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Abstract— that local properties may become true millions of clock egcl

While multi-processor  system-on-chips  (MPSOCs) with apart from each other requires efficient handling and aisalys
network-on-chip (NOC) interconnect are becoming increasigly of large data volumes.

common to meet the constant performance demand, it is due We h ) v d | d hitect ¢ it
to communication delays in the NOC extremely complicated to € have previously developed an architecture to monitor

ensure that software executes correctly. In this paper, wextend for communication delays in NOC-based MPSOCs [2]. In
our architecture that non-intrusively observes global prgerties particular, we showed the ability to check for races where

at run time using distributed monitors such that not only single  one token consisting of a number of words is produced and
tokens but also pipelined tokens can be monitored. We detathe consumed correctly. However, in genemaljltiple tokens can

solution for a given race and compare the alternatives of hang be pioelined. A d t bit b f
one large monitor versus multiple small monitors. € pipelined. A producer can generate an arbitrary number o

Index Terms—\Validation, races, monitors, distributed property ~ tokens and it can be very difficult to detect which specific
checking word(s) cause(s) the problem. The fundamental problem is

to distinguish and associate reads and writes in the memory
l. INTRODUCTION with tokens. Hence, there is a need to check pipelined tokens

The increasing demand for performance is addressed usBegsed on our work [2], we detail the two alternatives: 1 N-
multi-processor system-on-chips (MPSOCs), which consisiken monitor and N 1-token monitors. We made a case study
of a number of processors and supporting peripherals, witthere we detail the overhead of each approach.
network-on-chip (NOC) interconnects, combined in a single The paper is organized as follows. Related work is in
integrated circuit (IC). While NOC-based MPSOCs meet thgection Il and a high-level overview is in Section Ill. Races
performance demand, it is hard to ensure that an MPS@& described in Section IV, our distributed debug architec
meets its specification due to its hardware and softwaireSection V. A case study where we find races at run time is
complexity. given in Section VI. We conclude with Section VII.

Pre-silicon verification of software and hardware does not
imply that the complete (final) system meets its specificatio
because execution models may not match, and fault model©bserving the state of the system is very difficult due to the
may not capture all failures. As a result post-silicon delsug limited access to the state of the internal nodes (e.g. fhipsil.
often required to find out why the final physical system doés straight-forward approach to observe the system’s st i
not work as expected. Post-silicon debug of an MPSOC risuse the scan-chains, which are present to enable manufac-
a challenge because an MPSOC typically contains a numingning test. Scan-chains, flip-flops with additional mukixers,
of unsynchronized clock domains. Global properties aboate commonly used to apply manufacturing tests. The scan-
the system therefore require communication between nheilticghains allow to capture the state of the system at a given
distributed units in different domains (possibly far apartime [3]. While it is cost-effective to reuse the scan-clsain
with non-negligible communication delays. There are s@veras they are already present for manufacturing test, theiisus
problems to overcome. First, there is a need to be ableitdrusive, as the system must be stopped while the content of
monitor local properties, preferably in a non-intrusiveywathe flip-flops is serially shifted out. It also only allows agie
such that the functional operation is not impacted. Secorshap-shot to be taken of the system at a time after the MPSOC
results of local distributed monitors must be combined fdras been stopped. Stopping the clocks for a globally camdist
global properties. Sending information over the functlonanap-shot is difficult due to the multiple clock domains [4],
interconnect may impact functional performance and/or effl]. After taking the snap-shot, the system execution hdseto
product cost and is therefore not desirable. Adding extensiresumed or restarted. Resuming the execution of the system
additional infrastructure for post-silicon debug is alsistty. to make additional snap-shots is also difficult, as the peeci
Third, there is no common time reference in the system duedimck relations among the internal clock domains, and the
the use of multiple clock domains, which complicates creati synchronization with the external environment at the mamen
a globally consistent view on the system [1]. Fourth, the faof stopping may not be restorable.

II. RELATED WORK



A non-intrusive debug approach is to make use of trace —.
buffers, which is common in today’s processors [6]. Howgever

the constant increase of complexity and circuit speedsreafo

larger trace buffers, and techniques to compress data have

been developed [7]. In MPSOCs, there is even a need for " 4’ @4’ out
multiple trace buffers, monitors to trigger on events, aothe

munication between monitors. An MPSOC debug architecture

with a separate interconnect for debug is proposed in [8} In ®\_,

similar set-up, re-use of the functional interconnect sposed

to send debug data [9], or synchronization tokens [10]. The
functional application is impacted by this debug actiwitiich

is not desirable.

While a significant number of works have been proposed @maller thanRD,;,.. As soon askD,,, also passe§'1FO;,,
silicon debug, no work but our previous work [2] details iceand restarts af' I FOport0m, alternative one is valid again.
that cannot be envisioned at the software level, or dematestr |n order to minimize the memory latency and traffic in the
how to detect these races. Different from our previous WOI‘kl\(OC, it is common practice that pointers are kept locally at
[2]) where a single token of a number of words is considereghe producer and consumer. THE FOy0p and FIF Opottom

Fig. 1. A task graph

we address in this paper multiple pipelined tokens. pointers are static and are not changed during the apjlicati
and therefore copies can be kept locally at the consumer
I1l. HIGH-LEVEL OVERVIEW and the producer to ensure pointer consistency. Howewer, th

) ) RD,: and theWW R, are constantly updated during applica-
Figure 1 shows a task graph that consists of nodes afgh The general scheme is that the producer k8&if3,.,

directed edges where a node represents a computation task copy orRD,,, (namedRD’, ) while the consumer
ptr

. . ptr
and an gdge between nodes represen_ts cpmmumcaﬂon bet SRD,, and a copy ofi¥’ Ry, (namediV'R),.).
tasks. Figure 2 shows the task graph in Figure 1 mapped on an
example MPSOC. TasK| receives and distributes inputs to
taskT}, executing orC' PUy, and taskl's, executing orC PU. a

TasksT; is executed orC PU, together with Taskl'y, while CPY
T, is executed onC PU, together with Taskls. Given the
results of taskl; and Ty, taskT5 produces the outputs of the in T

MPSOC. input Interconnect
The communication between tasks, represented by edges
between the tasks, can be implemented by First-In First-Out
(FIFO) queues. A FIFO queue can be hardware-based, i.e. Fig. 2. A task graph mapped on a system
implemented with dedicated hardware, or software-based, i
assigning a part of the shared memory for the FIFO. In this
paper, we assume that the FIFO queues are implemented as @
parts of the shared memory betwe€#®U, and C PU;.
A software-based FIFO is often implemented as a circu-
lar buffer. The advantage with this implementation is that

only pointers and not elements have to be updated when FIFO,,
operating on the FIFO. Figure3 details a circular FIFO on WR
which two tasks (a producer and a consumer) operate and RDp"
the four associated pointetB,l F Oyop, F'1F Opottom, RDpir, -
and W Ry,. The pointerst'I F'Oy,p, and FIF Oyottom define Fi

bottom

the size of the FIFO and the pointétD,, defines where
to read from the FIFO at a given point in time afdR,;. Fig. 3. Detailing two tasks (consumer and producer) opegatin a FIFO
defines where to write to the FIFO at a given point in time.

The valid data of the FIFO is always betwe&®d,,, and the Figure 4 shows two communicating tasi$,and Ty, where

W Ry, however, as the pointers are constantly updated badbhd producer task’; generates elements that are used by the
on FIFO reads and writes, the valid area changes. The psinteonsumer taskl». In Figure 4, Taskl} is mapped to CPY
RD,: andW R, always have to be betwedn! F'O;,, and while TaskT, is mapped on CP4J

FIFOpotiom- However, even then two alternatives exist for the Before writing to or reading from the FIFO the producer and
valid area; alternative one - the case wh&B,, is larger consumer poll the read and write pointers. Figure 4 showis tha
than WR,,,, and alternative two - the case whel€R,;, the pointers W'Btr and Rq)tr are kept in an on-chip memory
has passed”IF'O,,, and restarted af'IFOp.ttom, and is which is accessible with a low latency, while the (usuallycimu
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Fig. 4. A task graph and an example mapping
Fig. 7. Time diagram for producer and consumer

larger) FIFO data is kept in the large, slower off-chip meynor

The producer repeatedly enters new tokens into the FIFO éifferent slaves. Next, we illustrate how communicatioces
the transactions, as detailed in Figure 5, while the consunteay occur, using a NOC [12].
repeatedly requests tokens from the FIFO by the transagtion Figure 8 shows an execution trace of the transactions for
as detailed in Figure 6. Figure 4 shows that the transactidhe example of Figure 4 that althougdsued in a valid order
p.2, p.3, p.6 operate on the on-chip memory whijleés operates may lead to arincorrect execution. The problem is that the
on the off-chip memory, and that the transactian®, c.3, update of Whyty (p.6) issued at is quickly transported to and
c.6 operate on the on-chip memory whites operates on the written in the on-chip memory gt Hence, it can overtake the
off-chip memory. The transactions by the producer and tisowerwrite data (p.5), which is issued ag and written in the
consumer in Figure 4 over time are shown in Figure 7, usigf-chip memory ath. The consumer reads the updated pointer
time lines of [11]. The producer, consumer, on-chip memorWRptr (c.3) at o, but subsequently still reads old datadd
and off-chip memory each have a time line indicating whe#uta ¢.5) atr. To detect this race, which is a global property,
transactions are issued and when they take effect. The d&anipis required to monitor properties at the on-chip memory,
trace shows how both producer and consumer poll and chegid off-chip memory, and then correlate these distributeslll
the pointers, followed by the successful transfer of onerok properties to detect the race. A race similar to §yRan occur

for RDpr.
(p.)while (true) (c.l)while (true) Figu?e 9 details reads and writes in terms of tokens where
(p.2) read RDptr (c.2) read RDptr a token consists of a number of words. In our previous
(p.3) read WRptr (c.3) read WRptr work ( [2]) we solved the problem when writing and reading
(p.4) if ok_to_wite(c.4) if ok_to_read single tokens at a time. However, pipelined tokens remained
(p.5) wite data (c.5) read data unsolved. Before addressing how to detect possible races
(p.6) wite WRptr (c.6) wite RDptr for pipelined tokens, we shortly revisit the supportive aigb

architecture.
Fig. 5. Producer side Fig. 6. Consumer side

V. DISTRIBUTED DEBUG ARCHITECTURE

Figure 10 shows a high-level overview of an MPSOC,
including the NOC and IP blocks like processors, memory,

Modern high-performance on-chip interconnects, such at., that are connected to a local bus using its arbiter () a
multi-layer busses and networks on chip (NOC), are pipdlinéo a network protocol shell (S). This shell translates a gigec
and concurrent, to serve many transactions at the same tilmes protocol to a stream of data words. These data words are
As a result, there is no single sequential system trace, tagn transported by the NOC from network interface (NI) to
was the case for older, sequential interconnects. Dis&ibu NI, using intermediate routers [12].
memories, effects in the NOC such as different path lengthsFigure 10 also shows the Event Distribution Interconnec-
congestion, differential Quality-of-Service guaranteeswell tion (EDI) [4] (shaded), which is routed parallel to, but is
as slave arbitration and different slave speeds of exetutindependent from, the functional router network. Since the
make it often hard to predict when transactions are deldzerEDI broadcasts events, it is simpler, faster, and cheaar th
and executed. As a result, read and write transactionsdsauethe NOC. Extending our previous EDI implementations, it
a given order by a processor may execute in a different otdeicantains multiple planes, to allow for multiple events and

IV. RACES AND DISTRIBUTED CONDITIONS
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Fig. 9. Detailing single token and pipelined tokens
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Fig. 8. Time diagram of a race

identification of the event’s originator. The EDI deliversats
to monitors, protocol-specific instruments (PSI) [13], & |
blocks, who can be programmed to either use, e.g. to stop
communication and/or computation, or ignore them.

The monitor is non-intrusive as it only observes the bus to

which it is attached and the events from other monitors that . ] ]
arrive over the EDI. Likewise, the outputs from the monitar a t0 the input data. The low and high registers can indepehdent

sent to other monitors using the EDI. A key advantage of tf¢ updated to an input value or to an incremented value. The
EDI is that all communication (and delays) are determiaist/OW and high register can be masked such that a set of bits are
and fixed in time. ignored. The masked outcome is compared against the input

(data), which also can be masked. A data matcher can check:

Fig. 10. A NOC with monitors and EDI for debug

The monitor, shown in Figure 11, consists obuas reader,
three data matchers (DMs), and astate machine (SM). The 1) if (part of) its input is (not) equal, less or greater than
bus reader is specific to the bus protocol, and forms the ' 3 given value or the previous input, or
interface between the bus and the monitor. The bus readep) if (part of) its input is in a static or moving range:jn,
takes the inputs from the bus and extracts address) (data maz).

(write_data and read_data), along with valid signals for

each @dr_valid, write_valid, read_valid), and command The outputs of the three programmable data matchers (
information ¢md). The cmd from the bus reader is pipelinedw, 7) and the read or write command signa) @re fed to a
and turned into a signalindicating a read or write operation.Programmble state machine.

Outputs from the bus reader is fed to three programmable datd he state machine (Figure 13) is RAM-based to allow full
matchers, which produces three outputsyw, r, respectively. programability. The RAM input (A - address) is given by
Each of these three data matchers consists of two symmetrients, EDI;, and thecurrent state (CS)/ next state
parts, left and right (refer to Figure 12). The low (high)istgr (N .S). The RAM output (D - data) consists &DI,,; and
can be initialized to a pre-defined value or set during exesout the current state (C'S)/ next state (NS).
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Fig. 12. One of three data matchers

VI. MONITORING PIPELINED TOKENS

EDI,

] We compare below the alternative of having aNetoken

adr monitor, capable of handlingy tokens simultaneously, against
adr_valid | Address matcher N 1-token monitors, each capable of handling one token, but
communication among each other via the EDI to also be able
wiite data t(_) handleN tokens simultaneously. We assume below a token
busdath |  Bus write_valid | Write matcher | State size of 8 words. However, the approach applies to any token
reader Size.

Each monitor consists of three data matchers and a state
r machine implemented in RAM. Th&-token monitor requires

a larger state machine (RAM) to capture all states but reuse
its data matchers and less additional EDI signaling between
monitors. We compare RAM sizes, number of EDI signals,
and number of data matchers.

read_data
read_valid Read matcher

cmd

ki

EDby;

o N 1-token monitors
Fig. 11. Overview of the monitor In the case ofV 1-token monitors, naturallyV.monitors
are needed. The total size of the RAM)(in bits
(refer to Figure 13) depends on the numberadfiress
bits (a) and thedata word size (d), and is given by
program interface R = d - 2% The number of state bitss) in an 1-

‘ token monitor is 6 (as derived in [2]). In addition, each
of the N 1-token monitors uses a single EDI input
to receive events from monitak/,, located at the on-
EDI;, - RAM @ chip control memory, three event inputs from the local
data matchers (refer to Figure 11), an additional input

to distinguish a read operation from a write operation,
F - and three EDI inputs (and outputs) for inter monitor

Coite signaling. This brings the total number of address bits
atos+1+3+1+3=6+8=14. On the RAM output
side, two error signals and three inter monitor EDI signals
resultind =s+2+3 =6+5 = 11. The total memory
size is therefore given bRy = N - 11 - 2') for the

event EDbyt

Fig. 13. State machine



use case withV 1-token monitors. For the corresponding
EDI architecture, there is one EDI layer to receive events
from monitor M5, and per monitor two layers for error
signaling and three layers for inter monitor signaling,
hence the total number of EDI layers equalgV + 1. In
addition, N 1-token monitors require three data matchers
in each monitor, s@ - N in total.

1 N-token monitor

A N-token monitor capable of handlingy pipelined
tokens needs 8 states to record the writing of the eight
words of the first token. For subsequent pipelined tokens,
reads of the previous token(s) and writes of the current

token can arrive interchanged, hence, each pipeline stage

plus the final stage connecting with the initial state.
requiress-8 states. The total number of states is therefore
given by8 + 64 - N for N > 2. The monitor has to be
able to record up taV EDI events from monitor}/,

for N tokens (including zero). Hencépgs| N + 1] bits

are needed for EDI administration. The total number of?

state bits is given bys = [log2(N + 1) - (8464 - N)].

The monitor needs one EDI input to receive events frons]

monitor M, two outputs for error signaling and two

inputs and outputs for inter monitor signaling, which[4]

leads tod = s+ 5). The number of inputs = s+2- N

where2 - N is needed to distinguish a protocol violation [3]

from a network delay problem for each token. The total
number of memory bits igis+2- N-)2(+5). For the EDI

architecture, there is one EDI from monitdf, and two  [7]

per monitor for error signaling, hencé:+ 2 - N. Using

a single monitor leads to three required data matchers.[8]

In Figure 14, the resulting silicon area estimates of dhe

9

token monitor andN 1-token monitors are reported fa¥

ranging from 1 to 8. Fol < N < 4 the N-token monitor

is more cost effective; however, at highat, the N 1-token

monitors become more effective mainly because the higher
number of required states increases the RAM rapidly for tifel]

N-token monitor.
Overall, we prefer the implementation a¥ individual

monitors over one single monitor, because the individual
monitors will be more adaptable to other debug use cases;ag

well.

VII. CONCLUSIONS

Software running on multi-processor system-on-chips with
an advanced interconnect, such as a network-on-chip, may
suffer from races that are difficult to detect. In this paper
we extended our architecture to non-intrusively monitar fo
races, such that not only single tokens of a given number of
words, but also pipelined token violations can be detected.
The violations can be classified as timing errors or FIFO
protocol violations. We have compared two implementation

alternatives; 1 N-token monitor and N 1-token monitors.
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