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Abstract—
While multi-processor system-on-chips (MPSOCs) with

network-on-chip (NOC) interconnect are becoming increasingly
common to meet the constant performance demand, it is due
to communication delays in the NOC extremely complicated to
ensure that software executes correctly. In this paper, we extend
our architecture that non-intrusively observes global properties
at run time using distributed monitors such that not only single
tokens but also pipelined tokens can be monitored. We detailthe
solution for a given race and compare the alternatives of having
one large monitor versus multiple small monitors.

Index Terms—Validation, races, monitors, distributed property
checking

I. I NTRODUCTION

The increasing demand for performance is addressed using
multi-processor system-on-chips (MPSOCs), which consist
of a number of processors and supporting peripherals, with
network-on-chip (NOC) interconnects, combined in a single
integrated circuit (IC). While NOC-based MPSOCs meet the
performance demand, it is hard to ensure that an MPSOC
meets its specification due to its hardware and software
complexity.

Pre-silicon verification of software and hardware does not
imply that the complete (final) system meets its specification
because execution models may not match, and fault models
may not capture all failures. As a result post-silicon debugis
often required to find out why the final physical system does
not work as expected. Post-silicon debug of an MPSOC is
a challenge because an MPSOC typically contains a number
of unsynchronized clock domains. Global properties about
the system therefore require communication between multiple
distributed units in different domains (possibly far apart)
with non-negligible communication delays. There are several
problems to overcome. First, there is a need to be able to
monitor local properties, preferably in a non-intrusive way
such that the functional operation is not impacted. Second,
results of local distributed monitors must be combined for
global properties. Sending information over the functional
interconnect may impact functional performance and/or end
product cost and is therefore not desirable. Adding extensive
additional infrastructure for post-silicon debug is also costly.
Third, there is no common time reference in the system due to
the use of multiple clock domains, which complicates creating
a globally consistent view on the system [1]. Fourth, the fact

that local properties may become true millions of clock cycles
apart from each other requires efficient handling and analysis
of large data volumes.

We have previously developed an architecture to monitor
for communication delays in NOC-based MPSOCs [2]. In
particular, we showed the ability to check for races where
one token consisting of a number of words is produced and
consumed correctly. However, in general,multiple tokens can
be pipelined. A producer can generate an arbitrary number of
tokens and it can be very difficult to detect which specific
word(s) cause(s) the problem. The fundamental problem is
to distinguish and associate reads and writes in the memory
with tokens. Hence, there is a need to check pipelined tokens.
Based on our work [2], we detail the two alternatives: 1 N-
token monitor and N 1-token monitors. We made a case study
where we detail the overhead of each approach.

The paper is organized as follows. Related work is in
Section II and a high-level overview is in Section III. Races
are described in Section IV, our distributed debug architecture
in Section V. A case study where we find races at run time is
given in Section VI. We conclude with Section VII.

II. RELATED WORK

Observing the state of the system is very difficult due to the
limited access to the state of the internal nodes (e.g. flip-flops).
A straight-forward approach to observe the system’s state is to
reuse the scan-chains, which are present to enable manufac-
turing test. Scan-chains, flip-flops with additional multiplexers,
are commonly used to apply manufacturing tests. The scan-
chains allow to capture the state of the system at a given
time [3]. While it is cost-effective to reuse the scan-chains,
as they are already present for manufacturing test, their use is
intrusive, as the system must be stopped while the content of
the flip-flops is serially shifted out. It also only allows a single
snap-shot to be taken of the system at a time after the MPSOC
has been stopped. Stopping the clocks for a globally consistent
snap-shot is difficult due to the multiple clock domains [4],
[5]. After taking the snap-shot, the system execution has tobe
resumed or restarted. Resuming the execution of the system
to make additional snap-shots is also difficult, as the precise
clock relations among the internal clock domains, and the
synchronization with the external environment at the moment
of stopping may not be restorable.



A non-intrusive debug approach is to make use of trace
buffers, which is common in today’s processors [6]. However,
the constant increase of complexity and circuit speeds enforce
larger trace buffers, and techniques to compress data have
been developed [7]. In MPSOCs, there is even a need for
multiple trace buffers, monitors to trigger on events, and com-
munication between monitors. An MPSOC debug architecture
with a separate interconnect for debug is proposed in [8]. Ina
similar set-up, re-use of the functional interconnect is proposed
to send debug data [9], or synchronization tokens [10]. The
functional application is impacted by this debug activity,which
is not desirable.

While a significant number of works have been proposed on
silicon debug, no work but our previous work [2] details races
that cannot be envisioned at the software level, or demonstrates
how to detect these races. Different from our previous work (
[2]) where a single token of a number of words is considered,
we address in this paper multiple pipelined tokens.

III. H IGH-LEVEL OVERVIEW

Figure 1 shows a task graph that consists of nodes and
directed edges where a node represents a computation task
and an edge between nodes represents communication between
tasks. Figure 2 shows the task graph in Figure 1 mapped on an
example MPSOC. TaskT0 receives and distributes inputs to
taskT1, executing onCPU0, and taskT3, executing onCPU0.
TasksT2 is executed onCPU0 together with TaskT1, while
T4 is executed onCPU2 together with TaskT3. Given the
results of taskT2 andT4, taskT5 produces the outputs of the
MPSOC.

The communication between tasks, represented by edges
between the tasks, can be implemented by First-In First-Out
(FIFO) queues. A FIFO queue can be hardware-based, i.e.
implemented with dedicated hardware, or software-based, i.e.
assigning a part of the shared memory for the FIFO. In this
paper, we assume that the FIFO queues are implemented as
parts of the shared memory betweenCPU0 andCPU1.

A software-based FIFO is often implemented as a circu-
lar buffer. The advantage with this implementation is that
only pointers and not elements have to be updated when
operating on the FIFO. Figure3 details a circular FIFO on
which two tasks (a producer and a consumer) operate and
the four associated pointers,FIFOtop, FIFObottom, RDptr,
andWRptr. The pointersFIFOtop andFIFObottom define
the size of the FIFO and the pointerRDptr defines where
to read from the FIFO at a given point in time andWRptr

defines where to write to the FIFO at a given point in time.
The valid data of the FIFO is always betweenRDptr and the
WRptr; however, as the pointers are constantly updated based
on FIFO reads and writes, the valid area changes. The pointers
RDptr andWRptr always have to be betweenFIFOtop and
FIFObottom. However, even then two alternatives exist for the
valid area; alternative one - the case whereRDptr is larger
than WRptr , and alternative two - the case whereWRptr

has passedFIFOtop and restarted atFIFObottom, and is
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Fig. 1. A task graph

smaller thanRDptr. As soon asRDptr also passesFIFOtop

and restarts atFIFObottom, alternative one is valid again.
In order to minimize the memory latency and traffic in the

NOC, it is common practice that pointers are kept locally at
the producer and consumer. TheFIFOtop andFIFObottom

pointers are static and are not changed during the application
and therefore copies can be kept locally at the consumer
and the producer to ensure pointer consistency. However, the
RDptr and theWRptr are constantly updated during applica-
tion. The general scheme is that the producer keepsWRptr

and a copy orRDptr (namedRD′

ptr) while the consumer
keepsRDptr and a copy ofWRptr (namedWR′

ptr).
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Fig. 2. A task graph mapped on a system
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Fig. 3. Detailing two tasks (consumer and producer) operating on a FIFO

Figure 4 shows two communicating tasks,T1 andT2, where
the producer taskT1 generates elements that are used by the
consumer taskT2. In Figure 4, TaskT1 is mapped to CPU1
while TaskT2 is mapped on CPU2.

Before writing to or reading from the FIFO the producer and
consumer poll the read and write pointers. Figure 4 shows that
the pointers WRptr and RDptr are kept in an on-chip memory
which is accessible with a low latency, while the (usually much
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Fig. 4. A task graph and an example mapping

larger) FIFO data is kept in the large, slower off-chip memory.
The producer repeatedly enters new tokens into the FIFO by

the transactions, as detailed in Figure 5, while the consumer
repeatedly requests tokens from the FIFO by the transactions,
as detailed in Figure 6. Figure 4 shows that the transactions
p.2, p.3, p.6 operate on the on-chip memory whilep.5 operates
on the off-chip memory, and that the transactionsc.2, c.3,
c.6 operate on the on-chip memory whilec.5 operates on the
off-chip memory. The transactions by the producer and the
consumer in Figure 4 over time are shown in Figure 7, using
time lines of [11]. The producer, consumer, on-chip memory,
and off-chip memory each have a time line indicating when
transactions are issued and when they take effect. The example
trace shows how both producer and consumer poll and check
the pointers, followed by the successful transfer of one token.

(p.1)while (true)
(p.2) read RDptr
(p.3) read WRptr
(p.4) if ok_to_write
(p.5) write data
(p.6) write WRptr

Fig. 5. Producer side

(c.1)while (true)
(c.2) read RDptr
(c.3) read WRptr
(c.4) if ok_to_read
(c.5) read data
(c.6) write RDptr

Fig. 6. Consumer side

IV. RACES AND DISTRIBUTED CONDITIONS

Modern high-performance on-chip interconnects, such as
multi-layer busses and networks on chip (NOC), are pipelined
and concurrent, to serve many transactions at the same time.
As a result, there is no single sequential system trace, as
was the case for older, sequential interconnects. Distributed
memories, effects in the NOC such as different path lengths,
congestion, differential Quality-of-Service guarantees, as well
as slave arbitration and different slave speeds of execution,
make it often hard to predict when transactions are delivered
and executed. As a result, read and write transactions issued in
a given order by a processor may execute in a different order at
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different slaves. Next, we illustrate how communication races
may occur, using a NOC [12].

Figure 8 shows an execution trace of the transactions for
the example of Figure 4 that althoughissued in a valid order
may lead to anincorrect execution. The problem is that the
update of WRptr (p.6) issued ati is quickly transported to and
written in the on-chip memory atj. Hence, it can overtake the
slowerwrite data (p.5), which is issued atg and written in the
off-chip memory ath. The consumer reads the updated pointer
WRptr (c.3) at o, but subsequently still reads old data (read
data c.5) at r. To detect this race, which is a global property,
it is required to monitor properties at the on-chip memory,
and off-chip memory, and then correlate these distributed local
properties to detect the race. A race similar to WRptr can occur
for RDptr.

Figure 9 details reads and writes in terms of tokens where
a token consists of a number of words. In our previous
work ( [2]) we solved the problem when writing and reading
single tokens at a time. However, pipelined tokens remained
unsolved. Before addressing how to detect possible races
for pipelined tokens, we shortly revisit the supportive debug
architecture.

V. D ISTRIBUTED DEBUG ARCHITECTURE

Figure 10 shows a high-level overview of an MPSOC,
including the NOC and IP blocks like processors, memory,
etc., that are connected to a local bus using its arbiter (A) and
to a network protocol shell (S). This shell translates a specific
bus protocol to a stream of data words. These data words are
then transported by the NOC from network interface (NI) to
NI, using intermediate routers [12].

Figure 10 also shows the Event Distribution Interconnec-
tion (EDI) [4] (shaded), which is routed parallel to, but is
independent from, the functional router network. Since the
EDI broadcasts events, it is simpler, faster, and cheaper than
the NOC. Extending our previous EDI implementations, it
contains multiple planes, to allow for multiple events and
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identification of the event’s originator. The EDI delivers events
to monitors, protocol-specific instruments (PSI) [13], or IP
blocks, who can be programmed to either use, e.g. to stop
communication and/or computation, or ignore them.

The monitor is non-intrusive as it only observes the bus to
which it is attached and the events from other monitors that
arrive over the EDI. Likewise, the outputs from the monitor are
sent to other monitors using the EDI. A key advantage of the
EDI is that all communication (and delays) are deterministic
and fixed in time.

The monitor, shown in Figure 11, consists of abus reader,
three data matchers (DMs), and astate machine (SM). The
bus reader is specific to the bus protocol, and forms the
interface between the bus and the monitor. The bus reader
takes the inputs from the bus and extracts address (adr), data
(write data and read data), along with valid signals for
each (adr valid, write valid, read valid), and command
information (cmd). Thecmd from the bus reader is pipelined
and turned into a signalc indicating a read or write operation.
Outputs from the bus reader is fed to three programmable data
matchers, which produces three outputs,a, w, r, respectively.
Each of these three data matchers consists of two symmetric
parts, left and right (refer to Figure 12). The low (high) register
can be initialized to a pre-defined value or set during execution
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Fig. 10. A NOC with monitors and EDI for debug

to the input data. The low and high registers can independently
be updated to an input value or to an incremented value. The
low and high register can be masked such that a set of bits are
ignored. The masked outcome is compared against the input
(data), which also can be masked. A data matcher can check:

1) if (part of) its input is (not) equal, less or greater than
a given value or the previous input, or

2) if (part of) its input is in a static or moving range [min,
max].

The outputs of the three programmable data matchers (a,
w, r) and the read or write command signal (c) are fed to a
programmble state machine.

The state machine (Figure 13) is RAM-based to allow full
programability. The RAM input (A - address) is given by
events, EDIin and thecurrent state (CS)/ next state
(NS). The RAM output (D - data) consists ofEDIout and
the current state (CS)/ next state (NS).
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VI. M ONITORING PIPELINED TOKENS

We compare below the alternative of having oneN -token
monitor, capable of handlingN tokens simultaneously, against
N 1-token monitors, each capable of handling one token, but
communication among each other via the EDI to also be able
to handleN tokens simultaneously. We assume below a token
size of 8 words. However, the approach applies to any token
size.

Each monitor consists of three data matchers and a state
machine implemented in RAM. TheN -token monitor requires
a larger state machine (RAM) to capture all states but reuse
its data matchers and less additional EDI signaling between
monitors. We compare RAM sizes, number of EDI signals,
and number of data matchers.

• N 1-token monitors
In the case ofN 1-token monitors, naturallyN monitors
are needed. The total size of the RAM (R) in bits
(refer to Figure 13) depends on the number ofaddress
bits (a) and the data word size (d), and is given by
R = d · 2a. The number of state bits (s) in an 1-
token monitor is 6 (as derived in [2]). In addition, each
of the N 1-token monitors uses a single EDI input
to receive events from monitorM2, located at the on-
chip control memory, three event inputs from the local
data matchers (refer to Figure 11), an additional input
to distinguish a read operation from a write operation,
and three EDI inputs (and outputs) for inter monitor
signaling. This brings the total number of address bits
a to s+1+3+1+3 = 6+8 = 14. On the RAM output
side, two error signals and three inter monitor EDI signals
result ind = s + 2 + 3 = 6 + 5 = 11. The total memory
size is therefore given byRN = N · 11 · 214) for the



use case withN 1-token monitors. For the corresponding
EDI architecture, there is one EDI layer to receive events
from monitorM2, and per monitor two layers for error
signaling and three layers for inter monitor signaling,
hence the total number of EDI layers equals5 ·N +1. In
addition,N 1-token monitors require three data matchers
in each monitor, so3 · N in total.

• 1 N -token monitor
A N -token monitor capable of handlingN pipelined
tokens needs 8 states to record the writing of the eight
words of the first token. For subsequent pipelined tokens,
reads of the previous token(s) and writes of the current
token can arrive interchanged, hence, each pipeline stage
plus the final stage connecting with the initial state
requires8·8 states. The total number of states is therefore
given by 8 + 64 · N for N ≥ 2. The monitor has to be
able to record up toN EDI events from monitorM2

for N tokens (including zero). Hence,log2⌈N + 1⌉ bits
are needed for EDI administration. The total number of
state bits is given by:s = ⌈log2(N + 1) · (8 + 64 · N)⌉.
The monitor needs one EDI input to receive events from
monitor M2, two outputs for error signaling and two
inputs and outputs for inter monitor signaling, which
leads tod = s + 5). The number of inputsa = s + 2 ·N
where2 ·N is needed to distinguish a protocol violation
from a network delay problem for each token. The total
number of memory bits is:(s+2 ·N ·)2(s+5). For the EDI
architecture, there is one EDI from monitorM2 and two
per monitor for error signaling, hence:1 + 2 · N . Using
a single monitor leads to three required data matchers.

In Figure 14, the resulting silicon area estimates of oneN -
token monitor andN 1-token monitors are reported forN
ranging from 1 to 8. For1 < N < 4 the N -token monitor
is more cost effective; however, at higherN , the N 1-token
monitors become more effective mainly because the higher
number of required states increases the RAM rapidly for the
N -token monitor.

Overall, we prefer the implementation ofN individual
monitors over one single monitor, because the individual
monitors will be more adaptable to other debug use cases as
well.

VII. C ONCLUSIONS

Software running on multi-processor system-on-chips with
an advanced interconnect, such as a network-on-chip, may
suffer from races that are difficult to detect. In this paper
we extended our architecture to non-intrusively monitor for
races, such that not only single tokens of a given number of
words, but also pipelined token violations can be detected.
The violations can be classified as timing errors or FIFO
protocol violations. We have compared two implementation
alternatives; 1 N-token monitor and N 1-token monitors.

REFERENCES

[1] B. Vermeulen and K. Goossens, “Obtaining consistent global state
dumps to interactively debug systems on chip with multiple clocks,”

Fig. 14. Comparing area of1×N -token monitor andN×1-token monitors

in Proc. Workshop on High-Level Design Validation and Test (HLDVT),
Jun. 2010.

[2] E. Larsson, B. Vermeulen, and K. Goossens, “Distributedarchitecture for
checking global properties during post silicon debug,” inProc. European
Test Symposium (ETS), May 2010.

[3] K. Holdbrook et al., “Microsparc: a case-study of scan based debug,”
in International Test Conference, 1994, pp. 70–75.

[4] B. Vermeulenet al., “Debugging distributed-shared-memory communi-
cation at multiple granularities in networks on chip,” inInternational
Symposium on Networks-on-Chip, 2008, pp. 3–12.

[5] B. Vermeulen and K. Goossens, “Debugging multi-core systems on
chip,” in Multi-Core Embedded Systems, G. Kornaros, Ed. CRC
Press/Taylor & Francis Group, Sep. 2010, ch. 5, pp. 153–198.

[6] ARM, “Embedded trace buffer,” ARM Ltd., Tech. Rep.
[7] E. Daoud and N. Nicolici, “Real-time lossless compression for silicon

debug,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 28, no. 9, pp. 1387–1400, Sept. 2009.

[8] R. Leatherman and N. Stollon, “An embedding debugging architecture
for SOCs,”Potentials, IEEE, vol. 24, no. 1, pp. 12–16, Feb.-March 2005.

[9] S. Tang and Q. Xu, “In-band cross-trigger event transmission for
transaction-based debug,” inDesign, automation and test in Europe,
2008, pp. 414–419.

[10] C.-N. Wen et al., “Nuda: a non-uniform debugging architecture and
non-intrusive race detection for many-core,” inDesign Automation
Conference, 2009, pp. 148–153.

[11] L. Lamport, “Time, clocks, and the ordering of events ina distributed
system,”Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[12] A. Hansson and K. Goossens, “An on-chip interconnect and protocol
stack for multiple communication paradigms and programming models,”
in Int’l Conf. on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Oct. 2009.

[13] K. Goossens, B. Vermeulen, and A. Beyranvand Nejad, “A high-level
debug environment for communication-centric debug,” inProceedings
Design, Automation, and Test in Europe (DATE), Apr. 2009.


