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Chapter 2
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Abstract System-on-chipgocC) design gets increasingly complex, as a growing
number of applications are integrated in modern systemmeS4d these applications
have real-time requirements, such as a minimum throughput@aximum latency.
To reduce cost, system resources are shared between &ippcanaking their tim-
ing behavior inter-dependent. Real-time requirementd imersce be verified foall
possible combinationsf concurrently executing applications, which is not feasi
ble with commonly used simulation-based techniques. Thépter addresses this
problem using two complexity-reducing conceptsmposabilityandpredictability.
Applications in a composable system are completely isdlatel cannot affect each
other’s behaviors, enabling them to be independently eekrifPredictable systems,
on the other hand, provide lower bounds on performanceymtpapplications to
be verified using formal performance analysis. Five teaescto achieve compos-
ability and/or predictability insoc resources are presented and we explain their
implementation for processors, interconnect, and memdmieur platform.

Key words: Composability, predictability, real-time, arbitratiolesource manage-
ment, multi-processor system

2.1 Introduction

The complexity of contemporary Systems-on-Chgp¢) is increasing, as a grow-
ing number of independent applications are integrated aeduted on a single
chip. These applications consist of communicating tasksp®ad on heterogeneous
multi-processor platforms with distributed memory hietaes that strike a good
balance between performance, cost, power consumptionexiblility [14, 22, 38].
The platforms exploit an increasing amount of applicaterel parallelism by en-
abling concurrent execution of more and more applicatidhss results in a large
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number ofuse-casesvhich are different combinations of concurrently runnayg
plications [15]. Some applications haseal-time requirementsuch as a minimum
throughput of video frames per second, or a maximum latemicgrocessing those
video frames. Applications with real-time requirements i@aferred to aseal-time
applications, while the rest areon-real-timeapplications. A use-case can contain
an arbitrary mix of real-time and non-real-time applicato

To reduce cost, platform resources, such as processosydna accelerators,
interconnect, and memories, are shared between applisatitowever, resource
sharing causemterferencebetween applications, making their temporal behav-
iors inter-dependent. Verification of real-time requirenseis often performed by
system-level simulation. This results in three problemthweéspect to verification,
since inter-dependent timing behavior requires that adliegtions in a use-case are
verified together. The first problem is that the number of eesesncreases rapidly
with the number of applications. It hence becomes infeadiblverify the explod-
ing number of use-cases by simulation. This forces industrgduce coverage and
verify only a subset of use-cases that have the toughestreewgnts [14, 37]. The
second problem is that verification of a use-case cannohhedil all applications
it comprises are available. Timely completion of the veaifion process hence de-
pends on the availability of all applications, which may eveloped by different
teams inside the company, or by independent software vendbe last problem
is that use-case verification becomesiraular processhat must be repeated if an
application is added, removed, or modified [23]. Togethes#three problems con-
tribute to making the integration and verification procestominant part ofSoc
development, both in terms of time and money [22, 23, 34].

In this chapter, we address the real-time verification mohlising two complexity-
reducing conceptomposabilityandpredictability. Applications in a composable
system are completely isolated and cannot affect each’stliectional or tempo-
ral behaviors. Composable systems address the verifigatidatem in the following
four ways [17]: 1) Applications can be verified in isolati@asulting in a linear and
non-circular verification process. 2) Simulating only aginapplication and its re-
quired resources reduces simulation time compared to @egystem simulations.
3) The verification process can be incremental and start@s a® the first appli-
cation is available. 4) Intellectual propertyp) protection is improved, since the
verification process no longer requires thef independent software vendors to be
shared. These benefits reduce the complexity of simuldiémed verification, mak-
ing it a feasible option with a larger number of applicatioAs additional benefit
is thatcomposability does not inherently make any assumptioniseoagplications
making it applicable to existing applications without angdifications.

Predictable systems, on the other hand, bound the intadersom the plat-
form and between applications. This enables bounds onnpeaftce, such as upper
bounds on latency or lower bounds on throughput, to be peavid\pplications
in predictable systems can hence be verified using formdbymeance analysis
frameworks, such as network calculus [9] or data-flow anslf@6]. The benefit
of formal performance verification is that conservativefpenance guarantees can
be provided for all possible combinations of initial stabésesources and arbiters,
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all input stimuli, and all concurrently executing applicais. The drawback is that
formal approaches require performance models of the st#twiae hardware, and
the mapping [8, 25], which are not always available. Compitisaand predictabil-
ity both solve important parts of the verification problendarovide a complete
solution when combined.

The two main contributions of this chapter are: 1) An ovewief five tech-
niques to achieve composability and/or predictability inltiprocessor systems
with shared resources. 2) We show how to design a composatlg@radictable
system by applying the proposed techniques to three typsalrce types: proces-
sor tiles, interconnect (a network on chip), and memon t{lgith either on-chip
SRAM or off-chip SDRAM).

The rest of this chapter is organized as follows. Sectiord2stribes a number
of techniques to achieve composability and/or predictgbiibr shared resources.
We then proceed in Sections 2.3, 2.4, and 2.5 by explaininghwf these tech-
niques are suitable for our processor tiles, network-dp;&@nd memory tiles, re-
spectively. Section 2.6 then demonstrates the composatiilour socplatform by
showing that the behavior of an application is unaffectetti@tcycle-level, as other
applications are added or removed. Lastly, we end the cheyitte conclusions in
Section 2.7.

2.2 Composability and predictability

The introduction motivates how composability and preditily address the in-
creasingly difficult problem of verifying real-time reqaiments insocs. The next
step is to provide more details on how to implement theseejaisc Firstly, we es-
tablish some essential terminology related to resourcarghavhich allows us to
define composability and predictability formally. We theisaiiss five techniques
to achieve these properties and highlight their respestiemgths and weaknesses.
This illustrates the design space for composable and peddiécsystems, and allows
us to explain how different techniques are suitable foredéht resources depending
on their properties, such as whether execution times arstaonor variable, and
whether the resource is abundant or scarce.

2.2.1 Terminology

Our context is a tiled platform architecture following themtplate shown in Fig-
ure 2.1. At the high level, this platform comprises a numtfgsrocessor tiles and
memory tiles interconnected by a network-on-chip. We retardiscuss the details
of this architecture in Sections 2.3, 2.4, and 2.5, respagtiAn applicationcon-

sists of a set dfasksthat may be split across several processor tiles to enatdéigda
processing. We assume a static task-to-processor mapghiig}) implies that task
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migration is not supported. Non-real-time tasks can comoat@ in any way they
like using distributed shared memory, obeying only theriggins on processors,
discussed later in Section 2.3.1. However, tasks of rea-tpplications operate in
a more restrictive fashion to ensure that their temporabbiein can be bounded.
Each real-time task continuoustgrates which means that it reads its inputs, exe-
cutes its function, and writes its outputs. Inter-task camioation is implemented
using FIFOs, according to theHEAP protocol [31], with blocking read and write
operations. Inside a FIFO token, data can be accessed inrdery @/e choose this
programming model because it perfectly fits the domain @&fastiing applications
and enables overlapping computation with communicatibfurthermore allows
modeling an application as a data-flow graph, which enalffeseat timing anal-
ysis. Communication between processor tiles and memay tilkes place via the
interconnect.

Requestare defined as uses of@source such as a processor, interconnect, or
a memory. The originators of requests, and hence the usdhe oksources, are
referred to agequestors Requests for a processor resource correspond to appli-
cation tasks that are ready for execution. In case of a memoay interconnect,
requests are transactions originating from portsrFonomponents. These transac-
tions are communicated using standardized protocols, a&swki [6], DTL [33], or
ocP[32]. Common examples of transactions are reads and writeiher single
data words or bursts of data to a memory location.

The execution timgET) of a request determines the amount of time a request
uses a resource before finishing. However, a requestor ntdyame exclusive ac-
cess to the resource, due to interference from other remgesdnterference may
prevent a request from accessing the resource straight-amehits execution may
be preempted several times before finishing. This is corsida theresponse time
(RT) of a request, which accounts for both the execution timethadnterference.
The response time is hence the total time it takes from whematuest is eligible
for scheduling at the resource until it has been served. Oire m time at which a
request is scheduled to use the resource for the first tineféégred to as itstarting
time It is important to note that the execution time, response tiand starting time
of a request from a requestor often depend on other reqsesioe execution time
may depend on others if a request from one requestor alestdte of a resource in
a way that affects the execution time of a following requAstommon example of
this is when a memory request from a requestor evicts a cash&dm another re-
questor, turning a future cache hit into a cache miss. ThEorese time and starting
time both typically vary with the presence or absence of estgifrom other re-
questors in systems with run-time arbitration, such asdaowobin or static-priority
scheduling. This results in a varying interference thaseawoth the starting time
and response time to change. We now proceed by defining ceitiosand pre-
dictability in terms of the established terminology.

The functional behavior of a request is defined as composdi®a its output is
independent of the behavior of requestors belonging ta @yglications. The tem-
poral behavior of a request from a requestor using a res@idafined as compos-
able if its starting time and response time are independariouiestors from other
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Fig. 2.1 The architecture of the considered MPSoC platform.

applications, since this implies that the request staddiarshes using the resource
independently of others. We refer to a resource asraposable resourcié both
functional and temporal composability holds for any setagfuestors and their as-
sociated requests. A composable system contains only cabfgresources. Such
a system enables independent verification of applicatiasgheir constituent re-
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questors and requests are completely isolated from eaehiotthe time and value
(functional) domains. The verification complexity hencedraes linear with re-

spect to the number of applications. It also makes the iaguyystem more robust
at run time, because there is no interference from unknaailimd, or misbehaving

applications. In this chapter, we focus on verification afl+ttme requirements. We
hence limit the discussion to temporal composability andatdurther discuss how
to achieve functional composability. For simplicity, wé mposability refer to

temporal composability in the rest of this chapter.

For predictability, every request on a resource must hatredoasefulworst-case
execution time \WCET) and worst-case response tinvedRrT). Unlike composabil-
ity, which inherently considers multiple requestors angliaations on a shared
resource, predictability can be considered for a non-shegeource with only a
single requestor. For shared resources,wWRT can be determined if there is a
bound on the interference from other requestors. A resoigregpredictable re-
sourceif all requests from all the requestors mapped on it are ptablie. Similarly,
a predictable system is a system only comprising predietadsdources. Predictable
systems enable formal verification of real-time requiretagsince applications are
sets of requestors for different resources that all probmendedvcRrT. For a com-
plete end-to-end analysis, theseRTs have to be used in a performance analysis
framework. We use data-flow [36] analysis to compute boumdthmughput and
latency for real-time applications, although time-trigegk [23] or network calcu-
lus [9] methods can also be used.

It is important to realize that predictability and compadbgbare two different
properties and that one does not imply the other. Predlitabieans that a useful
bound is known on temporal behavior and is hence a propegsgiofjle application
mapped on a set of resources. Composability, on the othel, iraplies complete
functional and temporal isolation between applicationd isra property ofnulti-
ple applicationssharing resources, where each application may be pretiobab
not. We illustrate the difference by discussing four exargylstems, shown in Fig-
ure 2.2, that cover all combinations of composability aneldpstability. The first
system, depicted in Figure 2.2a, consists of two procesd®);seach executing
a single application (A1 and A2, respectively). We assunag lloth applications
are predictable and hence that worst-case execution tineelsnawn for all tasks
when running on predictable hardware. Data is stored in edh@mote zero-bus-
turnaroundsrRAM that is reached via a bus. This typesstAm has an execution time
of one clock cycle per read or written word that is independémther requestors.
The srRAM is shared using time-division multiplexinggm) arbitration, which is
a composable and predictable arbitration scheme, sincevtirer of a requestor
is both bounded and independent of other requestors. THiesrthis system as a
whole both composable and predictable. For our secondmeyist€igure 2.2b, we
replace therbm arbiter with a round robin arbiter (RR). This system is nahpos-
able, since response times of requests vary depending @nekence or absence of
requests from other requestors. However, it is still pradhile, since this interference
is easily bounded. We create our last two systems by addingter_1 caches ($)
with random replacement policies to the processors in bavigus systems. A pri-



2.2 Composability and predictability 7

@—,

@) — @) —
(&R)

(@) Composable and pre- (b) Predictable system.
dictable system.

(c) Composable system. (d) Neither composable nor
predictable system.

Fig. 2.2 Four systems demonstrating all combinations of the composabilitypaedictability
properties.

vate cache is composable, since it is not shared betweeicaphs. However, the
random replacement policy makes the systems unpredi¢ctibte a useful bound
cannot be derived on the time to serve a sequence of requibstshird system, in
Figure 2.2c, is hence composable, but not predictable. asteslystem, shown in
Figure 2.2d, is neither composable, nor predictable.

2.2.2 Composable Resources

This section discusses designing composable resourcesthaor may not be
predictable. As previously explained in Section 2.2.1, posability implies that
the starting time and response time of a request from a remuesist be com-
pletely independent of requests from requestors belontgingther applications.
Composability is trivially achieved by mapping applicatsoto different resources,
an approach used by federated architectures in the aut@rentid aerospace in-
dustries [24]. However, this method is prohibitively expige for systems that are
not safety-critical. We proceed by looking at two altermedito composable sharing
of resources. These correspond to the two paths 0 — 0 andd — 0 — [0

in Figure 2.3, which provides an overview of the five techegjpresented in this
chapter.

The first technique is callecomposable scheduling of preemptive resousres
corresponds to following the edgés, [0, and . This approach considers that
the execution times of requests may be variable and unknoprioe. An exam-
ple of this is the time required by a video decoding task etiagwon a processor
to decode a frame, which is highly dependent on the imagesottThis results
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[1,3,8]and ([2, 5, 6] or[1,4,6])

Fig. 2.3 Overview of techniques to achieve composability and preblilitya

in non-composable behavior, as the starting time of a reéduexomes dependent
on the execution time of the previous request, which may baes issued by a re-
questor belonging to a different application. A solutiothis problem is tgoreempt
an executing request after a given time, referred to asc¢heduling interval(si)

of the resource arbiter. This is shown in Figure 2.4a, whegeequest of requestor
2 is preempted before finishing its execution. We refer tosauece with a worst-
case scheduling intervaMcsi) as areschedulable resourgas shown in Figure 2.3,
since it is guaranteed to take new scheduling decisionsmatbounded time. Such
a resourcensures progressf all requestors if it is paired with starvation-freear-
biter, which is a class of arbiters that guarantee that gliestors are scheduled in a
finite time. Both round robin andbm are examples of arbiters in this class. A static-
priority scheduler, on the other hand, is not free of staowatsince a low-priority
requestor starves if high-priority requestors are cortistaaquesting.
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Fig. 2.4 Composable scheduling for preemptive and non-preemptive resyuespectively.

The next step with this technique is to make all schedulitgrimls equal to the
wcsl by delaying the arbiter in case the request finishes earlghag/n in Fig-
ure 2.4a. This step decouples the starting time of a requmstthe execution time
of the preceding request, which is one of the two requiremtmachieve compos-
ability. The second requirement is that the response timgt briindependent from
requestors of other applications. We achieve this by usoaygposable arbiter, such
asTDM, where the presence or absence of other requestors dodteabtlze inter-
ference. This results in independent response times fouress where the execu-
tion time is independent of previous requests, such as almes-durnaroungRrRAM.
We have now fulfilled both requirements for a resource to besicered compos-
able. Note that this type of composable resource is not sadspredictable. It
may, for example, include a cache that is private or sharesdss requestors be-
longing to the same application, which results in non-uskefwnds on execution
time for memory requests, although they are independerthef @pplications.

Next, we explore a second method of designing composabteimess called
composable scheduling of non-preemptive predictableuresg which follows the
edged, O, and0 in Figure 2.3. This method is motivated by the main limitatio
of the first approach, which is restricted to preemptive ueses. Some important
resources, such a®RAM memories cannot be preempted during a burst, as they re-
quire all the data associated with a request to be transferreonsecutive clock cy-
cles to function correctly. Achieving composability witbmpreemptive resources
is still possible, assuming that the resource is predietabd hence has a known
WCET. For these resources, we make the scheduling interval eguhé longest
WCET of any request executing on the resource. This is illudratd=igure 2.4b,
where the request from requestor 2 is assumed to have thedtwgeT. This tech-
nique makes starting times independent of requests froer agbplications, which
is required for composability. Supporting non-preemptigsources with bounded
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execution times is the major benefit of this technique. Harehis method arrives
at a reschedulable resource by characterizing the reqaedtthe resource rather
than by enforcement, which has three drawbacks. Firstlgaiinot be applied to
mixed time-criticality systems where real-time applioas share resources with
non-real-time applications that do not have boundextT. Secondly, the system is
less robust, as it becomes non-composable if the charzatien is incorrect or if a

requestor misbehaves. Finally, making the schedulingvatequal to the longest
WCET results in low resource utilization if there is a large diffiece between the
average and worst-case execution time. This is not acdegtabscarce resources,
such assbRAM memories.

Since composable scheduling of non-preemptive predeteddources implies
that thewcCEeT of requests have to be bounded, it may result in a systemghat i
also predictable. This depends on whether or not the corbfmasbiter is also pre-
dictable. Although this is typically the case, such asifbm, it is not inherent to
composability. For example, an arbiter that randomly satexdrequestors every
WCSI is composable, as it is independent of applications, bug tnpredictable,
since thewcCRT can be infinite. We will return to discuss techniques to share
sources in ways that are both composable and predictabkectiog 2.2.4.

The proposed techniques for composable resource sharikg tha temporal
behaviors of the requestors independent of each otherjrtiplementing compos-
ability at the level of requestors. This is a sufficient cdioti to be composable at
the level of applications, which is the actual requiremeotf Section 2.2.1. How-
ever, composability at the level of requestors is striatethe sense that requestors
belonging to the same application are allowed to interfatle @ach other in a com-
posable system. It is hence possible to let requestors bémefi unused resource
capacity (slack) reserved by requestors belonging to time sgoplication to increase
performance or reduce power [27]. This can be accomplisaing a two-level
arbiter, as proposed in [17], where the first level is a coraplesinter-application
arbiter, and the second an intra-application arbiter tbasdot have to be compos-
able. This type of arbitration enables requestors from #meesapplication to use
slack created in the intra-application arbiter to boostqrarance without violating
composability at the application level.

2.2.3 Predictable resources

Having discussed two ways of building resources that areposable, but not nec-
essarily predictable, we proceed by discussing how to a#durces that are pre-
dictable, but not necessarily composable. As previouslytimeed in Section 2.2.1,
this requires useful bounds on both theEeT and thewCRT.

Our approach to predictable resource sharing is based obicimg resources
and arbiters, each with predictable behaviors. In FiguBe this intuitively corre-
sponds to following the edgds and [0 from a general resource to a predictable
shared resource. More specifically, we require bounds owtbeT for each re-
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quest executing on the resource, since these charactbaasarst-case behavior
of the unshared resource. Some resources, such as zetorbasundsRAMS, are
predictable and have constant execution times that areteagtermine. However,
other resources, such asrRAM, have variable execution times that depend on ear-
lier requests and cannot be usefully bounded at design tirtteeigeneral case [1].

In this case, the resource controller must be implementedvilay that makes the
resource behave in a predictable manner. We discuss hovedmatish this for an
SDRAM resource in Section 2.5.

If the resource is shared, we requinedictable arbitrationthat bounds the time
within which a request finishes receiving service. Note thathis definition,all
predictable arbiters are starvation fre@redictable arbiters enable tecRT to
be computed if the resource is reschedulable and hence mekescheduling de-
cisions within a bounded time, determined either by a chas@eduling interval
(preemptive resource) or by the long@stET of any request executing on the re-
source (hon-preemptive resource). This is illustratediguie 2.3, where a pre-
dictable shared resource has to be both predictable andeddable and there are
two possible paths to achieve the latter. ComputingvitterT takes the effects of
sharing the resource into account.

An important property of our approach is that it is based omlgioing inde-
pendent analysesf the resource and the arbitration. The arbiter analysis\de
the number of scheduling decisions that are made by thesafbdim a request is
eligible for scheduling until it finishes receiving servidgewcRT is then conser-
vatively computed by multiplying the number of decisionghwhewcsiand adding
the number of pipeline stages between the request buffethengsponse buffer in
the architecture. Note that this conservatively accoumt®6th the execution time
of the request and any preemptions from other requestonsgdilne execution. The
strength of this approach is the generality,a&y combination of predictable re-
source and predictable arbitaesults in a predictable shared resource. This makes
it easy to change the arbiter to fit with the response timeirements of the re-
questors in the system, which is exploited by the procedigointSection 2.3 and
the memory tile presented in Section 2.5.

2.2.4 Composable and predictable resources

Section 2.2.1 explained that composability and predititglaire different properties
and that one does not imply the other. We then showed in $scld®.2 and 2.2.3
how to make resources that are either composable or prbiicta this section, we
discuss two ways of making resources that are both compmaall predictable.

The first and most straight-forward technique to get comiplesand predictable
resources is to simply combine the approaches in Sectiéhg and 2.2.3. We
call this techniquevorst-case predictable resource schedulangd it corresponds
to moving from a predictable shared resource via eédgad from a composable
resource via edgél to a composable and predictable resource. This implies that
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the resource is predictable and that each request has d beafid onwcET that
is independent of other requestors. It also means that goeiree is shared using
an arbiter that is both composable and predictable, suatbss Such an arbiter
provides bounded interference from other requestorsshatiependent of their ac-
tual behaviors, making the resource composable and bogitftwCRT. Since the
original approaches to composable and predictable ressaply to both preemp-
tive and non-preemptive resources, the same property faldisis combination. It
furthermore inherits the possibilities for slack managetmereviously explained in
Section 2.2.2.

A benefit of this approach to make resources composable adittable is that it
is easy to conceptually understand and implement. A drakisdbat it only applies
to resources where the execution time of a request is indigpef requests from
requestors belonging to other applications, as previalestgribed in Section 2.2.2.
If this is not naturally the case, it can be achieved by delgll executions to
be equal to thevceT. However, this may be costly if the variation in execution
time due to other applications is large, preventing it froemly efficiently applied
to scarce resources, suchsasRAM. Instead, this technique is used in the processor
tile presented in Section 2.3 and for composable and peddlesrRAM sharing using
TDM in [17].

The second technique is callpcedictable resource scheduling with worst-case
delayand addresses the problem of efficiently dealing with végiakecution times
and extends composability to support any predictable ewbithe problem with
most predictable arbiters is that they typically causeithes at which the resource
accepts requests and sends responses to a requestor te clantp variable in-
terference from other requestors, making it non-compesaliie key idea behind
this technique is to make the system composable by remokimgariation in in-
terference, both from other applications and the resoused.iWWe accomplish this
by starting from a predictable shared resource and thery @diaignals sent to
a requestor temulate maximum interference from other requestdrsequestor
hence always receives the same worst-case service no nvatieother requestors
are doing. This technique corresponds to achieving conyilggdor a predictable
shared resource using edgen Figure 2.3. The implication of this approach is that
the interface presented towards the requestor is temparalependent of other
requestors. Variation in starting times and response timag be visible on the
resource side of the interface, but not on the requestor $itis is similar to the
composable component interfaces proposed in [23].

The technique implies delaying responses in a responserhuttil theirwcrT
to prevent the requestor from receiving it prematurely dréhis little interference,
or if the variable execution time is short. However, makihgWwcRT independent
of other applications is only one of the two requirementsfoomposable resource.
The second requirement states that the starting time mecsbalindependent. This
is not the case if a request is scheduled earlier than itstwease starting time. In
this case, another request may be admitted into the resprego®turely, resulting in
a different starting time. This problem is addressed byrzasquest accept signals
on worst-case starting times of previous requests, as eggo®ctual starting times.
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Requests are hence admitted into the resource in a compasaliner, regardless
of the interference experienced by others.

Figure 2.5 compares ‘predictable resource scheduling wibst-case delay’
to ‘composable scheduling of preemptive resources’, presty discussed in Sec-
tion 2.2.2. Figure 2.5a illustrates that requests are sdeddmmediately after a
finished execution using ‘predictable resource scheduhitly worst-case delay’,
but that responses are delayed until theRrT. In contrast, Figure 2.5b (identical
to Figure 2.4a) shows that ‘composable scheduling of prégengesources’ delays
scheduling until thevcRrT, but releases responses immediately after a finished exe-
cution.

‘Predictable resource scheduling with worst-case delag two major benefits
compared to ‘composable scheduling of preemptive reseurtg It extends the
use of composability beyond resources and arbiters thanlaeeently composable.
It is hence not limited to resources where the executiondiferequestors are
independent, but can efficiently capture the behavior offaadictable resource. 2)
It supports any predictable arbiter, enabling serviceedéffitiation that increases the
possibility of satisfying a given set of requestor requiesnts [2]. For example, using
an arbiter that is more sophisticated thiaym can lead to reduced over-allocation,
and allow lower latencies or higher throughput on a resourbese characteristics
make the approach suitable for memory tiles véitiRAM, as we will further explain
in Section 2.5.

The main drawback of this technique is related to slack memagt. This ap-
proach makes the temporal behaviors of the requestorsendept of each other,
thus implementing composability at the level of requestossead of at the level
of applications. It is hence not possible to benefit from @dusesource capacity
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reserved by requestors belonging to the same applicatibithwnay negatively
impact performance.

2.3 Processor tile

Having reviewed the different approaches to achieving asapility and pre-
dictability, we proceed by looking at how it is actually ineptented in a multi-
processor system, starting with the processor tile. Weidensa mixed time-
criticality system, where the processor executes a mix éetweal-time and non-
real-time applications. In this section, we first presestgirategy to achieve com-
posability of applications on a processor tile, followedday approach to imple-
menting predictability. The architecture of the procedselis shown in Figure 2.1.
The components of this tile are discussed in the followirgdisas.

2.3.1 Composability

Processors execute requests, corresponding to taskatexalhe execution time
of a request is hence the time it takes to execute a taski@erah the processor.
Real-time tasks must havevaceT, which means that they complete an iteration
in bounded time. This is not necessarily the case for nohtiraa tasks. In mixed
time-criticality systems, where these types of tasks sheseurces, th&cRT of
real-time tasks can only be bounded if resources are préaem@omposability in
the processor is hence implemented using the techniquepasable scheduling
of preemptive resources’. The key ingredients to achievepasability in this re-
source are thus found on the path, 0 , andO in Figure 2.3 and constitute: 1)
preemption, 2) enforcing a constant scheduling intervabétpwcsi, and 3) using
a composable arbitration scheme.

For a processor, thecsi defines a task slot with bounded duration when a task
can utilize the processor. After a task slot finishes, anaipay system@s) decides
which task to execute next during ars slot. To ensure independent starting times
and response times of tasks, required for composabilitypnly the task slots, but
also theos slot, must have a constant duration and fixed starting times.

The execution time of thes may depend on the number of applications and
tasks it has to schedule. If thas slot is not forced to a constant duration at least
equal to itswcCET, it is impossible to ensure that task starting times andaesg
times are independent of the presence or absence of otHeradioms in the system.
Furthermore, commonses check if tasks are ready to execute, which depends on
the availability of their input data and output space. Fanposability, the time at
which this check is performed must be independent of othglicgtions. ‘Compos-
able scheduling of preemptive resources’ requires theutixectimes of tasks to be
independent. The functional state of the processor tiletaska switch must hence
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be unable to affect the execution time of the scheduled tHsis. may imply that
the processor instruction pipeline should be empty, anidaibi@ntial caches should
be cleared of all data to avoid cache pollution. In the follaywsections, we present
the mechanisms to enforce constant-duration taskoeawslots. Following this, we
describe the scheduling of applications and tasks, whiasren this property.

2.3.1.1 Constant task slots

To enforce a task slot with constant duration and fixed stgittmes, we use a timer
that interrupts the processor after a programmable fixedtidur. When receiving
an interrupt, the first instruction of the interrupt serviogtine jumps toos code,
giving control to theos. This can be implemented with a dedicated timer per tile
that is accessed via a memory-mapped peripheral bus ortamdtisn-mapped port.
By using a timer outside the processor, in an always-on diockain, the processor
can enter a low-power state during idle periods withoutgitogpthe timer [13].

To get a constant-duration task slot, the processor shaailthterruptible in
(preferably short) bounded time. However, processors\auedlly not interrupt-
ible while instructions are still in the pipeline. The tintedtart the interrupt service
routine, referred to as the interrupt latency, thus dependBe execution time of the
currently executing instructions. The time it takes to finixecuting an instruction
depends exclusively on the processor, except for instmstihat involve other re-
sources. For example, a load from non-local memory alsothsdaterconnect and
a remote memory. Depending on the predictability and shgasfrthose resources,
such a load may take thousands of cycles to complete (e.q ivhas a low priority
in theNoc and memory tile).

By restricting the number of outstanding remote-read fatiens, thenCeT of
atask and its worst-case interrupt latency can be complotaill be prohibitively
high (thousands of cycles). We hence use an alternativerapipiby restricting the
processor to only using local (instruction and data) meesaind use Remote Direct
Memory AccessgDMA) engines to communicate outside the processor tile. Remote
accesses may stall tiMA, while the processor only polls locally, resulting in a
short interrupt latency. Note that even with only local igatie execution time of
the interrupt service time is bounded, but not constant.éxample, division and
multiplication instructions take more cycles than NOP anjuinstructions.

The processor programs tR&MA to read or write data on remote memories re-
siding inside another processor tile, or in a memory tilegeamming th&kRDMAS is
done using only local load and store instructions. An addél advantage of using
RDMAS is that they decouple computation and communication,legginem to be
overlapped in time. In this chapter, we assume that the loeahories of processor
tiles are large enough to store the following state for alktamapped on the tile:
1) instructions, 2) (private) data, and 3) all the buffes (hput and output tokens)
needed for an iteratiorRDMAS are hence only used for inter-task communication
between tasks mapped on different processors. This coneation is implemented
using uni-directional FIFO buffers with finite size. Thed&® buffers are located
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either in the local memory of the consumer (if the memory spache processor
tile is sufficiently large), or in a remote memory tile. Theogucer always posts
the data in the buffer via abmA write. In Figure 2.1, the data travels from the
data memory in the producer tile, through #emA to the interconnect. The inter-
connect then delivers it to the local memory in the consuifeerAlternatively, the
producemDMA places the data in a remote memory tile, from where it is abpie
the consumeRDMA to the data memory in its tile. In all cases, the FIFO admin-
istration [31], consisting of read and write pointers, isdted in the producer and
consumer tiles.

To achieve composability, RDMA has to be composable if shared between ap-
plications. Since&RDMAS are simple finite state machines, we do not share them be-
tween applications. Instead, each application has itseBmA, but for maximum
performance, each FIFO of each task can be given its ®amA. For simplicity,
Figure 2.1 shows only oneDMA per tile. Note that the local memory should also
be made composable using the techniques detailed in S&c&on

2.3.1.2 Constant OS slot

As previously explained, thes slot should have a constant starting time and dura-
tion. Given a constant task slot duration, the only requéeinto achieve a constant
os starting time is that the task-tos switching time should be constant. The task-
to-0s switching time is equal to the interrupt latency of the timeghich depends
on the instructions in-flight on the processor. We force titerrupt latency to be
constant and equal to it8CET via a mechanism to delay actions (execution) until a
fixed future moment in time, as described below.

Our approach to enforce a constard slot is toinhibit executionon the pro-
cessor until itswCET is reached, thus making thes execution composable. This
corresponds to the technique ‘composable scheduling ehneamptive resources’,
which uses edged , O, and0 in Figure 2.3. This can be implemented in several
ways. Polling on a timer [10] is the simplest, but preventxkigating of the pro-
cessor. If the processor has a halt instruction, the proceas be halted after thes
finishes its execution. The tile timer, programmed befoeehalt instruction, wakes
up the processor at theceT. When a halt instruction is not available, the proces-
sor clock can be disabled by a voltage-frequency contral(iCU in Figure 2.1)
until the wcerT.

Figure 2.6 presents the time line with the seven main evehenvperforming
a task switch: 1) the interrupt is raised, 2) the interrupdsved, 3) the processor
ungate moment in time is programmed, 4) the clock is gatea tipetwCET of the
interrupt latency, 5) the@sis executed, 6) the processor ungate moment in time is
programmed, and finally 7) the clock is gated up towheeT of the 0s.
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Fig. 2.6 Processor slots and task switching time line

2.3.1.3 Two-level application and task scheduling

The constant-duration task aid slots ensure that task slots start at fixed points
in time, and that there is a boundedtsi. A task iteration that has wceT on a
non-shared processor tile hence has bounvdedT andwcRT on a shared tile. As
mentioned before, the functional state of the processmatithe start of a task slot
must be independent of other applications to avoid possitegeference.

By using a composable scheduler, interference betweersitktis removed.
However, this is unnecessarily strict, since it also prévetack from being used
by tasks belonging to the same application. Moreover, @iffeapplications bene-
fit from using different schedulers, such as static-ordew, or Credit-Controlled
Static-Priority arbitration [5] ¢csSrR, further described in Section 2.5). The pro-
cessor addresses this problem by using a two-level aibitracheme: a com-
posable inter-application arbitergm) that schedules applications, and an intra-
application arbiter that schedules tasks within an apfiina The composable
inter-application arbiter ensures the isolation betweggiieations, while the intra-
application arbiters are chosen to fit the requirementseffiplication tasks. The
intra-application arbiters are free to distribute slackntprove performance of the
tasks.

2.3.2 Predictability

As already mentioned, we target mixed time-criticalitytsyss that concurrently
execute a set of real-time and non-real-time applicatibosreal-time applications,
we require thevCET of each task iteration to be known. The execution time ofla tas
on a processor is hence required to be predictable, whidhaesthe use of out-of-
order execution, speculation, and caches with randomaepiant policies [40].

To derive the end-to-end application performance (e.gutinput, latency, etc.),
applications are modeled as data-flow graphs [25, 36]. Thiesin the data-flow
graphs are referred to astorsthat are connected via directioredges Each actor
fireswhenever its firing rule is satisfied. A firing rule specifies éach incoming
and outgoing edge, the number of input tokens required amdidimber of output
tokens produced, respectively. The data-flow model ndyudakcribes a streaming
application: a task is an actor, and a task iteration is aor ficing. FIFO communi-
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cation between two tasks is represented as a pair of oppedes, one modeling
the communicated data, and the other modeling the availatieletask buffer space.

If several tasks share the same processor, predictabtet@stearbitration is re-
quired. Examples of such arbitration arem, ccsrk and round robin. Moreover,
the sharing and arbitration effects should be taken int@@atcwhen calculating
the end-to-end application performance. Modeling of défe arbitration policies
as data-flow graphs is presented in [19, 28].

2.4 Interconnect

The processor and memory tiles in the system communicata giabal on-chip
interconnect, as shown in Figure 2.1. Typically, processat as memory-mapped
initiators and memory tiles as memory-mappiagets This is seen in the figure,
where initiator and target ports are colored black and whatspectively. When tasks
execute on a processor, they give rise to read and write sexjtleat are delivered
to the appropriate memory tile based on the address, anganssis potentially
delivered back to the processor. Treguestorsof the interconnect, according to
Section 2.2.1, are thus the ports of the processor and metitesy

To deliver the aforementioned functionality, the intengeat is subdivided into
a number of architectural components [16]. We first presentief overview of
the components and then continue to discuss how they prooeiagosability and
predictability. When a request is presented to the interechby an initiator, it is
serialized by a protocol shell into a sequence of words. & hesds are then passed
through a clock domain crossing (CDC) to transition from ¢leek domain of the
initiator to that of the network, making the platform glolyahsynchronous locally-
synchronous (GALS) [30]. The data is then sent through theeré, comprising
Network InterfacesNI) and routers (R), through a logicabnnection ThenNI pack-
etizes the data and determines the route through the netWbekrouters merely
forward the data to its destination where it is depacketized, before transitioning
to the clock frequency of the target in another clock domaossing. The shell
then deserializes the request and presents it to the aeiggit tport. A response,
if present, follows the same logical connection back thiotlge network until it
reaches the initiator. The interconnect resource hencepiises protocol shells,
clock domain crossingsiis, routers and links.

2.4.1 Composability

The protocol shells are not shared by connections and tlqusreeno special atten-
tion to deliver composability. They are furthermore simgiate machines that can
be considered predictable. Moreover, the shells seritdzenemory-mapped trans-
actions of the tiles independently of their protocol, bwige, type of transaction
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etc. Thus, when presented to thes as a stream of words, the level of flow control
and preemption is a single word (using a FIFO protocol).

Once the serialized transactions are delivered toitegeach logical connection
has dedicated input and output buffers in the. At this level, the network can thus
be seen as a set of composable distributed FIFOs, intercingeairs of proto-
col shells. Thenis packetize the individual words of data in unitsflié and send
them through the network links and routers. Each packetsstéath a header (flit)
with the path to the destination output buffer. In contrasnhiany on-chip networks,
our interconnect does not perform any arbitration insidertatwork. The routers
simply obey the path encoded in the packet headers, and peisbgponsibility of
scheduling and buffering to theis. Thus, all arbitration takes place in tke and
the routers merely forward the flits until they reach the idesion NI, making the
network appear as a single (pipelined) shared resource.

To make the network as a whole composable (and predictatde)se the tech-
nique ‘worst-case predictable resource scheduling’. Weeridee the implementa-
tion of this technique in three steps, corresponding to dgel] , and in Fig-
ure 2.3. Firstly, the network resources are preemptiveeatetvel of flits (edgéel ).

A scheduling decision is thus taken for every flit, indepemdd the length of the
packets. Furthermore, as we have already seen, the datnn FOs has no no-
tion of memory-mapped transactions, and there is consélguencorrespondence
between transactions and packets. As there is no buffergidd the router network,
the NIs useend-to-end flow contrdb ensure the availability of buffer space. Con-
sequently, flits are only injected if they are guaranteedmatall anywhere inside
the network.

Secondly, the flit size is fixed at three words, resulting iroastant scheduling
interval of three cycles. If a connection’s input buffer sy or if it runs out of flow
control credits, it uses only one or two words of the threedfbt. The constant flit
length corresponds to making all scheduling intervals Eguthe wcsi, indicated
by edgell in Figure 2.3. It is worth noting that there is no need to detee how
long it takes for other requestors flits to reach their desitm, only how long it
takes until a new flit can be scheduled, i.e. the executioa &nd response time of
other requestors is irrelevant.

Thirdly, the fixed flit length is combined with a global sché&slof the logical
connections, where each regulates the injection of flits usingr@m arbiter [11],
such that contention never occurs on the network links. Thedule relies on a
(logical) global synchronicity of the network componest the concept has been
demonstrated on both mesochronous and asynchronous iemti&tons of the net-
work [18]. TheTbM schedule is programmed at run time according to the running
use-case, but is typically determined at design time.

The last part of the interconnect composability is enforcesgrtion of packet
headers for non-consecutive flits. That is, if another cotioe could have used
the link, assume it did (even if it did not), and insert a neveked header. The
header insertion ensures that the arbitestégdelessn terms of influence from other
requestors.
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2.4.2 Predictability

With the aforementioned mechanisms in place, the interecinoffers composabil-
ity at the level of connections, between pairs of protocelishPredictability addi-
tionally requires worst-case response times for the shrasmlirces. As discussed in
detail in [19], the temporal behavior of a connection degemuitherbm scheduler
settings, the path length, and the size of the input and obtgters. The scheduler
determines how long words have to wait in the input buffeilunjected into the
network, once eligible. The path, in turn, determines theetrequired to traverse
the network (without stalling). The input and output buffaffect the time at which
words are accepted and become eligible for schedulinghaBe contributions can
be bounded and captured in a data-flow graph, thus offeriedjgiability.

2.5 Memory tile

This section presents our memory tile and discusses thaitpets employed to
implement composability and predictability. The architee of the memory tile,
shown in Figure 2.1, is divided into faont-endand aback-end The front-end is
independent of memory technology and contains bufferirtgtration, and compo-
nents to make the memory tile composable. The back-endants with the actual
memory device and makes it behave like a predictable resoiitte back-end is
hence different for different types of memories, sucls@sm andsbrAM, as indi-
cated by the figure. The components in the architecture aceised further in the
following sections.

Although our memory tile is general and supports beam andDDR2/DDR3
SDRAM, we will focus the discussion c®8DRAM, since these memories have three
important characteristics that make the implementationoofiposability and pre-
dictability challenging. 1) The execution time of a requast the bandwidth of-
fered by the memory is variable and depends on other reqsegjdSome memory
requestors are latency critical and require low response tth reduce the number of
stall cycles on the processor. 3) For cost reasengAM bandwidth is a scarce re-
source that must be efficiently utilized. This section isamiged as follows. Firstly,
Section 2.5.1 explains how to make anrRAM behave like a predictable shared re-
source. Section 2.5.2 then discusses how to make the mbldicthared memory
composable.

2.5.1 Predictability

Section 2.2.1 states that a predictable resource mustderaviuseful bound on
WCET to all requests. In addition, a memory tile must bound thediaadth offered
to a requestor to ensure that bandwidth requirements aséiesét This section elab-
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Fig. 2.7 The architecture of asDRAM memory and behaviors of some import&mtrRAM com-
mands.

orates on how our memory tile delivers on these requiremditts memory tile
follows our general approach to predictable shared ressuand combines a pre-
dictable resource with predictable arbitration. Firsg tioncepts behind eSDRAM
back-end that makes the memory behave like a predictalienes corresponding
to edgell in Figure 2.3, are explained. We then discuss how to shanerttictable
memory between multiple requestors, covering edge

2.5.1.1 Predictable SDRAM back-end

SDRAM memories are challenging to use in systems with real-timeirements
because of their internal architecture. ADRAM memory comprises a number of
banks, each containing a memory array with a matrix-likacitrre, consisting of
rows and columns. A simple illustration of this architeetis shown in Figure 2.7.
Each bank has a row buffer that can hold one open row at a tinteyead and
write operations are only allowed to the open row. Beforenopgea new row in a
bank, the contents of the currently open row are copied b#okthhe memory array.
The elements in the memory arrays are implemented with desgagpacitor and a
resistor, where a charged capacitor represents a logieahot an empty capacitor
a logical zero. The capacitor loses its charge over time dieakage and must be
refreshed regularly to retain the stored data.

ThesbRAM architecture makes the execution time of requests highlgiviz for
three reasons. 1) A request targeting an open row can bedsemagediately, while
it otherwise needs the current row to be closed and the edjuaw to be opened.
2) The data bus is bi-directional and requires a number ofesy switch from
read to write and vice versa. 3) The memory must occasiobalefreshed before
executing the next request. The impact of these factors enasecthe execution time
of an SDRAM burst to vary by an order of magnitude from a few clock cyctea t
few tens of cycles.

The behavior of alsDRAM memory is determined by the sequencesoRAM
commands that are communicated from the back-end of the nyditeto the mem-
ory device. These commands tell the memory to activate (jop@articular row in
the memory array, to read from or write to an open row, or telpaege (close) an
open row and store its contents back into the memory arragreTis also a refresh
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command that charges the capacitors of the memory elentesstire that the con-
tents of the memory array are retained. The behaviors of srtieese commands
are illustrated in Figure 2.7. SchedulispRAM commands is not a trivial task, since
there are a considerable number of timing constraints thest tne satisfied before

a command can be issued. These timing constraints are ypicimimum delays
between issuing particul@DRAM commands, such as two activates, or an activate
and a read or a write.

Existing SDRAM controllers can be divided into two categories, dependimg o
how they schedulsDrRAM commands. Statically scheduled controllers [7] exe-
cute precomputed command schedules that are guaranteedigh dime to sat-
isfy all timing constraints of the memory. Executing prequited schedules makes
these controllers predictable and easy to analyze. Howthar are also unable to
adapt to the dynamic behavior of applications in contempasacs, such as band-
width requirements or read/write ratios that vary over tiffiee second category of
controllers uses dynamic scheduling of commands, whichiresg|the timing con-
straints to be enforced at run time. These controllers [2@&,29,35] have sophisti-
cated command schedulers that attempt to maximize thegeveffered bandwidth
and to reduce the average latency at the expense of makimggsberce extremely
difficult to analyze. As a result, the offered bandwidth catydne estimated by sim-
ulation, making bandwidth allocation a difficult task thaishbe re-evaluated every
time a requestor is added, removed or is modified.

We use a hybrid approach &brRAM command scheduling that combines el-
ements of statically and dynamically schedukamRAm controllers in an attempt
to get the best of both worlds. Our approach is basegredictable memory pat-
terns[1], which are precomputed sequences (sub-schedules)im commands
that are known to satisfy the timing constraints of the mgm®hese patterns are
dynamically combined at run-time, depending on the incgnmequest streams.
The memory patterns exist in five flavors: 1) read pattern,rifewpattern, 3) read-
Iwrite switching pattern, 4) write/read switching pattesind 5) refresh pattern. The
patterns are created such that multiple read or write pettean be scheduled in
sequence. However, a read pattern cannot be scheduled iatelgdfter a write
pattern. In this case, the read pattern must be preceded bifedread switching
pattern. This works analogously in the other direction. Téfeesh pattern can be
scheduled immediately after either a read pattern or a \pateern. Both read and
write patterns can be scheduled immediately after a refréftout any preceding
switching patterns.

The read and write patterns consist of a fixed numbsp&Am bursts, all target-
ing the same row in a bank. The bursts are issued to the diffeeaks in sequence,
since the data bus is shared between all banks to reduce riigenwf pins on the
SDRAM interface. The fixed number of bursts is hence first sent tditsebank,
then to the second, and so forth in an interleaving fashidih alhbanks have been
accessed. This way of accessing SmRAM results in a short period with frequent
accesses, followed by a longer period without any acce3$espatterns exploit
bank-level parallelism by issuing activate and prechamm®roands to the banks
during the long intervals in which they do not transfer antad@he read and write
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Fig. 2.8 Mapping from requests to patternssoRAM bursts.

patterns are hence very efficient in terms of bandwidth,esihis possible to hide
a significant part of the latency incurred by activating anecharging rows. This
limits the overhead cycles incurred by always prechargibgrik immediately after
it has been accessed, which is known as a closed page polkcimiement this
policy, as it effectively removes the dependency on rowsedéoy earlier requests
by returning the memory to a neutral state after every acé@ssoving this de-
pendency between requests ikey elemenin our approach, since ieduces the
variation in the offered bandwidth and latenanabling tighter bounds on band-
width andwcRrT to be derived.

Although interleaving memory patterns allow us to boundafiered bandwidth,
they come with two drawbacks. The first drawback is that comtiisly activating
and precharging the banks increases power consumptionagechpo if a single
bank is used at a time. The second drawback is that the memamgcessed with
large granularity and hence requires large requests tdibeat. An efficient access
requires at least on€DRAM burst to every bank. A typical burst size feDRAM is
eight words and the number of banks is either four or eighe Mimimum efficient
request size for a 32-bit memory interface is hence betw28m256 B, depending
on the size and generation of tbe@rR SDRAM [3]. Working with large requests in
a non-preemptive manner also means that urgent requestsechlocked longer,
resulting in longewcCRT.

Requests are dynamically mapped to patterns in a non-pteenmpanner by the
command generator in th@dDRAM back-end. A scheduled read request maps to a
read pattern, possibly preceded by a write/read switchatgem. Similarly, a write
request is mapped to a write pattern and potentially a pregedad/write switching
pattern. Refresh patterns are scheduled automaticallpdgirAM back-end on
a regular basis between requests. The mapping from reqogststerns and from
patterns tesDRAM bursts is shown for aaDRAM with four banks in Figure 2.8. The
figure illustrates that the execution time of a request of fmursts varies depending
on whether or not a switching pattern is required and if aes#ris scheduled before
the request.

The benefit of memory patterns is that they raassmAM command scheduling
to a higher level. Instead of dynamically issuing indivilearAM commands, like
a dynamically schedulegbrRAM controller, our back-end issues memory patterns
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that are sequences of commands. This implies a reductioratef and constraints
that have to be considered, making our approach easier lgzarthan completely
dynamic solutions. Memory patterns allow a lower bound endffiered bandwidth
andwcRT to be determined, since we know the execution time of eadknpahow
much data they transfer, and what the worst-case sequepettefns is. This anal-
ysis is presented and experimentally evaluated in [3]. T8&eaf memory patterns
gives our approach the predictability of statically scHedumemory controllers. In
addition, our approach has some properties of dynamicalgduled controllers,
such as the ability to dynamically choose between read aitd maquests, and the
use of run-time arbitration. The latter is discussed in tiling section.

2.5.1.2 Predictable arbitration

After the previous section, we assume that we have a prétiéataemory, such as a
zero-bus-turnaroundrAM or our SDRAM back-end based on predictable memory
patterns, where useful bounds on both the offered bandwidththewcCEeT of re-
guests are known. In this section, we consider the effectbafing the predictable
memory between multiple requestors. As mentioned in Se@i6.1, we require
a predictable arbiter, where the number of interfering estgi before a particular
request is served is bounded. This enablesitheT to be determined. There are a
large number of predictable arbiters described in litemtsuch agpm and round
robin. However, most of these arbiters are unable to prolderesponse time to
critical requestors, making them unsuitable for memomstilThis problem is ad-
dressed by priority-based arbitration, but as previousitioned in Section 2.2.2,
conventional static-priority scheduling is not starvatioee and cannot be used to
build predictable or composable systems. To address g jsve have developed
a Credit-Controlled Static-PriorityccsP arbiter [5]. Theccsparbiter consists of
a rate regulator and a static-priority scheduler. The egelator isolates requestors
by enforcing an upper bound on the provided service, acegrth an allocated
budget. It furthermore decouples allocation granularitgl &atency, which enables
bandwidth to be allocated with an arbitrary precision withaffecting latency [4].
A clean trade-off is hence provided between over allocadimharea, allowing over
allocation to become negligible. This is essential for seaocresources with very
high loads, such asbrAMs. The static-priority scheduler schedules the highest
priority requestor that is within its budget. The use of gties decouples latency
and rate, thus enabling low latency to be provided to reguestith low band-
width requirements without wasting bandwidth. The combiaraeof rate regulator
and static-priority scheduler makes the arbiter predietalhile still being able to
satisfy the requirements of latency-critical requestors.

A rate regulator creates a separation of concerns and migkessible to bound
the wCRT of a requestor in a static-priority scheduler without retyion the co-
operation of higher priority requestors. Instead, the ldgupnwCRT are based on
the allocated bandwidths and burstiness@shich are determined at design time.
However, to be completely robust, we also need to be indeperaf the sizes of
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scheduled requests to prevent a malfunctioning requesior preventing access
from others by issuing very large requests. We solve thiblpro using preemp-
tive service, which is enabled by tléomizer[17] block, shown in Figure 2.1. The
atomizer splits requests into smaller atomic service ynitéch are served by the
memory in a known bounded time. This effectively makes thenony preemptive

on the granularity of an atomic service unit. The size of ttwrdc requests are
fixed and determined at design time. It is chosen to be thenmimi request size
that can be efficiently served by the resource. FosRaM, the natural service unit
is a single word, but it is much larger for amRAM with predictable memory pat-
terns. For these memories, the appropriate size might eebat16 and 256 words,
depending on the memory device and the desired trade-offeleet efficiency and
latency.

2.5.2 Composability

Composability in the memory tile is achieved using the tégia called ‘predictable
resource scheduling with worst-case delay’. This is for te@asons related to the
characteristics o6DRAM, presented earlier. Firstly, becauserRAMs have highly
variable execution times that depend on other requestdis.pFevents the use of
‘worst-case predictable resource scheduling’ unlessxkeution time is made in-
dependent of other requestors. This is possible by delajirexecutions until the
WCET by settingwcsi=wCET. For most patterns, this involves assuming a read-
Iwrite switch for every memory request. Although possilbléniplement, this may
increase the response time and decrease the offered banhdwidip to 20% [3].
This is not a feasible option, considering tisarRAM bandwidth is a scarce and ex-
pensive resource. The second reason is that the first taghisidjmited to compos-
able arbiters, such a®m or static scheduling, which cannot distinguish requestors
with low response time requirements. However, the secoctthique works with
any predictable arbiter, such as our priority-basexsp arbiter. The technique is
implemented by thelelay block shown in Figure 2.1. This component emulates
worst-case interference from other requestors to provicigosable interface to-
wards the atomizer. This makes the interface of the entoetfend composable,
since the atomizer is not shared.

Itis worth noting that the delay block could have been plaoede processor tile,
as opposed to in the memory tile. The advantage of this igtthéiers composabil-
ity to platforms with predictable, but not composable, intenect by eliminating
interference from both the interconnect and the memonatilence. However, our
interconnect is composable in itself using another teakaigefeating the purpose
of moving the delay block. Delaying in the processor tilegtiermore comes with
the drawback of making debugging of the platform more diffigince the states of
both the interconnect and memory tile change if applicatiare added, removed,
or modified.
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Fig. 2.9 The applications and mappings used in the experiments.

2.6 Experiments

The proposed composability inducing mechanisms are imgéed for each re-
source of ansoc prototyped onFPGA having four processor tiles with one Mi-
croBlaze core each, one memory tile and an Athereal NoC @r2this platform,
we execute several use-cases constructed using the fofj@piplications: a simple
synthetic applicationA1), an H.264 video decoder [397R), and aJPEGdecoder
(A3), each consisting of a set of communicating tasks. Figi@egsents the task
graphs and the task-to-processor mapping of these applisat

If the socis composable, the behavior of an application should reti@isame
regardless of the presence or absence of other applicatiémsnvestigate com-
posability in two ways: first by checking the cycle-levelfdiences between some
signals of the MicroBlaze interface in multiple simulatiomnd second by verify-
ing whether the response time and starting time of an apjgitaemains constant
when other applications are added in the system.

To investigate composability at the cycle level, we run timaidations and com-
pare a number of signals in the first MicroBlaze core. For auukations, we utilize
the synthetic applicatioA1, and the H.264 applicatio®2. Theint_outsignal (the
timer interrupt) indicates the border between the end oflagbot and the beginning
of anosslot. This signal is kept high until the processor acknowgsithat the in-
terrupt is being served. In the first simulati@i transfers data tokens of 4 KBytes
and in the second it transfers data tokens of 16 Bytes. FRjafepresents the signal
differences between the two simulations. The applicatibiTslot assignment is
shown at the bottom of the diagram. We observe that signdleitask slots oA2
are identical, whereas, the signal#\iis slots change, as expected. The striped zone
represents cycles that differ between the two runs. As seEigure 2.10, the timer
interrupt signals are not always identical in the two sirtiales. The reason for this
is that different instructions are interrupted in differemulations, thus that_out
signal has different timing. The comparison between thettaces clearly shows
that the only signal differences occur in the time slots ef thanged applications
and in theos slot, indicating that cycle-level composability is acledv
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Fig. 2.10 MicroBlaze signal differences wheXil varies its behavior.
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Fig. 2.11 JPEG vld task response time difference betwea™ma per tile or per application.

To investigate the potential variations in the startingetiand response time of
applications, we run the H.264 aneeGapplications aloneH{.264-singleandJPEG
single respectively), and in combination with the synthetic aggilon (H.264-multi
andJrPeGmulti, respectively) on therGA. In these cases, we compare the response
times and starting times of each iteration of each H.264iaEdtask. If the system
is composable, these times should be identical in differens, regardless of the
presence or absence of the synthetic application. Figuidsahd 2.12 present the
response time differences foroi@ecand a H.264 task in two cases: 1) when all
applications share a singlkeDMA engine (onerRDMA per tile), and 2) when each
application has its owRDMA engine (on&kDMA per application).

As shown in the figures, the response times differ when ussiggeRDMA per
tile, thus revealing interference. On the other hand, tepamse time difference is
zero when using a singlRDMA per application, showing no interference. Due to
lack of space, we do not present the response times andgtérties of all tasks.
The observed behavior is the same, which means that thersysteomposable
when using on&kDMA per application. However, sharingroMA engine results
in interference between applications, and variations pliegtion timing behavior,
just as expected.

In conclusion, we experimentally show that the processbawier remains the
same at both the cycle level and at the task-iteration lévéicating that oursoc
is temporally composable. The inspected signal tracedsrs#ttion only cover the
processor. However, the experiments strongly suggestheanterconnect and the
memory tile are also composable. Otherwise, the timingatians in these resources
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Fig. 2.12 H.264,deblocktask response time difference betweay™mA per tile or per application.

would have resulted in variations in the response time otdbks, or at the cycle-
level timing of the processor signals.

2.7 Conclusions

This chapter addresses the verification and integratiobl@noin embedded multi-
processor platforms that have resources shared by a miabfinge and non-real-
time applications. We discuss two complexity-reducingaggis.composabilityand
predictability. Applications in a composable system are completely isdland
cannot affect each other’s functional or temporal behavidpplications in a use-
case can hence be verified individually instead of togetheulting in smaller state
spaces. This enables a faster verification process, erg ssnulation-based tech-
niques, that can start as soon as the first application in-zaseis available. Pre-
dictable systems, on the other hand, provide lower boundspptication perfor-
mance, such as latency and throughput. This enables ajpmtisdo be verified at
design time using formal performance analysis frameworke. benefit of formal
performance verification is that conservative performaguarantees can be pro-
vided for all possible combinations of initial states ofoesces and arbiters, all input
stimuli, and all concurrently executing applications. Hwer, formal approaches re-
quire performance models of the software, the hardware ttednapping, which
are not yet widely adopted by industry. Composability aretjmtability hence both
solve important parts of the verification problem and prevédcomplete solution
when combined.

Composability and predictability are different propestia the sense that pre-
dictability implies the existence of useful bounds on temapbehavior and is hence
a property of a single application mapped on a set of ressu@emposability im-
plies complete isolation between applications and is agugmf multiple appli-
cations sharing a resource, each of which may be predictaliet. We formally
consider temporal composability achieved if the startinges and response times



2.7 Conclusions 29

of an application, i.e. when it is scheduled for resourcess@nd when it finishes
receiving service, are independent of other applications.

The contributions of this chapter are twofold. Firstly, weegent a thorough
overview of five techniques for achieving composability /andredictability and
highlight their respective strengths and weaknesses.n8gcove show how to
build a composable and predictable system by applying tbpgsed techniques
to three common resource types: processor tiles, inteemisrinetworks-on-chip),
and memories (both on-chgrAM and off-chipSDRAM).

On an unshared resource, predictability means that a regitedinite size has
a bounded worst-case execution tinvecT). On a shared resource, we achieve
predictability by combining resources and arbiters, eaith predictable behaviors.
This enables the worst-case response timeRT) of requests to be determined for
any combination of predictable arbiter and resource.

Composability can be achieved in four ways, described infaHewing para-
graphs. The first way is useful if the execution times of afjuests cannot be
bounded. However, this requires that they can be preemfitedaachosen worst-
case scheduling intervalvcsi), which is the maximum time between two arbitra-
tion decisions. To create the premises of independentrgjditmes, all scheduling
intervals must have constant length equal towhesi. This decouples the starting
time of a request from the execution times of previous onegriforce independent
starting and response times, requests must be scheduleddm@osable arbiter,
such as time division multiplexingrbm). The main limitation of this way to im-
plement composability is that it only applies to preemptigsources in which the
execution time of a request is independent of requests ftber cequestors. This is
the case for zero-bus-turnarousdAmM memories, but not fosDRAM.

The second way to implement composability applies padityito non-preemptive
resources. This technique requires that the resourcedécpmble and has a known
WCET. The idea is to set the scheduling interval equal to the &rgeET of a
request on the resource to make starting times independigmewvious requests.
Combining this with composable arbitration ensures thatworst-case response
times are also independent. The two drawbacks of this tqoknare: 1) that exe-
cution times of requests have to be independent of requestsdther requestors,
just like for the previous method, and 2) making the scheduinterval equal to
the longestwcCET results in low resource utilization if there is a large diéflece
between the average and worst-case execution time, whitle isase fosDRAM
memories.

The third and fourth ways to implement composability aresblasn predictabil-
ity, resulting in resources with both properties. The thindthod is an extension
of the first with an additional requirement that the compdtesaibiter is also pre-
dictable, such asbMm. This enables the/CRT to be computed for predictable appli-
cations with knownwcCeT that is independent of other requestors.

The last way to implement composability (and predictapilitpplies to both pre-
emptive and non-preemptive resources and supports vargdeicution times that
depend on other requestors. It can furthermore be used wjtitambination of
predictable resource and predictable arbiter. The key liddend this approach is
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to make the system composable by enforcing maximum intréer from other re-
questors to remove variation caused by other applicatitims.is accomplished by
starting from a predictable shared resource and delay mesgao emulate maxi-
mum interference from other requestors.

We experimentally demonstrate some of the proposed tegbsion a tiled multi-
processor system with MicroBlaze cores connected teraxm memory tile via a
network-on-chip. Netlist simulations of this platform shthat the cycle-level be-
havior of an application is unaffected, as the behavior leéoapplications changes,
indicating composable execution.

References

1. B. Akesson, K. Goossens, and M. Ringhofer. Predator: a pretBcBDRAM memory con-
troller. In CODES+ISSS '07: Proceedings of the 5th IEEE/ACM internai@onference on
Hardware/software codesign and system synthesiges 251-256, 2007.

2. B. Akesson, A. Hansson, and K. Goossens. Composable resource stzeséoigon latency-
rate servers. 112th Euromicro Conference on Digital System Design (D2DD9.

3. B. Akesson, W. Hayes, and K. Goossens. Classification and AnalyBiedictable Memory
Patterns. Irint'l Conference on Embedded and Real-Time Computing SgsdethApplica-
tions (RTCSA)2010.

4. B. Akesson, L. Steffens, and K. Goossens. Efficient Service alfilos in Hardware Using
Credit-Controlled Static-Priority Arbitration. limt'l Conference on Embedded and Real-Time
Computing Systems and Applications (RTC2AD9.

5. B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-Tineel&@ing Using Credit-
Controlled Static-Priority Arbitration. lint'l Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCS2)08.

6. ARM Limited. AMBA AXI Protocol Specificatior2003.

7. S.Bayliss and G. Constantinides. Methodology for designaticsily scheduled application-
specific sdram controllers using constrained local seardfield-Programmable Technology,
2009. International Conference ppages 304 —307, Dec. 2009.

8. M. Bekooij, A. Moonen, and J. van Meerbergen. Predictabtt@omposable Multiprocessor
System Design: A Constructive Approach. Bits&Chips Symposium on Embedded Systems
and Software2007.

9. R. Cruz. A calculus for network delay. |. Network elememtssolation. IEEE Transactions
on Information Theory37(1):114-131, 1991.

10. M. Ekerhult. Compose: Design and implementation of a composatuleslack-aware op-
erating system targeting a multi-processor system-on-chip in tmalsgyocessing domain.
Master’s thesis, Lund University, July 2008.

11. K. Goossens, J. Dielissen, and Adrilescu. The Athereal network on chip: Concepts, archi-
tectures, and implementation&EE Design and Test of ComputeB2(5):414-421, 2005.

12. K. Goossens and A. Hansson. The aethereal network on chipeaftgears: goals, evolution,
lessons, and future. IDAC '10: Proceedings of the 47th Design Automation Confezgnc
pages 306-311, 2010.

13. K. Goossens, D. She, A. Milutinovic, and A. Molnos. Composalieachic voltage and
frequency scaling and power management for dataflow applicatio 13th Euromicro Con-
ference on Digital System Design (DSBgpt. 2010.

14. P. Gumming. The TI OMAP Platform Approach to Sa@inning the SoC revolution: experi-
ences in real desigrpage 97, 2003.

15. A. Hansson, M. Coenen, and K. Goossens. Undisrupted qualggreice during reconfigu-
ration of multiple applications in networks on chip. Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATBages 954-959, 2007.



References 31

16.

17.

18.

19.

20.

21.

22.

. H. Kopetz and G. Bauer. The time-triggered architecreceedings of the IEEB1(1):112—

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

A. Hansson and K. Goossens. An on-chip interconnect and piattack for multiple com-
munication paradigms and programming models CIBDES+ISSS '09: Proceedings of the
7th IEEE/ACM international conference on Hardware/softwenelesign and system synthe-
sis, pages 99-108, 2009.

A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoGnpl&te for composable
and predictable multi-processor system on chif€M Transactions on Design Automation
of Electronic Systemd4(1):1-24, 2009.

A. Hansson, M. Subbaraman, and K. Goossens. aelite: A flit-synehs network on chip
with composable and predictable services.Phoc. Design, Automation and Test in Europe
Conference and Exhibition (DATEApr. 2009.

A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekoaipblng application-
level performance guarantees in network-based systems on cajphyng dataflow analysis.
IET Computers & Digital Technique2009.

S. Heithecker and R. Ernst. Traffic shaping for an FPGA ba&#AS/ controller with
complex QoS requirements. IDAC '05: Proceedings of the 42nd annual conference on
Design automationpages 575-578, 2005.

E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-oiing memory controllers: A rein-
forcement learning approach. Gomputer Architecture. ISCA "08. 35th International Sympo-
sium on pages 39-50, 2008.

International Technology Roadmap for SemiconductoR )l 2009.

126, 2003.

H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, and C.dRaiisk Composability in the
time-triggered system-on-chip architecture. S®@C Conference, |IEEE Internationglages
87-90, 2008.

E. A. Lee. Absolutely positively on time: what would it tak€&ZEE Transactions on Comput-
ers, 38(7):85-87, 2005.

K. Lee, T. Lin, and C. Jen. An efficient quality-aware memaoytooller for multimedia
platform SoC.IEEE Transactions on Circuits and Systems for Video Techypldg(5):620—
633, 2005.

A. Molnos and K. Goossens. Conservative dynamic energy managfmesal-time dataflow
applications mapped on multiple processorsl2th Euromicro Conference on Digital System
Design (DSD)2009.

O. Moreira, F. Valente, and M. Bekooij. Scheduling midiimdependent hard-real-time jobs
on a heterogeneous multiprocessor.EMSOFT '07: Proceedings of the 7th ACM & IEEE
international conference on Embedded softwaeges 57-66, 2007.

O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Schiedu Enabling High-
Performance and Fair Shared Memory Controll#EE Micro, 29(1):22—-32, 2009.

J. Muttersbach, T. Villiger, and W. Fichtner. Practicaida of globally-asynchronous locally-
synchronous systems. Rroceedings of the Sixth International Symposium on Advanced
Research in Asynchronous Circuits and Systqrages 52—-59, 2000.

A. Nieuwland, J. Kang, O. Gangwal, R. Sethuraman, NaBKs Goossens, R. Peset Llopis,
and P. Lippens. C-HEAP: A heterogeneous multi-processor anthite template and scalable
and flexible protocol for the design of embedded signal processistgms.Design Automa-
tion for Embedded Systen¥3):233-270, 2002.

OCP International Partnershippen Core Protocol SpecificatipB001.

Philips Semiconductor®evice Transaction Level (DTL) Protocol Specification. \@1.2
2002.

R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreetl &nieux, P. Pande, C. Grecu,
and A. lvanov. System-on-chip: Reuse and integratitmceedings of the IEE®4(6):1050—
1069, 2006.

J. Shao and B. Davis. A burst scheduling access reordering mischdnProceedings of the
13th International Symposium on High-Performance Computehnifacture pages 285-294,
2007.



22 Composability and Predictability for Independent Apgiicn Development, Verification, and Execution

36.

37.

38.

39.

40.

S. Sriram and S. Bhattacharyyambedded multiprocessors: Scheduling and synchronization
CRC, 2000.

L. Steffens, M. Agarwal, and P. van der Wolf. Real-Time Amsa for Memory Access in
Media Processing SoCs: A Practical Approa&CRTS '08: Proceedings of the Euromicro
Conference on Real-Time Systepeges 255-265, 2008.

C. van Berkel. Multi-core for Mobile Phones.Pnoc. Design, Automation and Test in Europe
Conference and Exhibition (DATE)009.

S. Verdoolaege, H. Nikolov, and T. Stefanov. PN: a toolifitgproved derivation of process
networks.EURASIP J. Embedded Sy&007, 2007.

R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pistend C. Ferdinand. Memory
hierarchies, pipelines, and buses for future architecturéisnie-critical embedded systems.
IEEE Transactions on Computer-Aided Design of Integratedu@is and System28(7):966—
978, 2009.



