
On-chip Network Interfaces supporting automatic

burst write creation, posted writes and read prefetch

Radu Stefan, Jason de Windt

Computer Engineering

Delft University of Technology

Email: R.A.Stefan@tudelft.nl, J.C.deWindt@student.tudelft.nl

Kees Goossens

Electronic Systems

Eindhoven University of Technology

Email: K.G.W.Goossens@tue.nl

Abstract—Networks-on-Chip are seen as a scalable solution
for facilitating the development of Systems-on-Chip with an
increasing number of IP cores. Many studies already address
the implementation details of such networks and a large effort
has been invested in optimizing the routing strategy and the
organization of the network, however by comparison the interface
between the network and the IPs has been largely ignored. In
this study, we explore optimizations that can be performed at the
layer that connects the IPs to the services offered by the NoC.
In our FPGA prototype, a MicroBlaze soft-core is connected
to a remote memory via the Æthereal NoC. By employing our
optimizations to the interface between the MicroBlaze and the
NoC, we demonstrate an improvement in terms of speed above
880% in memory intensive tests and of up to 12% in real life
applications with little use of communication.

I. INTRODUCTION

The shrinking feature sizes in silicon technology allowed

both an increase in the processing power and the number of

IPs integrated on a single chip. At the same time consumer

expectations adapt to the benefits provided by technology by

both diversifying and demanding higher quality from already

existing services. It is now customary for mobile phones

for example to provide maps, route planning, gps and video

capabilities.

Building complex systems to support these features, pos-

sibly integrating IPs from multiple vendors becomes then a

difficult, time-consuming task. Employing networks-on-chip

for connecting together the many IPs can significantly reduce

the development effort [1], [2] and facilitate verification [3].

The reuse of interconnect elements like routers, network

interfaces, arbiters, long communication lines, clock domain

crossings is yet another benefit.

Networks on chip offer an optimized interconnect capable

of running at higher frequencies and having better scalability

properties than a standard bus design. The price that is

often paid in exchange is an increase in latency in terms of

clock cycles. However we find this increase in latency to be

unavoidable as the size of the system itself increases.

Previous studies focused to a large extent on the routing

of messages inside the network, while little effort has been

devoted to optimizing the way the IPs are connected to the

network. We focus in this work on optimizing the interface

between IPs and the “network core”, the actual infrastructure

transporting data between different points on the chip. This

layer is in charge of performing protocol conversions between

the bus standards used by IPs and the internal message format

used inside the network.

We propose three main optimizations 1) write coalescing,

or automatically combining writes to consecutive addresses

into single burst transactions, 2) a mechanism for ensuring

memory consistency while at the same time allowing posted

writes and 3) a mechanism for offering prefetch functionality

to IPs otherwise lacking it. The first two optimizations are

transparent from the point of view of the application developer

while the last one requires modifications at the software level.

To prove our concept and evaluate the performance of

the proposed optimizations, we implement our design on

FPGA, using MicroBlaze cores as processing elements. As

benchmarks we use several memory intensive computation

loops, and a real-life application, a JPEG decoder with a

much higher computation-to-communication ratio. The total

gain obtained by applying all three techniques ranges from

up to 880% (or in other words a speedup of 9.8) in memory

intensive applications, to a modest 12% in the case of the JPEG

application, which is not communication but computation

bounded. It shall be noted though that this speedup represents

the speedup of the entire system, while the optimization

targeted only one of its components.

The remainder of this paper is structured as follows: The

Section II shows the relation of our study to previous work.

Section III presents the architecture used in our experiments.

Section IV explains the optimizations employed and expected

benefits. Experimental results detailing the performance im-

provement can be found in Section V. The last section presents

our conclusions.

II. RELATED WORK

Many Network-on Chip implementations already exist,

some providing mature flows with the possibility of generating

a hardware description of the entire infrastructure [4], [5], [6],

[7]. The authors often provide complete solutions covering all

aspects of interconnect design including the interface to the

IPs.

Many studies also exist covering the optimization of dif-

ferent aspects of the interconnect, like routing [8], [9] and

network topology [10], [11], however we have found that

little effort was dedicated to optimizing the interfaces between

traditional IPs, unaware of the existence of the NoC and the

NoC itself.

Of the literature dedicated specifically to network interfaces

we mention [12] which is a precursor of the architecture we

use in our current research proposed separating the networking

function of the NI from the actual interface to the IP. The

implied benefit is the possibility of easily reusing part of the

design when developing interfaces to other types of IPs. The

same idea is also present in [13].

Options for connecting IPs to NoC are explored by [14].

The work considers solutions based on both software and

hardware, with an approach focused on modifying the IP

building wrappers around it. By comparison we choose to

leave the IP unaltered and only interface with it based on its

existing connections to standard buses.

Wrappers are also used by [15], with the advantage of both

hiding the implementation details of the interconnect from

the IP and avoiding modifications of the IPs and the network

internals.

None of the works previously mentioned suggests perfor-

mance optimizations at the level of the NI.

In the domain of high-performance cache-enabled proces-

sors, write coalescing is a function commonly performed by

write buffers [16] or by the cache itself, as in the case of write-

back caches. Prefetching has also been studied extensively

[17]. Our work is focused on less costly solutions which do not

assume the presence of caches and integrate the functionality

of the write buffer into the communication infrastructure.

Despite the fact that the optimizations presented in this

paper are generally well known, we believe to be the first

to propose and analyze them in the context of Networks-on-

Chip.

III. SOC ARCHITECTURE

One of the most important choices defining the behavior

and performance of a multi-IP system is the memory and

communication model. From the early multiprocessors, two

models have emerged, the shared memory paradigm and the

message passing paradigm for example as implemented by

MPI [18]. The first encourages a global view of the system

in which elements can access each other’s resources as part

of a global address space, while the second regards cores as

performing individual, separate tasks and only exchanging data

in blocks when the processing is finished or about to begin.

The system we envision has multiple IPs, each with a

small amount of local memory (scratchpad) for fast access to

temporary data and larger shared remote memories, possibly

off-chip, available to all IPs. It may also be possible for IPs

to access each other’s memory directly, as it has been already

demonstrated in [19].

In our prototype, the underlying communication network is

provided by the Æthereal network-on-chip [4], [20], although

our proposals are not tied to one particular implementation.

Æthereal is a connection oriented, TDM based NoC, that can

be built and optimized according to a set of user specifications

in terms of desired bandwidth and latency.

The main components of the interconnect are described in

Figure 1.

Fig. 1. System based on the Æthereal network, and example allocated
timeslots.

As illustrated in figure 1a, requests from IPs acting as

masters are translated by NI shells into the message format

used inside the network. The connections between IPs and NI

shells are either back-to-back or through a bus, using the native

bus standard of the IP. A bus transaction with parallel signal

groups (command, address, data) is serialized into a single

signal group having the word width of the communication

link.

A separate module, the NI kernel, is responsible for pack-

etizing the request and sending it over the network. An NI

kernel offers point-to-point connections, behaving like FIFOs

between network endpoints, usually NI shells. An NI kernel

may service multiple NI shells. Using the formalization of the

OSI protocol stack [21], the NI shells provide the services of

the session layer and the NI kernel the services of the transport

layer. A more detailed discussion about the correspondence

with the OSI layers can be found in [22].

At the remote side (Figure 1c) NI shells translate the en-

coded message into the protocol of the target bus, to be served

by a slave IP, for example a memory. The internal message

format is independent of the bus protocol and pairing “master”

and “slave” NI shells using different bus protocols is possible.

Each remote NI shell serves a single connection and several

instances may be necessary for serving requests from multiple

masters. Although not represented in Figure 1, connections are

bidirectional and allow sending back confirmations and results

of the read requests.

Inside the network (Figure 1b) a contention-free routing

strategy [4] is employed. A global schedule in the form of a

revolving slot table is used to ensure packets can be forwarded

at each router without delay. The schedule is computed at

design time and a number of timeslots is reserved for each

connection to be used exclusively for that connection. This

ensures that: 1) the communication behavior including bounds

on bandwidth and latency can be accurately described (in other

words predictability) and 2) separate applications within a

system do not interfere with each other (a property we call

composability) .

The assumptions of predictability and composability allow

us to use a simpler test setup, as presented in Section V. Since

several tasks running on multiple processors are guaranteed not

to interfere with each other, it is not relevant whether those

tasks and processors are present or not, as long as their share of

network bandwidth is taken into account during the allocation

phase.

IV. PROPOSED OPTIMIZATIONS

We propose three optimizations in two categories: one is

transparent from the point of view of the IP, one requires the

explicit intervention of the application developer.

The first optimization consists of using write coalescing,

for a better use of bandwidth, the second consists of an

efficient and safe, from the memory consistency point of view,

mechanism for performing posted writes, and the third uses

existing features of the IP to offer otherwise absent prefetching

functionality.

Our prototype system uses a MicroBlaze soft-core and

interfacing is performed on the PLB bus and with the FSL

links. We implement our optimizations into NI shells for the

PLB bus.

A. Write coalescing

Memory transactions, encoded as messages, traverse the

network in a serialized fashion, with headers, addresses and

data sharing the same bandwidth. Longer messages, with

multiple words of data for a single header/address pair would

thus have better payload efficiency.

Burst transactions on the bus side correspond to such

messages inside the network, however, not all IPs have the

capability of generating burst transactions. The instruction set

of the MicroBlaze soft-core does not provide an instruction to

write to memory more than one word at a time, and this is

true for many other simple IPs also.

The solution we found was to automatically identify se-

quences of write operations to consecutive addresses and

combine them into a single message for the purpose of travers-

ing the network. At the destination NI shell these messages

can then be split again into individual write operations or

optionally they can be served directly to the destination bus if

burst transactions are supported.

We perform this write coalescing as long as the addresses

are consecutive, the burst length has not reached the maximum

value, 32 for the message format we are currently using, and

there is data in the outgoing network queue. This last condition

is to ensure that we are not unnecessarily delaying messages.

A diagram of the NI shell we implemented is found in

Figure 2. The shell uses several independent queues for storing

the data, the address and the headers. Data is copied from the

PLB bus to the send queue whenever a write transaction is

accepted, new headers and address are copied to the header

queue whenever a transaction cannot be merged with the

previous transaction or the network is idle and the current

transaction can be processed immediately.

Fig. 2. NI shell supporting burst write

It would also be possible to implement the same functional-

ity for read transactions, however in our case the processor will

always stall until a read transaction is complete thus making

this feature useless.

For comparison, the NI shell without burst or posted write

support (Figure 3) consists of a simple serializer shifter. The

entire request message is generated in a single cycle when

accepting a request from the bus and is sent to the network

word-by-word in the following cycles. Because all requests

are blocking additional queues would not provide any benefit.

Fig. 3. NI shell without burst or posted write support

B. Posted writes and memory consistency

Memory consistency is a term used to describe the expected

system behavior with regard to the order in which memory

writes are visible to the different IPs in the system. In general a

stricter memory model provides more guarantees regarding the

order of memory operations thus making the programmer’s job

easier, but makes the hardware implementation more difficult

and less efficient.

The strictest consistency model in use is the sequential

consistency [23], which requires that the memory operations

of each individual processor, as seen by the other processors

in the system appear to execute in the order of specified by the

processor’s program. Any particular interleaving between the

instructions of different programs is allowed, but the same

interleaving shall be seen by all processors or processes.

This is essentially the same result that can be expected from

multiple threads running on a single processor, and studies

in general agree [24], [25] that this is what programmers

intuitively expect their machines to behave like.

We first present a basic hardware implementation that would

provide sequential consistency, then show how the require-

ments can be relaxed to allow performance optimizations. We

assume from the beginning an architecture where memory

requests, both read and writes can be pipelined, but the order-

ing of requests, even between reads and writes is preserved

within the pipeline. It must be mentioned that allowing reads

to bypass writes is sometimes accepted as an optimization

[26], reads being considered more important, as the reader

process was likely stalled waiting for data. Although we do

not accept reordering of normal read operations with respect

to write operations, we allow it for prefetch reads as it will be

explained in the following section.

Despite the fact that our architecture does not employ

caches, and the system seems to maintain ordering of requests,

consistency problems may still arise. Consider the following

scenario involving a transfer between a producer and a con-

sumer of data, represented in Figure 4. The producer (node

A) generates data items and places them in some memory

location, for example in external memory. Upon completion,

it signals to node B that the data is ready to be processed.

Fig. 4. Consistency issues raised by signals arriving at different destinations
with different delays

Because the NoC allows messages with different destina-

tions to travel independent of each other, it may be possible

for the confirmation message from A would arrive while the

data is still queued waiting to be written to the memory. An

attempt by B to read the data through its own connection to

the memory would return stale values. Not only it is easy

to see that this produces an erroneous program behavior, but

it does that by breaking the assumptions of sequentiality,

which required that the confirmation message, for example

a write operation to a specific flag in memory, would be seen

by B strictly after the write operation to main memory was

completed.

One possible solution would be that all write operations

need to be confirmed (non-posted writes), preventing A from

sending a message to B before the previous operation has

been completed. Unfortunately, this would completely prevent

pipelining, resulting in a severe performance penalty.

Our solution consists of performing posted writes (write op-

erations which are acknowledged at the source without waiting

for confirmation from the target), but keeping track in the NI

shell of which write operations have been confirmed and which

have not been. Future writes to different destinations will be

stalled until all pending writes have been confirmed, in other

words, consecutive writes to the same destination are pipelined

like posted writes but writes to different destinations behave

like non-posted ones.

Let us analyze why this ensures sequentiality. The sequential

consistency model required that from each process’s point of

view, all memory accesses in the system seem to take place

in the same order, with an arbitrary interleaving of accesses

belonging to different processes, but maintaining the program

order for accesses of each individual process. This order is

not necessarily the order given by the physical time of issue

of each access, but in our case it can be chosen as the order

of physical time of completion of each access (the physical

read or write to each memory). Because we did not allow

the reordering of write operations in each pipeline and all

messages between two nodes travel on the same path, writes to

one memory from one specific processor will occur in program

order. Because our system waits for completion confirmation

when switching between different targets, writes to memory B

that occur in the program after writes to memory A will also

take place physically later in time. It is necessary for the same

to happen for read requests so our mechanism also enforces

this.

It is possible to further relax these restrictions to allow

higher system performance. For example when one memory

is not read by any other process, like it might be the case

of a video frame-buffer, it is not necessary to order the

accesses to that memory with respect to accesses to other

memories. It is also possible to emulate the behavior of

other consistency models by only partially connecting the

command signals used to block some memory accesses un-

til accesses to other modules have completed and mapping

synchronization variables to specific memories, Figure 5. We

can for example implement the weak consistency model [27]

by mapping synchronization variables in one memory and

enforcing sequentiality between that memory and each of the

data memories, but not among data memories. A consistency

model similar to the Release/Acquire model [28] could be

implementing by splitting the synchronization memory in

two separate memories and enforcing only one way ordering

between accesses to these memories and the data memories,

for example an access to Acquire must complete before an

access to Data, but not the other way around.

Fig. 5. Emulation of a weak consistency model

C. Software prefetch

The previous proposals are transparent from the point of

view of the software developer. Except for the variation in

performance, the system behaves no differently from a system

with only local memory, even the introduction of the NoC

between an IP and its memory is completely transparent. The

following proposal however introduces a feature that needs

to be explicitly used by the programmer, and in some cases

requires a significant rewrite of the software.

Networks-on-chip and large scale interconnects in general

have a higher latency than back-to-back connections. Given

that, it is natural that we look for ways to cope with that

latency. While posted writes provide an efficient method of

dealing with write transactions, For read transactions we do

not have a similar solution. Processors providing out-of-order

execution mitigate the problem to some extent by allowing

other instructions to continue while data is being fetched from

memory. This type of approach though is expensive and not

often predictable.

In our system we opt for introducing an explicit command to

bring data from memory some time in advance before actually

being needed (prefetch). Note that, unlike other prefetch

implementations, the data is not used to update a local cache

from which it can be later read using a normal read instruction,

but instead is deposited in a queue from where it needs to be

explicitly read by the program. The technique can be seen

as a software split transaction, where the request for data

is decoupled from the receiving of data. Example code is

provided in Figure 6.

Fig. 6. Example prefetch loop compared to original code

In the modified code, one or more data items are requested

prior to entering the main processing loop (line 6). In each

loop iteration, more data is requested in advance (line 9) with

care being taken to not exceed the limits of the actual input.

Data from the previous requests which should have already

arrived in the buffers is then retrieved in line 10.

The hardware necessary to support the prefetch mechanism

consists of an NI shell connected to the FSL bus of the

MicroBlaze processor. The shell behaves as a processing

FIFO, accepting at the input port memory read requests and

delivering at the output port the retrieved data. The shell

accepts additional commands for configuring the size of burst

reads.

All prefetch operations are under explicit control of the

program, which may also have to ensure ordering with respect

to the normal read and write operations. Currently the code

must be manually edited by the software developer, which is

also what we did in our experiments. Although in principle

it might be possible to offload this task to the compiler for

example, this task is far from trivial and is complicated by

consistency issues especially in multi-core systems [29].

All our proposals were implemented and tested in FPGA.

The hardware cost of the implemented shells relative to the

size of the entire system is presented in Figure 7. In our test

system, the prefetch module was connected to a dedicated NI

kernel, thus doubling the size of the interconnect, however

in practice this would not be necessary. The optimized shell

implements both the burst and posted writes.

Fig. 7. Hardware cost of the shells in FPGA implementation

V. EXPERIMENTAL RESULTS

We have performed our tests on three similar systems,

all having the structure presented in Figure 8. For the main

PLB target we have substituted three different NI shells,

one performing only non-posted operations, one capable of

performing posted writes with the described safety mechanism,

and one performing both burst coalescing and posted writes.

The FSL interface was always present, but since its use is

always explicit, we specify through the MicroBlaze program

whether it should be used or not.

Our tests involved only one processor, however we simulate

the effects of having multiple processors by allocating only

a fraction of the link bandwidth inside the network. For a

fair comparison, in the tests where both the FSL and PLB

link is used, we restrict the total bandwidth for both links

to the bandwidth offered to the PLB alone in the non-

prefetch scenario. The most efficient way of distributing the

bandwidth between the PLB and FSL connection was found

using exhaustive search with increments of 25%. We also

perform an additional test, where two separate full-bandwidth

links are provided, one for each link (marked B in the result

graphs, Figures 9 - 14).

For the software we have chosen several benchmarks, rang-

ing from synthetic to real applications. In short, these are: read

Fig. 8. Test setup: one MicroBlaze core is connected through two separate channels, one on the PLB bus and one on an FSL link to a remote memory.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 4 8

c
y
c
le

s
 (

th
o
u
s
a
n
d
s
)

processors

blocking read
prefetch read

burst prefetch read
non-posted write

posted write
burst write (posted)

Fig. 9. Performance of Read and Write tests under different setups

and write loops, several kernels with a relatively high amount

on memory activity chosen from the Livermore Loops [30],

and a JPEG decoding application.

Our first set of tests consists of a read and a write loop for

an array of 16 K words. Due to their intensive use of memory

transactions they show the highest performance variations

among our tests. The results are presented in Figure 9. As

the number of processors in the system is increased, there are

two factors causing performance degradation: an increase in

latency and a reduction in the available bandwidth. The posted

write and the prefetch read tests, which are largely immune to

the increase in latency provide a good indication of the point

when bandwidth becomes the limiting factor. The use of burst

read and write operations alleviates the effect of the bandwidth

reduction. Not using posted write and prefetch read incurs a

large penalty even for the one processor configuration.

The Livermore Loops are small kernels that were used

for testing the performance of supercomputers. They are

representative for scientific applications but we have chosen to

use them as they provide a variety of memory access patterns.

The versions we employed were translated in C and were set

to use only integer operands. The loops had to be manually

modified to perform software prefetch, and thus we only used

four of them in our tests, more specifically kernels 1 (hydro),

6 (linear recurrence), 12 (first difference), and 21 (matrix

multiplication). The results of the Livermore Loops tests are

shown in Figures 10-13. While the latency hiding techniques

provide a significant advantage, the burst optimization does not

always produce an improvement as it depends on the patterns

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8

c
y
c
le

s
 (

th
o
u
s
a
n
d
s
)

processors

blocking read, non-posted write
blocking read, posted write (burst/non-burst)

prefetch read, non-posted write
prefetch read, posted write

prefetch read, burst write

Fig. 10. LL kernel 1

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8

c
y
c
le

s
 (

th
o
u
s
a
n
d
s
)

processors

blocking read, non-posted write
blocking read, posted write (burst/non-burst)

prefetch read, non-posted write
prefetch read, posted write (b/nb)

Fig. 11. LL kernel 6

of memory access. The numerical results for all tests can be

found in Table I.

The JPEG application is a complex program with a high

computation-to-communication ratio. It requests data from an

external memory, performs calculations on the retrieved data

and writes back the result to the external memory in small

bursts which are essentially memory copy operations on the

already decoded data. The read operations are almost always

sequential with the exception of a few initial headers, while

the write operations follow an access pattern characteristic for

accessing a sub-matrix out of a larger matrix.

The results are presented in Figure 14. The difference is

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8

c
y
c
le

s
 (

th
o
u
s
a
n
d
s
)

processors

blocking read, non-posted write
blocking read, posted write (burst/non-burst)

prefetch read, non-posted write
prefetch read, posted write

prefetch read, burst write

Fig. 12. LL kernel 12

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

1 2 4 8

c
y
c
le

s
 (

th
o
u
s
a
n
d
s
)

processors

blocking read, non-posted write
blocking read, posted write (burst/non-burst)

prefetch read, non-posted write
prefetch read, posted write (b/nb)

Fig. 13. LL kernel 21

 7500

 7600

 7700

 7800

 7900

 8000

 8100

 8200

 8300

 8400

 8500

 8600

1 2 4 8

c
y
c
le

s
 (

th
o
u
s
a
n
d
s
)

processors

blocking read, non-posted write
blocking read, posted write

blocking read, burst write
prefetch read, non-posted write

prefetch read, posted write
prefetch read, burst write

Fig. 14. JPEG

more pronounced when the available bandwidth is severely

limited as it is the case with the 8 processors scenario. The

improvement in the case of the JPEG application is a modest 6

to 12%, however this represents an increase in the performance

of the entire application, while the optimization targeted a

single component of the system.

Figure 15 shows the average performance increase over all

bandwidths obtained in all applications. The performance in-

TABLE I
IMPROVEMENT OVER BASE SYSTEM OBTAINED WITH DIFFERENT

APPLICATIONS AND BANDWIDTHS

crease due to particular optimizations is represented separately.

The performance increase provided by the posted writes is

presented in two separate scenarios, when prefetch read is

not used and when it is. The performance of burst posted

writes is presented in comparison to normal posted writes.

The overall speedup is the speedup for the entire system with

all optimizations enabled. Numerical results are presented in

Table I.

 0x

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

write read LL1 LL6 LL12 LL21 jpeg

S
p
e
e
d
u
p

Application

prefetch
posted write w/o prefetch

posted write w/prefetch
burst over posted

overall

Fig. 15. Average speedup across all bandwidths obtained with the different
techniques in all applications

VI. CONCLUSIONS

In this paper we have evaluated the benefits offered by

optimizations at the level of protocol translations between the

IPs and the network core in a NoC based system. We show

how some optimizations can be performed transparently, hid-

ing operation latency or improving bandwidth usage without

breaking the view of the system from the IP side, and without

requiring any intervention from the system designer or appli-

cation writer. Other optimizations require explicit intervention

from the programmer, but can achieve further gains.

We have tested our proposal on FPGA, using synthetic

and real-life applications, and we observe in most cases

significant speedups. Our implementation also demonstrates

how inter-operation can be achieved transparently over the

NoC between components using different bus standards, for

example requests passed to the network through the FSL by

MicroBlaze soft-core are served on the remote side by slaves

on the PLB bus.

REFERENCES

[1] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-vincentelli, “Addressing the system-on-a-chip intercon-
nect woes through communication-based design,” in DAC, 2001.

[2] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intecon-
nection networks,” in DAC, 2001.

[3] B. Vermeulen and K. Goossens, “A network-on-chip monitoring infras-
tructure for communication-centric debug of embedded multi-processor
socs,” in VLSI-DAT, January 2009.

[4] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on chip:
Concepts, architectures, and implementations,” IEEE Design & Test of

Computers, vol. 22, no. 5, 2005.
[5] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS

architecture and design process for network on chip,” Journal of Systems
Architecture, vol. 50, no. 2-3, pp. 105 – 128, 2004, special issue on
Networks on Chip.

[6] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architecture
for gigascale systems-on-chip,” Circuits and Systems Magazine, vol. 4,
no. 2, pp. 18–31, 2004.

[7] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, S. Murali, L. Raffo,
G. D. Micheli, and L. Benini, “NoC design and implementation in 65nm
technology,” in NOCS, 2007, pp. 273–282.

[8] J. Hu and R. Marculescu, “DyAD: Smart routing for networks-on-chip,”
in DAC. New York, NY, USA: ACM, 2004, pp. 260–263.

[9] J. Flich, A. Mejia, P. Lopez, and J. Duato, “Region-based routing: An
efficient routing mechanism to tackle unreliable hardware in network on
chips,” NOCS, vol. 0, pp. 183–194, 2007.

[10] K. Srinivasan, K. S. Chatha, and G. Konjevod, “An automated tech-
nique for topology and route generation of application specific on-chip
interconnection networks,” in ICCAD, 2005, pp. 231–237.

[11] U. Y. Ogras and R. Marculescu, “Energy- and performance-driven NoC
communication architecture synthesis using a decomposition approach,”
in DATE, 2005, pp. 352–357.

[12] A. Radulescu, J. Dielissen, S. G. Pestana, O. P. Gangwal, E. Rijpkema,
P. Wielage, and K. Goossens, “An efficient on-chip network interface
offering guaranteed services, shared-memory abstraction, and flexible
network programming,” Transactions on CAD of Integrated Circuits and

Systems, vol. 24, no. 1, 2005.
[13] R. Holsmark, A. Johansson, and S. Kumar, “On connecting cores

to packet switched on-chip networks: A case study with microblaze
processor cores,” in DDECS Workshop, April 2004, slovakia.

[14] P. Bhojwani and R. Mahapatra, “Interfacing cores with on-chip packet-
switched networks,” in VLSID ’03, 2003, p. 382.

[15] S. P. Singh, S. Bhoj, D. Balasubramanian, T. Nagda, D. Bhatia, and
P. T. Balsara, “Generic network interfaces for plug and play NoC based
architecture.” in ARC, vol. 3985. Springer, 2006, pp. 287–298.

[16] K. Skadron and D. W. Clark, “Design issues and tradeoffs for write
buffers,” in HPCA, 1997, pp. 144–155.

[17] T. fu Chen and J. loup Baer, “A performance study of software and
hardware data prefetching schemes,” in ISCA, 1994.

[18] T. LeBlanc and E. Markatos, “Shared memory vs. message passing in
shared-memory multiprocessors,” in IPDPS, Dec 1992, pp. 254–263.

[19] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC:
A template for composable and predictable multi-processor system on
chips,” ACM Trans. Des. Autom. El. Syst., vol. 14, no. 1, pp. 1–24, 2009.

[20] K. Goossens and A. Hansson, “The æthereal Network on Chip after ten
years: Goals, Evolution, Lessons, and Future,” in DAC, Jun. 2010.

[21] J. D. Day and H. Zimmermann, “The OSI reference model,” pp. 38–44,
1995.

[22] A. Hansson and K. Goossens, “An on-chip interconnect and protocol
stack for multiple communication paradigms and programming models,”
in CODES-ISSS, 2009.

[23] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess progranm,” IEEE Trans. Comput., vol. 28, no. 9,
pp. 690–691, 1979.

[24] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66–76, 1996.

[25] M. D. Hill, “Multiprocessors should support simple Memory-
Consistency models,” Computer, vol. 31, no. 8, pp. 28–34, 1998.

[26] J. Goodman, “Cache consistency and sequential consistency,” SCI Com-
mittee, Technical Report 61, Mar. 1989.

[27] M. Dubois, C. Scheurich, and F. Briggs, “Memory access buffering in
multiprocessors,” in 25 years of the international symposia on Computer

architecture (selected papers). ACM, 1998, pp. 320–328.
[28] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and

J. Hennessy, “Memory consistency and event ordering in scalable
shared-memory multiprocessors,” in Proceedings of the 17th annual

international symposium on Computer Architecture. ACM, 1990, pp.
15–26.

[29] S. W. Son, M. Kandemir, M. Karakoy, and D. Chakrabarti, “A compiler-
directed data prefetching scheme for chip multiprocessors,” in Proceed-

ings of the 14th ACM SIGPLAN symposium on Principles and practice

of parallel programming. Raleigh, NC, USA: ACM, 2009, pp. 209–218.
[30] F. H. McMahon, “The Livermore Fortran kernels: a computer test of the

numerical performance range,” 1986.

