumer features in cars, with home entertainment also in
your car. The main applications include high quality, real-time, interactive audio and video,
with standards like DAB, DVB-H, DVB-T, T-DMB, HD Radio etc. While delivering a true
multimedia experience, the SoC must also meet automotive quality demands. Due to the
nature of the SoC, there is an essential need for a powerful and flexible multi-standard,
multi-channel software-defined radio, with efficient channel decoder processing.

Similar to the digital TV SoC, we consider the processor cores and IP blocks given. The
example is inspired by a SoC that contains three programmable processors with caches:
an ARM Cortex for control, and two Embedded Vector Processors [73] (EVP). The EVPs
constitute the core of the software-defined radio. In addition to the processors, the SoC
contains a large accelerator subsystem. The accelerators are involved in signal-processing
and I/O (several DACs and ADCs, DMA, and USB). In contrast to the digital TV SoC, this
system is not making use of a physically centralised memory architecture, as it has many on-
chip (more than 10) SRAMs in addition to the external SDRAM. As we shall see, the result
is less inherent contention in the communication patterns. The SoC contains 7 chiplets and
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Fig. 7 Scaling the number of connections

9 clock domains, ranging from 100 MHz to 350 MHz with the majority of the IPs running
at either 100 MHz or 200 MHz.

Communication is central to the SoC with 68 IP ports using both memory-mapped and
streaming communications with a total of 52 logical connections. Many of the IPs do not
use posted/pipelined transactions and their communication is therefore latency-critical. In
contrast to the digital TV it is thus not only cache traffic that is latency critical. Due to the
real-time nature of the application, predictability is crucial for all on-chip communication.
After merging a few low-throughput connections to peripherals, the on-chip interconnect
must accommodate 43 ports (distributed across 12 IPs), with 32 logical interconnections.
Roughly half of these connections have latency requirements below 100 ns.
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Distribution of throughput requirements
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Fig. 8 Write and read throughput distribution (number of connections vs. throughput in MByte/s)

Figure 8 shows the distribution of throughput requirements, with a total of 2151 Mbyte/s
(997 Mbyte/s write, 1154 Mbyte/s read). Including command and address this amounts to
4183 Mbyte/s to be delivered by the network. Note that this is almost the double due to the
small burst sizes, varying between 4 and 128 bytes (with a mean of 31 bytes). Compare this
to the digital TV where we almost exclusively have large bursts, making the raw throughput
requirement of the two case studies very similar. Although the throughput requirements are
not much different, we shall see that the large difference in burst size has a tremendous
impact of the NI buffers, and consequently the interconnect area and power.

Similar to the TV SoC, this case study does not exploit the support for multiple use-cases.

5.1 Experimental results

For the automotive SoC, we use a 3 by 3 mesh (nine routers) with two NIs connected to the
corner routers, one NI for the remaining peripheral routers, and no NI for the central router
(12 NIs in total). The router arity is thereby kept low and the topology is still large enough
to enable the IPs to be placed around the interconnect, grouped according to chiplets and
clock domains. For this case study, the network is clocked at 400 MHz which is double the
frequency of most IPs.

Given the requirements, an interconnect instance is generated with a slot table size of 21
and the buffers are sized using the proposed design flow. The distribution of NI queue sizes
is shown in Fig. 9, with a total of 442 words in input queues, and 587 words in output queues
(453 on the target side and 576 on the initiator side). The total capacity is roughly 5 kbyte.
Compared to the TV SoC this is roughly four times less buffering per connection, largely
due to the big difference in average burst size.

The difference in buffer size also has a big impact on the interconnect area. Using the
same 90 nm libraries and the same setup as for the TV SoC, the total cell area for the au-
tomotive SoC interconnect is 2.13 mm? with 1.41 mm? (66%) in register-based NI buffers.
With dual-ported SRAMS this is reduced to 1.22 mm? with 0.5 mm? (40%) in buffers, or
as little as 0.9 mm? with 0.22 mm? (23%) in buffers when implemented using dedicated FI-
FOs [76]. An area break down is shown in Table 2, including both the results from synthesis
and the high-level area-estimation models. Just as for the TV SoC, the area estimation is
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Fig. 9 NI queue size distribution in 37-bit words

Table 2 Area requirements

Module Instances Area (mm?) Discrepancy
Router 9 0.13 +10%
NI 12 0.32 —8%
Shell 43 0.18 0%
Bus 8 0.07 —4%

within 10%, suggesting the models can be used reliably for early design-space exploration
and evaluation.

We synthesise also this interconnect using Synopsys Design Compiler Ultra, aiming to
minimise the power consumption. The details are the same as described in Sect. 4. The total
area after synthesis is estimated at 0.78 mm? (4784 cells) and 90% of the 76474 registers
are clock gated. At worst-case conditions, the cell power is estimated at 41.2 mW and the
net switching power at 15.4 mW, resulting in a total dynamic power consumption of only
57 mW. The leakage is reported to be less than 1 mW, once again demonstrating the abilities
of the low-power libraries and mixed-VT synthesis. Roughly 27% of the total power is spent
in the clock tree.

Similar to the TV SoC, we perform SystemC and HDL simulations on the instantiated
interconnect. Once again, all throughput and latency requirements are satisfied, and this
behaviour is consistent for all the different instantiations. Looking at the utilisation during
simulation, the automotive SoC has an average NI link utilisation of 30% with a minimum
of 7% and a maximum of 75%. The low utilisation of the NI links is due to the very strict
latency requirements which limits the amount of sharing. The overall network link utilisation
is also low, only 20%. As previously discussed, the relatively low utilisation highlights the
importance of clock gating, as used in our experiments.

5.2 Scalability analysis

We continue our evaluation with two different scaling experiments, similar to what is de-
scribed for the TV SoC in Sect. 4. First, scaling the throughput requirements between 0.2
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Fig. 10 Scalability of throughput requirements

and 4.8, we compare the area of a minimum mesh and a point-to-point topology. Figure 10
shows the result, both with and without buffers. The heuristics used in the mesh sizing results
in an area that is growing in a stair case, which is now visible as the total area is less depen-
dent on the buffers. The total area is growing linearly for both topologies until they saturate
at a scaling factor of 4.8 where the requirements can no longer be allocated. At this point
the mesh area is almost equivalent to the point-to-point topology, using a 5 by 4 mesh with
3 NIs per router. Comparing the results with the TV SoC we clearly see the consequences
of having a more distributed communication pattern (more memories) as the throughput can
be scaled further (4.8 compared to 3.4). Once again this factor is an inherent limit caused by
the sharing of the IP ports and not influenced by the choice of a NoC architecture or design
flow.

Next we evaluate the scalability with respect to the number of connections. In contrast
to the TV SoC we now include all connections (latency critical and latency tolerant) in
the selection. Again we look at 10 different design points and run the entire design flow
10 times per point. Figure 11 shows the area with and without buffers. Although there is a
considerable variation in the results, the linear trend is clear. We have thus shown that also
for this example, with a larger number of latency-critical connections, but a more distributed
communication pattern, the design flow offers functional scalability.

Comparing the results of the two examples we can conclude that the area and power
is very much influenced by the temporal requirements and the burst size used by the IPs.
However, despite the differences in requirements and behaviours, the proposed design flow
is able to scale the two examples, both in terms of requirements and number of connections,
for several hundreds of complete system instances.

6 Conclusions
Systems on Chip (SoC) integrate growing number of applications, often with real-time re-

quirements. This calls for an on-chip interconnect that is able to provide throughput and
latency bounds to an increasing number of logical connections. Doing so requires physical,
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Fig. 11 Scaling the number of connections

architectural as well as functional scalability. While many Networks on Chip (NoC) address
the physical and architectural scalability, the functional scalability depends heavily on the
interconnect design flow which is often overlooked.

In this work we describe a fully operational design flow used to generate application
specific NoC instances for multiple real-time applications. We show how to go from re-
quirement specification to a complete hardware and software instance, using two large-scale
industrial case studies. We shown the large impact burst sizes have on the interconnect area
and power consumption, and quantify the influence latency-critical connections have on the
network utilisation. The relatively low utilisation (around 25%) stresses the importance of
clock gating in the logic synthesis to minimise dynamic power. We show that low-power
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mixed-voltage-threshold libraries lead to leakage power being less than 3% in a 65 nm tech-
nology. We evaluate the scalability of the interconnect using the two case studies as our
starting point, and show that the proposed interconnect is able to accommodate a growing
number of requirements with a constant cost/performance ratio.

Open Access  This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. AXI (2003) AMBA AXI protocol specification. ARM Limited
2. Bartic T, Desmet D, Mignolet JY, Marescaux T, Verkest D, Vernalde S, Lauwereins R, Miller J, Robert
F (2004) Network-on-chip for reconfigurable systems: from high-level design down to implementation.
In: Proc FPL
3. Beigne E, Clermidy F, Vivet P, Clouard A, Renaudin M (2005) An asynchronous NOC architecture
providing low latency service and its multi-level design framework. In: Proc ASYNC
4. Beigné E, Clermidy F, Miermont S, Vivet P (2008) Dynamic voltage and frequency scaling architecture
for units integration within a GALS NoC. In: Proc NOCS
5. Benini L (2006) Application specific NoC design. In: Proc DATE
6. Benini L, de Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Comput 35(1):70-80
7. Beraha R, Isask’har WI, Kolodny A (2010) Leveraging application-level requirements in the design of a
NoC for a 4G SoC. In: Proc DATE
8. Bertozzi D, Jalabert A, Murali S, Tamhankar R, Stergiou S, Benini L, Micheli GD (2005) NoC synthesis
flow for customized domain specific multiprocessor systems-on-chip. IEEE Trans Parallel Distrib Syst
16(2):113-129
9. Bjerregaard T, Sparsg J (2005) A router architecture for connection-oriented service guarantees in the
MANGO clockless network-on-chip. In: Proc DATE
10. Bjerregaard T, Sparsg J (2005) A scheduling discipline for latency and bandwidth guarantees in asyn-
chronous network-on-chip. In: Proc ASYNC
11. Bjerregaard T, Mahadevan S, Grgndahl Olsen R, Sparsg J (2005) An OCP compliant network adapter
for GALS-based SoC design using the MANGO network-on-chip. In: Proc SOC
12. Bjerregaard T, Stensgaard M, Sparsg J (2007) A scalable, timing-safe, network-on-chip architecture with
an integrated clock distribution method. In: Proc DATE
13. Bogdan P, Kas M, Marculescu R, Mutlu O (2010) QualLe: a quantum-leap inspired model for non-
stationary analysis of noc traffic in chip multi-processors. In: Proc NOCS
14. Bolotin E, Cidon I, Ginosar R, Kolodny A (2003) QNoC: QoS architecture and design process for net-
work on chip. J Syst Archit 50(2-3):105-128
15. Buttazo GC (1977) Hard real-time computing systems: predictable scheduling algorithms and applica-
tions. Kluwer, Dordrecht
16. Chen J, Jone W, Wang J, Lu HI, Chen T (1999) Segmented bus design for low-power systems. IEEE
Trans Very Large Scale Integr 7(1):25-29
17. Clermidy F, Bernard C, Lemaire R, Martin J, Miro-Panades I, Thonnart Y, Vivet P, Wehn N (2010)
A 477 mw NoC-based digital baseband for MIMO 4G SDR. In: Proc ISSCC
18. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In: Proc DAC
19. DTL (2002) Device Transaction Level (DTL) Protocol Specification. Version 2.2. Philips Semiconduc-
tors
20. Eichenberger A, OBrien J, OBrien K, Wu P, Chen T, Oden P, Prener D, Shepherd J, So B, Sura Z et
al (2006) Using advanced compiler technology to exploit the performance of the cell broadband engine
architecture. IBM Syst J 45(1):59-84
21. Gangwal O, Radulescu A, Goossens K, Pestana S, Rijpkema E (2005) Building predictable systems on
chip: an analysis of guaranteed communication in the ZAthereal network on chip. In: Dynamic and robust
streaming in and between connected consumer-electronics devices. Kluwer, Dordrecht
22. Genko N, Atienza D, Micheli GD, Mendias J, Hermida R, Catthoor F (2005) A complete network-on-
chip emulation framework. In: Proc DATE
23. Gonzélez Pestana S et al (2004) Cost-performance trade-offs in networks on chip: a simulation-based
approach. In: Proc DATE

@ Springer



A quantitative evaluation of a Network on Chip design flow 189

24.

25.

26.

27.
. Hansson A, Goossens K (2007) Trade-offs in the configuration of a network on chip for multiple use-

29.
30.
31.
32.
33.
34.

35.

36.
37.
38.

39.
. Kavaldjiev N (2006) A run-time reconfigurable network-on-chip for streaming dsp applications. PhD

41.
42.

43.

44,
45.
46.
47.

48.

49.
50.

51.
52.

Goossens K, Gangwal OP, Rover J, Niranjan AP (2004) Interconnect and memory organization in SOCs
for advanced set-top boxes and TV—evolution, analysis, and trends. In: Nurmi J, Tenhunen H, Isoaho J,
Jantsch A (eds) Interconnect-centric design for advanced SoC and NoC. Kluwer, Dordrecht, pp 399-423,
Chap 15

Goossens K, Dielissen J, Gangwal OP, Gonzdlez Pestana S, Ridulescu A, Rijpkema E (2005) A design
flow for application-specific networks on chip with guaranteed performance to accelerate SOC design
and verification. In: Proc DATE

Goossens K, Dielissen J, Radulescu A (2005) The Athereal network on chip: concepts, architectures,
and implementations. IEEE Des Test Comput 22(5):21-31

Halfhill TR (2006) Ambric’s new parallel processor. Microprocessor Report

cases. In: Proc NOCS

Hansson A, Goossens K (2009) An on-chip interconnect and protocol stack for multiple communication
paradigms and programming models. In: Proc CODES+ISSS

Hansson A, Goossens K, Riadulescu A (2005) A unified approach to constrained mapping and routing
on network-on-chip architectures. In: Proc CODES+ISSS

Hansson A, Coenen M, Goossens K (2007) Undisrupted quality-of-service during reconfiguration of
multiple applications in networks on chip. In: Proc DATE

Hansson A, Goossens K, Radulescu A (2007) Avoiding message-dependent deadlock in network-based
systems on chip. VLSI Des 2007:1-10

Hansson A, Goossens K, Bekooij M, Huisken J (2009) Compsoc: a template for composable and pre-
dictable multi-processor System on Chips. ACM Trans Des Autom Electron Syst 14(1):1-24

Hansson A, Subburaman M, Goossens K (2009) Aelite: a flit-synchronous network on chip with com-
posable and predictable services. In: Proc DATE

Hansson A, Wiggers M, Moonen A, Goossens K, Bekooij M (2009) Enabling application-level perfor-
mance guarantees in network-based Systems on Chip by applying dataflow analysis. IET Computers and
Design Techniques

Hoskote Y, Vangal S, Singh A, Borkar N, Borkar S (2007) A 5-GHz mesh interconnect for a teraflops
processor. IEEE MICRO 27(5):51-61

Hu J, Marculescu R (2003) Exploiting the routing flexibility for energy/performance aware mapping of
regular NoC architectures. In: Proc DATE

Jalbert A et al (2004) x pipesCompiler: a tool for instantiating application specific networks on chip. In:
Proc DATE

Jantsch A (2006) Models of computation for networks on chip. In: Proc ACSD

thesis, University of Twente

Kollig P, Osborne C, Henriksson T (2009) Heterogeneous multi-core platform for consumer multimedia
applications. In: Proc DATE

Krsti¢ M, Grass E, Giirkaynak F, Vivet P (2007) Globally asynchronous, locally synchronous circuits:
overview and outlook. IEEE Des Test Comput 24(5):430—441

Lee H, Chang N, Ogras U, Marculescu R (2007) On-chip communication architecture exploration:
a quantitative evaluation of point-to-point, bus, and network-on-chip approaches. ACM Trans Des Autom
Electron Syst 12(3):1-20

Leijten J, van Meerbergen J, Timmer A, Jess J (2000) Prophid: a platform-based design method. J Des
Autom Embed Syst 6(1):5-37

Liang J, Swaminathan S, Tessier R (2000) aSOC: a scalable, single-chip communications architecture.
In: Proc PACT

Liu G, Ramakrishnan KG (2001) A*Prune: an algorithm for finding K shortest paths subject to multiple
constraints. In: Proc INFOCOM

Mangano D, Locatelli R, Scandurra A, Pistritto C, Coppola M, Fanucci L, Vitullo F, Zandri D (2006)
Skew insensitive physical links for network on chip. In: Proc NANONET

Marculescu R, Ogras U, Peh LS, Jerger N, Hoskote Y (2009) Outstanding research problems in NoC de-
sign: system, microarchitecture, and circuit perspectives. IEEE Trans Comput-Aided Des Integr Circuits
Syst 28(1):3-21

Marescaux T, Mignolet J, Bartic A, Moffat W, Verkest D, Vernalde S, Lauwereins R (2003) Networks
on chip as hardware components of an OS for reconfigurable systems. In: Proc FPL

Millberg M, Nilsson E, Thid R, Jantsch A (2004) Guaranteed bandwidth using looped containers in
temporally disjoint networks within the Nostrum network on chip. In: Proc DATE

Moerman K (2007) Embedded vector processor is one way to tune software-defined radios. In: EE Times
Moraes F, Calazans N, Mello A, Moller L, Ost L (2004) HERMES: an infrastructure for low area over-
head packet-switching networks on chip. Integr VLSI J 38(1):69-93

@ Springer



190 A. Hansson, K. Goossens

53. Moreira O, Valente F, Bekooij M (2007) Scheduling multiple independent hard-real-time jobs on a het-
erogeneous multiprocessor. In: Proc EMSOFT

54. Murali S, De Micheli G (2005) An application-specific design methodology for STbus crossbar genera-
tion. In: Proc DATE

55. Nandi A, Marculescu R (2001) System-level power/performance analysis for embedded systems design.
In: Proc DAC

56. Nollet V, Marescaux T, Avasare P, Mignolet JY (2005) Centralized run-time resource management in a
network-on-chip containing reconfigurable hardware tiles. In: Proc DATE

57. OCP (2007) OCP Specification 2.2. OCP International Partnership

58. Ogras UY, Hu J, Marculescu R (2005) Key research problems in NoC design: a holistic perspective. In:
Proc CODES+ISSS

59. Panades I, Greiner A, Sheibanyrad A (2006) A low cost network-on-chip with guaranteed service well
suited to the GALS approach. In: Proc NANONET

60. Paukovits C, Kopetz H (2008) Concepts of switching in the time-triggered network-on-chip. In: Proc
RTCSA

61. Penning de Vries R (2008) Ic innovations in automotive. In: Plenary session international conference on
solid-state and integrated-circuit technology

62. PIBus (1994) PI-Bus Standard OMI 324. Siemens AG, ver. 0.3d edn

63. Pinto A et al (2003) Efficient synthesis of networks on chip. In: Proc int’] conference on computer design
(ICCD)

64. Pullini A, Angiolini F, Murali S, Atienza D, De Micheli G, Benini L (2007) Bringing NoCs to 65 nm.
IEEE MICRO 27(5):75-85

65. Riadulescu A, Dielissen J, Goossens K, Rijpkema E, Wielage P (2005) An efficient on-chip network
interface offering guaranteed services, shared-memory abstraction, and flexible network programming.
IEEE Trans CAD Integrated Circuits Syst 4-17

66. Rostislav D, Vishnyakov V, Friedman E, Ginosar R (2005) An asynchronous router for multiple service
levels networks on chip. In: Proc ASYNC

67. Rutten M, Pol EJ, van Eijndhoven J, Walters K, Essink G (2005) Dynamic reconfiguration of streaming
graphs on a heterogeneous multiprocessor architecture. In: IS&T/SPIE electron imag, vol 5683

68. Scherrer A, Fraboulet A, Risset T (2006) Automatic phase detection for stochastic on-chip traffic gener-
ation. In: Proc CODES+ISSS

69. SonicsMX (2005) SonicsMX Datasheet. Sonics, Inc. Available on www.sonicsinc.com

70. Stergiou S, Angiolini F, Carta S, Raffo L, Bertozzi D, de Micheli G (2005) xpipes Lite: a synthesis
oriented design library for networks on chips. In: Proc DATE

71. Stoica I, Zhang H (1999) Providing guaranteed services without per flow management. In: Proc SIG-
COMM

72. Tota S, Casu M, Roch M, Macchiarulo L, Zamboni M (2009) A case study for NoC-based homogeneous
MPSoC architectures. IEEE Trans Very Large Scale Integr 17(3):384-388

73. van Berkel K, Heinle F, Meuwissen P, Moerman K, Weiss M (2005) Vector processing as an enabler for
software-defined radio in handheld devices. EURASIP J Appl Signal Process 2005:2613-2625

74. Weber WD, Chou J, Swarbrick I, Wingard D (2005) A quality-of-service mechanism for interconnection
networks in system-on-chips. In: Proc DATE

75. Wentzlaff D, Griffin P, Hoffmann H, Bao L, Edwards B, Ramey C, Mattina M, Miao CC, Brown JF,
Agarwal A (2007) On-chip interconnection architecture of the tile processor. IEEE MICRO 27(5):15-
31

76. Wielage P, Marinissen E, Altheimer M, Wouters C (2007) Design and DfT of a high-speed area-efficient
embedded asynchronous FIFO. In: Proc DATE

77. Wiggers MH, Bekooij MJ, Smit GJ (2008) Buffer capacity computation for throughput constrained
streaming applications with data-dependent inter-task communication. In: Proc RTAS

78. Wiklund D, Liu D (2003) SoCBUS: switched network on chip for hard real time embedded systems. In:
Proc IPDPS

79. Wingard D, Kurosawa A (1998) Integration architecture for system-on-a-chip design. In: Proc CICC

80. Wolkotte P, Smit G, Rauwerda G, Smit L (2005) An energy-efficient reconfigurable circuit-switched
network-on-chip. In: Proc IPDPS

@ Springer


http://www.sonicsinc.com

	A quantitative evaluation of a Network on Chip design flow for multi-core consumer multimedia applications
	Abstract
	Introduction
	Related work
	Physical scalability
	Architectural scalability
	Functional scalability

	Design flow
	Dimensioning
	Allocation
	Instantiation
	Verification

	Digital TV
	Experimental results
	Scalability analysis

	Automotive radio
	Experimental results
	Scalability analysis

	Conclusions
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


