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Abstract—The verification complexity of real-time require-
ments in embedded systems grows exponentially with the number
of applications, as resource sharing prevents independent veri-
fication using simulation-based approaches. Formal verification
is a promising alternative, although its applicability is limited to
systems with predictable hardware and software. SDRAM mem-
ories are common examples of essential hardware components
with unpredictable timing behavior, typically preventing use of
formal approaches. A predictable SDRAM controller has been
proposed that provides guarantees on bandwidth and latency
by dynamically scheduling memory patterns, which are stati-
cally computed sequences of SDRAM commands. However, the
proposed patterns become increasingly inefficient as memories
become faster, making them unsuitable for DDR3 SDRAM.

This paper extends the memory pattern concept in two ways.
Firstly, we introduce a burst count parameter that enables
patterns to have multiple SDRAM bursts per bank, which is
required for DDR3 memories to be used efficiently. Secondly,
we present a classification of memory pattern sets into four
categories based on the combination of patterns that cause worst-
case bandwidth and latency to be provided. Bounds on bandwidth
and latency are derived that apply to all pattern types and burst
counts, as opposed to the single case covered by earlier work.
Experimental results show that these extensions are required to
support the most efficient pattern sets for many use-cases. We also
demonstrate that the burst count parameter increases efficiency
in presence of large requests and enables a wider range of real-
time requirements to be satisfied.

Index Terms—predictability; SDRAM; memory controller;
memory patterns; burst count; classification

I. INTRODUCTION

Embedded system design gets increasingly complex. More

and more resources, such as processing elements and mem-

ories, are added to enable parallel execution of an increas-

ing number of applications [1]. Some of these applications

have hard real-time requirements that must be satisfied to

prevent significant quality degradation, or even to guarantee

the functional correctness of the system [2]. Platform resources

are shared between applications to reduce cost. Resource

sharing creates interference between applications, making their

temporal behaviors inter-dependent. This creates a verification

problem, since real-time requirements are typically verified

by slow system-level simulation. All possible combinations

of concurrently executing applications must hence be verified,

causing the verification complexity to grow exponentially with

the number of applications [3]. An alternative to simulation-

based verification is to formally verify that real-time require-

ments are satisfied using a performance analysis framework,

such as network calculus [4] or data-flow analysis [5]. For-

mal verification covers all interactions between applications,

greatly reducing the verification effort. However, this approach

requires predictable systems, where worst-case response times

are known for all software and hardware components [6].

SDRAM memories are prominent examples of essential

hardware components with unpredictable behavior. These

memories are very common, since they provide large amounts

of storage at low cost. The challenge of SDRAM is that

the time to serve a request is highly variable and depends

on previous requests. This makes it difficult to derive useful

bounds on the latency and bandwidth provided to a memory

requestor, which is a processing element that accesses the

memory on behalf of an application. The bandwidth provided

by these memories is furthermore a scarce resource that must

be efficiently utilized, as it is one of the main performance

bottle-necks [2]. Most existing memory controllers are either

statically or dynamically scheduled. Statically scheduled con-

trollers are not flexible enough to deal with dynamic appli-

cation behavior, while dynamically scheduled controllers are

typically unpredictable and cannot provide hard guarantees on

bandwidth and latency. Predator [7] is a hybrid memory con-

troller that provides bandwidth and latency guarantees, while

increasing flexibility over earlier predictable controllers. This

is accomplished using predictable memory patterns, which are

statically computed sub-schedules of SDRAM commands that

are dynamically scheduled at run-time. However, the provided

theory only supports a limited set of memory patterns that are

inefficient with fast memories, such as DDR3 SDRAM.

The four main contributions of this paper are: 1) We

introduce burst count as a pattern parameter that considers that

newer faster memories require larger accesses with multiple

bursts per bank to be accessed efficiently. This enables a wider

range of real-time requirements to be satisfied. 2) We present

a classification of memory pattern sets into four categories

based on the combination of patterns that cause worst-case

bandwidth and latency to be provided. 3) Bounds on bandwidth

and latency are derived that cover all pattern types and burst

counts, as opposed to the single case covered in [7]. 4)

We experimentally demonstrate and discuss memory efficiency

trends for DDR2 and DDR3 memories. Possible applications

of this work include integration with performance verification

tools, such as worst-case execution time estimators.

This paper is organized as follows. In Section II, we review

related work. Section III introduces the SDRAM architecture

and explains why it is difficult to provide useful bounds on

bandwidth and latency. The original concept of memory pat-

terns is recapitulated in Section IV. Section V then extends the

idea by parameterizing the number of bursts in a pattern, and

presenting a classification of memory pattern sets. Bandwidth

and latency bounds are then derived for all types of pattern

sets in Section VI and Section VII, respectively. Experimental

results are provided in Section VIII, followed by conclusions

in Section IX.



II. RELATED WORK

Most SDRAM controllers are either statically or dynam-

ically scheduled, depending on the type of systems they

target. Statically scheduled controllers, such as [8], execute

precomputed schedules of SDRAM commands that have been

computed at design time. These controllers are predictable,

since the latency and bandwidth provided to a requestor can

be bounded at design time by analyzing the schedule. For

this reason, statically scheduled memory controllers are most

frequently used in embedded systems with hard real-time

requirements. However, the predictability of these controllers

comes at the expense of flexibility. The precomputed sched-

ules limit the applicability to applications whose requestors

have regular access patterns and where the request sizes and

read/write ratio do not change during a use-case. Furthermore,

many schedules have to be computed and stored, as the

number of use-cases grows exponentially with the number of

applications [3]. These properties prevent statically scheduled

controllers from scaling to larger systems with more requestors

and more dynamic applications.

Dynamically scheduled memory controllers, on the other

hand, generate and schedule SDRAM commands dynamically

based on available requests. These controllers target high

efficiency and flexibility to fit in high-performance systems

with dynamic applications whose behaviors may not be known

at design time. Several of these controllers feature sophis-

ticated mechanisms to reduce latency or improve efficiency.

Examples involve preference for requests that target open rows

in the memory banks [9]–[13], or that fit with the current

direction of the data bus [11]–[15]. The problem with these

controllers is that the interaction between all these mechanisms

is complex, making the controllers unpredictable. For this

reason, neither of the mentioned controllers provides bounds

on latency or bandwidth. A predictable dynamically scheduled

controller targeting hard real-time requirements is presented

in [16]. However, this approach is limited to systems that

are performance monotonic [17], which means that local

reductions in execution time cannot result in longer overall

execution times. It is shown in [18] that this property does

not hold for all systems.

A hybrid memory controller that combines elements of

statically and dynamically scheduled designs is presented

in [7]. Predictability is achieved by using statically computed

memory patterns that can be dynamically scheduled using any

predictable arbiter. However, the provided theory only supports

a limited subset of memory patterns that becomes increasingly

inefficient as SDRAM memories become faster. This paper

addresses these limitations by proposing more general and

efficient patterns.

III. SDRAM OVERVIEW

This section explains why SDRAM memories are chal-

lenging to use in systems with real-time requirements. First,

Section III-A provides a brief overview of the SDRAM archi-

tecture. Section III-B then discusses the concept of memory

efficiency and presents five reasons for the variable bandwidth

and latency of SDRAMs.

A. SDRAM architecture

An SDRAM device comprises a number of banks, each

containing a memory array with a matrix-like structure, con-

sisting of rows with word-sized columns. A simple illustration

of this architecture is shown in Figure 1. As an example, a 512

megabit (Mb) DDR2-400 [19] chip with a word width of 16

bits has 4 banks, each with 8192 rows containing 1024 word-

sized elements. Since each column holds an element of 16

bits, it follows that a row contains 2 kilobytes (KB) of data.

On an SDRAM access, the logical address of the request is

decoded into a physical address (bank, row and column) using

a memory map. A bank has two states, idle and active. The

bank is activated from the idle state by an activate (ACT)

command that loads the requested row into a row buffer,

which stores the most recently activated row. Once the bank

has been activated, read (RD) and write (WR) bursts can be

issued to access the columns in the row buffer. These bursts

have a programmable burst length of either 4 or 8 words for

DDR2/DDR3 SDRAM. Finally, a precharge (PRE) command

is issued to return the bank to the idle state. This stores the

row in the buffer back into the memory array. Read and write

commands can be issued with an auto-precharge flag resulting

in an automatic precharge at the earliest possible moment

after the data transfer is completed. In order to retain data,

all rows in the SDRAM have to be refreshed regularly, which

is done by precharging all banks and issuing a refresh (REF)

command. If no other command is required during a clock

cycle, a no-operation (NOP) command is issued. A formal

definition of an SDRAM memory is provided in Definition 1.

row buffer

bank

read write

prechargeactivate

(open) (close)

Fig. 1. The SDRAM architecture and some important SDRAM commands.

Definition 1 (SDRAM memory): An SDRAM memory is

defined as (nbanks, w, f , d, BL), where nbanks is the number of

banks, w is the width of the data bus in bytes, f is the clock

frequency of the memory in MHz, d is the data rate (number

of data words that can be transferred during a clock cycle),

and BL is the programmed burst length in words.

B. Memory efficiency

The bandwidth to and from a memory ideally corresponds

to the product of the width of the memory interface, the clock

frequency of the memory, and the data rate. This is referred to

as the peak bandwidth, defined in Definition 2. For example, a

16-bit DDR2-400 memory has a peak bandwidth of 800 MB/s,

since it has a clock frequency of 200 MHz, a data rate of 2

words per clock cycle, and a data bus width of two bytes.

However, the peak bandwidth of SDRAMs cannot be fully

utilized, due to refresh and stall cycles caused by numerous



timing constraints. The constraints are typically minimum

delays between particular commands, such as between two

activates, between a read and a precharge, or between a

precharge and an activate. This is captured by the concept

of memory efficiency, which is the fraction of clock cycles

with useful data on the data bus. A useful classification of

memory efficiency into five categories is presented in [20].

The categories are: 1) refresh efficiency (eref), 2) read/write

efficiency (erw), 3) bank efficiency (ebank) , 4) command effi-

ciency (ecmd), and 5) data efficiency (edata). Memory efficiency

is the product of these five categories, as stated in Definition 3.

This definition is used to determine the net bandwidth, defined

in Definition 4, provided by the memory controller. This

is the remaining bandwidth that is useful to the requestors

after considering all types of overhead. An important trend in

SDRAMs is that timing constraints, expressed in nanoseconds,

do not change much between generations. A consequence

of this is that the constraints measured in clock cycles are

increasing as memories are clocked at higher frequencies,

resulting in reducing efficiency for faster memories. This

makes it increasingly challenging to provide useful bounds

on net bandwidth.

Definition 2 (Peak bandwidth): The peak bandwidth of a

memory device is defined as bpeak = f · d · w.

Definition 3 (Memory efficiency): Memory efficiency is de-

fined as emem = eref · erw · ebank · ecmd · edata.

Definition 4 (Net bandwidth): The net bandwidth of a

memory device is defined as bnet = bpeak · emem.

We proceed by briefly summarizing the five categories of

memory efficiency and discuss their typical impact on net

bandwidth. This gives an idea of why it is difficult to provide

a useful bound on net bandwidth at design time.

1) Refresh efficiency: Refresh efficiency accounts for the

cycles that are lost due to refreshing the memory array to

prevent data loss. A refresh command must be issued every

refresh interval (tREFI ), which is 7.8 µs on average for all

DDR2 and DDR3 devices at normal operating temperatures.

The time required to complete this operation depends on the

time required to precharge all banks and on the size of the

memory device, as larger devices require more time to refresh.

The refresh efficiency can be estimated at design time with

reasonable accuracy and is typically between 95-99% for all

DDR2 and DDR3 memories [20].

2) Read/write efficiency: SDRAMs have a bi-directional

data bus that requires time to switch from read to write and

vice versa. This results in lost cycles as the direction of the data

bus is being reversed. The read/write efficiency depends on the

number of read/write switches, which cannot be determined at

design time in the general case. Bounding read/write efficiency

by assuming a switch after every SDRAM burst results in less

than 75% efficiency for any DDR2 memory and less than 65%

for DDR3, indicating a severe loss of net bandwidth.

3) Bank efficiency: A read or a write command can be

issued immediately to columns in the active row. However, if

a command targets an inactive row, it first requires a precharge

followed by an activate command. This hence requires a

variable number of overhead cycles that depends on the state

of the memory. This overhead is captured by bank efficiency,

which is highly dependent on the logical addresses of requests

and how they are mapped to the different rows and banks of

the memory by the memory map. Therefore, it is not possible

to give a general estimate on the impact of this efficiency.

Bank efficiency can be bounded by assuming a bank miss for

every SDRAM burst. However, this results in less than 40%

bank efficiency for any DDR2 memory and 20% for DDR3,

which are useless bounds for a scarce resource [7].

4) Command efficiency: Even though a DDR device trans-

fers data on both the rising and the falling edge of the

clock, commands can only be issued once every clock cycle.

Sometimes a required activate or precharge command has to

be delayed because another command is already issued in that

clock cycle. This results in lost cycles when a read or write

command has to be postponed due to a row miss. The impact

of this is connected to the burst length, as smaller bursts result

in more activate and precharge commands. Command effi-

ciency is traffic dependent and can generally not be calculated

at design time, but is estimated to be between 95-100% [20].

5) Data efficiency: Data efficiency is defined as the fraction

of a memory access that actually contains requested data.

This can be less than 100%, since SDRAM memories are

accessed with a minimum burst length of 4 words for DDR2

and DDR3 SDRAM. The problem is not only related to fine-

grained requests, but also to how data is aligned with respect

to a memory burst. This is because a burst is required to access

BL words from an address that is evenly divisible by the burst

length. The data efficiency of a requestor can be computed at

design time if the minimum access granularity of the memory,

and the size and alignment of requests are known.

IV. MEMORY PATTERNS

Providing useful bounds on latency and bandwidth to

SDRAM requestors at design time is clearly a challenging

task. This section summarizes how this is done by the hybrid

memory controller proposed in [7].

Command scheduling in the hybrid controller is based on

predictable memory patterns, which are precomputed sub-

schedules of SDRAM commands that are known to satisfy the

timing constraints of the memory. These patterns are dynami-

cally scheduled at run-time, depending on incoming requests,

thus increasing flexibility over statically scheduled controllers.

A memory pattern set consists of five types of patterns: a

read pattern, a write pattern, a read/write switching pattern,

a write/read switching pattern, and a refresh pattern. The

read and the write pattern are referred to as access patterns,

while the remaining patterns are called auxiliary patterns. Five

scheduling rules determine how the memory patterns may be

dynamically scheduled by the memory controller. The rules

are: 1) Memory patterns are scheduled in a non-preemptive

manner, which means that a pattern that has been issued

cannot be stopped until it has finished. 2) A read or a write

pattern can be scheduled immediately after itself, or when the

memory is idle. 3) A write pattern following a read pattern

must be preceded by a read/write switching pattern. Similarly,

a read pattern following a write pattern must be preceded by a



write/read switching pattern. 4) A read or a write pattern can

be scheduled immediately after a refresh pattern. 5) A refresh

pattern can be scheduled after a read pattern, a write pattern,

another refresh pattern, or if the memory is idle. Figure 2

shows an example of how requests are mapped to memory

patterns.

Bursts /

Banks

Read Read

Read Refresh Write W/R Read Read R/W Write

0 2 31 0 2 31 0 2 31 0 2 31 0 2 31

Write Read WriteRequests

Time

patterns

Memory

Fig. 2. Mapping from requests to patterns to SDRAM bursts.

The controller uses an interleaving memory map. This

means that read and write accesses to successive logical

addresses map to SDRAM bursts for the different banks in

sequence. An access pattern consists of a read or a write

burst to each of the banks in turn, as illustrated in Figure 2.

Interleaving over the banks in this manner is an efficient

way to access the memory, since it is possible to activate

and precharge one bank while reading or writing to another.

It is not possible to assume that the correct rows are open

in any of the banks, so an access pattern must contain an

activate command for each bank. The read or write bursts are

issued with the auto-precharge flag, implementing a closed

page policy. This ensures that the banks are precharged as

soon as possible after an access, resulting in shorter patterns.

Figure 3 shows an example read pattern for a DDR2-400

memory. Note that the data from a bank arrives on the data

bus a few cycles after the corresponding read command, due

to the read latency in the memory device. The data from the

last banks may hence arrive during the following patterns.

The switching patterns are used to provide sufficient time

for the SDRAM to reverse the direction of the data bus.

These patterns only consist of NOP commands, and the length

is determined by the minimum number of cycles required

between read and write commands, which are defined by

the specification of the memory device. The refresh pattern

contains a single refresh command, preceded and succeeded

by a number of NOPs. There must be enough NOPs before

the refresh command to allow all banks to auto-precharge after

the last read or write pattern. After the refresh command is

issued, there have to be enough NOPs to allow the refresh

operation to complete before the next pattern is issued.

Memory pattern sets are formally defined in Definition 5.

The definition considers the lengths of the patterns in the

set, corresponding to the number of commands in the pattern.

One command is issued by the memory controller per clock

cycle, which implies that the time to issue a pattern is

known at design time. This information in combination with

the scheduling rules enables the hybrid memory controller

to bound net bandwidth and worst-case latencies. Pattern

sets are automatically generated by a tool, based on the

timing constraints of the memory device. Three algorithms

for memory pattern generation are presented in [21]. These

algorithms first try to generate the shortest possible read and

write patterns, given the timing constraints of the memory

device. They then generate the shortest auxiliary patterns that

satisfy the scheduling rules.

Definition 5 (Pattern set): A pattern set is defined as (tread,
twrite, trtw, twtr, tref), where the parameters correspond to the

lengths of the read pattern, the write pattern, the read/write

switching pattern, the write/read switching pattern, and the

refresh pattern, respectively.

0 1 2 10 11 12 13 14 153 4 5 6 87 9cycle 16 17 18 19 20 21

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1 2 2 2 2 2 2 2 2 33 3 3 3 3 3 3data
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NOP NOP
0

RD ACT
1

NOP NOP
1

RD ACT
2

NOP NOP
2

RD ACT
3

NOP NOP
3

RDcmd

Fig. 3. Read pattern with BL = 8 for a DDR2-400.

V. EXTENSIONS

This section extends the memory pattern concept to ad-

dress two important limitations. First, Section V-A introduces

a pattern parameter called burst count that determines the

number of SDRAM burst per bank in read and write patterns.

This parameter enables memory efficiency to be increased for

faster memories, such as DDR3. Section V-B then introduces a

classification of pattern sets into four types, depending on the

combination of patterns that result in the longest latency and

lowest memory efficiency. This enables us to derive bounds on

latency and bandwidth for all types of pattern sets and burst

counts, as opposed to the single case covered by earlier work.

A. Burst count

A problem with the memory patterns proposed in [7] is

that they become increasingly inefficient as memories become

faster, making them unsuitable for DDR3 SDRAM. A single

burst to each bank only requires BL/2 · nbanks clock cycles

to complete, which may be less than the minimum number

of cycles required between two activates to a bank. It is also

possible that there have not been enough cycles for the first

bank to finish precharging at this time. Both of these cases

prevent an access pattern from being repeated after itself,

which is required by the scheduling rules. It hence becomes

necessary to extend the access pattern with NOPs until the

constraints are satisfied, reducing efficiency and increasing

latency. This problem becomes increasingly severe for faster

memories, since the number of cycles with data transfer is

constant, while the number of overhead cycles increases, as

explained in Section III-B. This causes the memory efficiency

of a DDR2-1600 to be 35% lower than for a DDR2-400, as

we will see in Section VIII.

We propose to address this problem by adding a pattern

parameter that determines the number of consecutive bursts

to each bank in a pattern. This parameter is referred to as

burst count and is defined in Definition 6. The key idea is that

increasing burst count increases the number of cycles between

successive activates to a bank, removing the effects of the

activate and precharge constraints. It furthermore increases

the number of cycles with data transfer in a pattern, thus

increasing efficiency by amortizing overhead due to read/write



switches. However, it also increases the access granularity of

the memory, defined in Definition 7. More data hence has to

be read or written on every access and requests smaller than

the access granularity of the pattern are masked or padded to

fit. This has a negative impact on data efficiency, as we will

see when bounding memory efficiency in Section VI and when

computing net bandwidth for a range of example memories in

Section VIII.

Definition 6 (Burst count): The burst count of an access

pattern is denoted by BC , and is defined as the number of

consecutive SDRAM bursts per bank in the pattern.

Definition 7 (Access granularity): The access granularity

in bytes of an access pattern is defined as g = BC · BL ·

nbanks · w.

B. Pattern dominance

Before bounding the net bandwidth or latency of a pattern

set, it is essential to determine which sequence of patterns pro-

duces the worst results. There are four different possibilities,

depending on the relations between the lengths of the patterns

in the set. We hence introduce a classification with four pattern

dominance classes. This improves on the work in [7] that only

supports one type of pattern sets. Although this is a common

class, it is not always the most efficient, as we will see in

Section VIII. We proceed by defining the dominance classes

and show how to determine the classification of a pattern set.

A pattern set is classified as read-dominant when the read

pattern is longer than the write pattern and both the switching

patterns put together. This is formally defined in Definition 8

and illustrated in Figure 4a. In this case, the lowest bandwidth

and longest latencies occur when all interfering requests are

reads, i.e. when only read patterns and an occasional refresh

pattern are issued. Conversely, a pattern is considered write-

dominant if the write pattern is longer than the combined

lengths of the read pattern and both the switching patterns.

This case is defined in Definition 9, and an example is shown

in Figure 4b. It follows by the earlier reasoning that the worst-

case bandwidth and latency for a write-dominant pattern set

occurs when all interfering requests are writes, resulting in

that only write patterns and refresh patterns are issued. Pattern

sets that are neither read-dominant nor write-dominant are

referred to as mix dominant sets, defined in Definition 10. For

these sets, the worst-case bandwidth and latency is provided

when interfering requests alternate between reads and writes,

causing as many switches as possible. The definitions of the

dominance classes are all expressed in terms of the read pattern

to clearly show that the classes are mutually exclusive and

jointly exhaustive.

Definition 8 (Read-dominant pattern set): A pattern set is

defined as read-dominant iff tread > twrite + twtr + trtw.

Definition 9 (Write-dominant pattern set): A pattern set is

defined as write-dominant iff twrite > tread + twtr + trtw, which
is equivalent to tread < twrite − twtr − trtw.

Definition 10 (Mix-dominant pattern set): A pattern set is

defined as mix-dominant iff twrite− twtr− trtw ≤ tread ≤ twrite+
twtr + trtw.

ReadReadRead

R/W Write W/R

(a) Read-dominant

W/R Read R/W

Write

(b) Write-dominant

R/W

W/R

Write

Read

(c) Mix-read-dominant

R/W

W/R Read

Write

(d) Mix-write-dominant

Fig. 4. Example pattern sets illustrating the four different dominance classes.

The division into three dominance classes is sufficient to

bound net bandwidth. However, to accurately determine worst-

case latency, mix-dominant pattern sets are further subdi-

vided into two categories: mix-read-dominant and mix-write-

dominant sets. The reason is that we need to know if an odd

number of interfering requests result in more read patterns

or write patterns in the worst case. A mix-read-dominant

pattern set corresponds to a mix-dominant set in which the

lengths of the write to read switching pattern and the read

pattern is greater than or equal to that of the read to write

switching pattern and the write pattern. Otherwise, the pattern

set is mix-write-dominant. Mix-read-dominant and mix-write-

dominant pattern sets are formally defined in Definition 11

and Definition 12, respectively. The corresponding example

pattern sets are illustrated in Figure 4c and Figure 4d.

Definition 11 (Mix-read-dominant pattern set): A mix-

dominant-pattern set is defined as mix-read-dominant

iff twtr + tread ≥ trtw + twrite, which is equivalent to

tread ≥ twrite − twtr + trtw.

Definition 12 (Mix-write-dominant pattern set): A mix-

dominant pattern set is defined as mix-write-dominant

iff trtw + twrite > twtr + tread, which is equivalent to

tread < twrite − twtr + trtw.

VI. MEMORY EFFICIENCY BOUNDS

We have now extended the concept of memory patterns

with a burst count parameter that enables fast memories to be

efficiently accessed and showed how to categorize pattern sets

into different dominance classes, based on the situation that

triggers the worst-case bandwidth and latency. This section

derives lower bounds on memory efficiency that holds for all

burst counts and classes of pattern sets. This is an improvement

over [7] that only covers the special case of mix-read-dominant

pattern sets with BC = 1. We proceed by walking through

each of the efficiency categories presented in Section III-B

and describe how to bound them.

A. Refresh efficiency

We explained in Section III-B that the refresh efficiency

depends on the time to precharge all banks and execute a

refresh command, and the refresh period. The difficulty with

accurately bounding refresh efficiency is to know how long it

takes to precharge all banks, since this depends on the state

of the memory. Memory patterns solve this problem, since the

precharge cycles for all banks are known at design time by

looking at the generated patterns. The length of the refresh



pattern, tref, hence accounts for all time lost due to refresh

operations.

The refresh period is controlled by a timer that triggers

every tREFI clock cycles (corresponding to 7.8 µs for all

DDR2 and DDR3 memories). At this point, the memory

controller prepares to schedule a refresh pattern. However,

the scheduling rules state that a refresh pattern can only be

issued after a read or write pattern has finished. The longest

blocking time, tblock, before a refresh pattern can be issued is

hence determined by the largest sum of a write/read switching

pattern and a read pattern, and a read/write switching pattern

and a write pattern. This is expressed in Equation (1), which

is independent of the dominance class of the pattern set. A

refresh pattern is hence scheduled every 7.8 µs on average, but

with some occasional jitter due to blocking. This jitter does

not jeopardize the integrity of the data in the memory array

unless it is greater than 8 · tREFI [19], [22], which is a very

long time in comparison to the time it takes to execute any

reasonable pattern. We now bound refresh efficiency according

to Equation (2).

tblock = max(twtr + tread, trtw + twrite) (1)

eref = 1 −
tref

tREFI
(2)

B. Read/write efficiency

The read/write efficiency accounts for the time lost to

switching direction of the data bus. Using memory patterns,

we know that the read/write efficiency corresponds to the

maximum fraction of time spent executing read/write and

write/read switching patterns. This can be determined at design

time, since the length of the patterns and the scheduling rules

are known. The read/write efficiency is straight-forward to

determine for read-dominant and write-dominant pattern sets,

since these issue only read or write patterns in the worst case.

Since the worst case does not contain any switches, it follows

that the read/write efficiency is 100% for these sets. However,

if the set is mix-dominant, there is a switch after every read

and write pattern in the worst case. The read/write efficiency

is hence determined by the time required to execute a read

and write pattern divided by the time to execute the patterns

and their corresponding switches, as shown in Equation (3).

erw =

{

1 if read-dominant or write-dominant
tread+twrite

tread+twrite+twtr+trtw
if mix-dominant

(3)

C. Bank and command efficiency

The bank efficiency accounts for the overhead associated

with activating and precharging banks. The memory patterns

allow us to tightly bound this efficiency, since the timings of

all activates and precharges are known at design time. We com-

pute the bank efficiency by determining the fraction of cycles

of a read and a write pattern where data is actually transferred.

However, this also accounts for any overhead due to command

conflicts that may delay activate or precharge commands and

result in a longer read or write pattern. Although it may

be possible to distinguish this loss, we conveniently choose

to compute bank efficiency and command efficiency as an

aggregate. The aggregate bank and command efficiency is

computed by first determining the number of cycles that data

is transferred during a read pattern or a write pattern, denoted

by ttransfer. This is calculated by considering that there are BC

bursts of BL words to each of the nbanks, and that d words

are transferred every clock cycle (2 for all DDR memories).

This is expressed in Equation (4). For read-dominant pattern

sets, we simply divide the data transfer cycles with the length

of the read pattern. Conversely for write-dominant sets, we

divide the transfer cycles with the length of the write pattern.

Lastly for mix-dominant sets, we consider the fraction of

transfer cycles during one read and one write pattern. This

is expressed formally in Equation (5). Increasing burst count

increases ttransfer, but also tread, and twrite. However, the bank

and command efficiency increases with burst count, since the

impact of timing constraints is mitigated in longer patterns.

This is experimentally demonstrated in Section VIII.

ttransfer =
BC · BL · nbanks

d
(4)

ebank · ecmd =











ttransfer
tread

if read-dominant
ttransfer
twrite

if write-dominant
2·ttransfer

tread+twrite
if mix-dominant

(5)

D. Data efficiency

Data efficiency corresponds to the amount of data that is

transferred over the data bus that is useful to the requestors.

The data efficiency of a requestor is determined by how the

size and alignment of its requests fits with the minimum

access granularity of the memory, as previously discussed

in Section III-B. The minimum access granularity in our

approach is equal to the granularity of an access pattern,

computed according to Definition 7. This is a drawback of

the memory pattern approach, since the access granularity of

a pattern is larger than that of a single SDRAM burst, which is

the minimum access granularity of the memory device itself.

Increasing burst count exacerbates this problem, resulting in

that the gains in bank and command efficiency may be lost in

data efficiency in the presence of small requests. This indicates

that faster memories become increasingly dependent on large

requests. The data efficiency of a requestor r is computed

according to Equation (6), where sr denotes the request size

of the requestor in bytes. For simplicity, we assume that all

requests from a requestor are the same size and aligned with

respect to the access granularity of the memory. The general

case is covered in [21]. Equation (6) can be used to determine

the total data efficiency of the memory in the special case

where the request sizes and alignments of all requestors are

the same. Otherwise, the data efficiency depends on how

frequently the different requestors are scheduled, which is

determined by the memory arbiter.

edatar =
sr

g
(6)



VII. LATENCY BOUNDS

We have shown how to bound net bandwidth, based on how

the patterns in a pattern set are dynamically combined in the

worst case. We now proceed by showing how to derive the

maximum latency of a request, given a maximum number of

interfering requests with sizes equal or less than the access

granularity of the access patterns. We choose this particular

metric, since the hybrid controller cuts larger requests into

smaller pieces of this size before arbitration [21]. The max-

imum latency of a request is defined as the total length of

interfering memory patterns. This accounts for all switching

patterns and access patterns related to different requests and

to refresh patterns.

Our first step towards bounding the worst-case latency of

a request is to disregard the refresh patterns and compute the

maximum latency caused by read, write and switching patterns

in the presence of x interfering requests. The maximum

latency in this case depends on the dominance class of the pat-

tern set, as shown in Equation (7). If the set is read-dominant,

then all interfering requests are assumed to be reads. In this

case, the worst case contains an initial write/read switch,

followed by x read patterns. By the same logic, all interfering

requests are assumed to be writes for write-dominant patterns.

The worst-case latency for mix-dominant patterns happens if

the interfering requests alternate between reads and writes,

resulting in the maximum number of interfering switching pat-

terns. Which type of access pattern there are more of depends

on whether the pattern set is mix-read-dominant or mix-write-

dominant, as shown in Equation (7). Note that increasing burst

count results in longer access patterns. This implies that while

it increases the net bandwidth in the presence of large requests,

it also increases the worst-case latency. We return to investigate

this trade-off experimentally in Section VIII.

taux(x) =







































twtr + tread · x if read-dominant

trtw + twrite · x if write-dominant
⌈

x
2

⌉

· (twtr + tread)+
⌊

x
2

⌋

· (trtw + twrite) if mix-read-dominant
⌈

x
2

⌉

· (trtw + twrite)+
⌊

x
2

⌋

· (twtr + tread) if mix-write-dominant
(7)

Next, we account for interference due to blocking and

refresh, and compute the total worst-case latency, ttot. Blocking
occurs because the worst-case latency of a request may start

counting from a moment just after a scheduling decision has

been taken by the memory arbiter. This results in that maxi-

mally one additional request may interfere with the requestor

due to the non-preemptive nature of memory patterns. We

account for this by adding one extra interfering request to

the bound, thus using taux(x + 1) to compute the maximum

interference from x requests. To compute the maximum inter-

ference from refresh patterns, we must consider the minimum

distance between two of these patterns. This distance occurs if

one refresh pattern is maximally blocked (tblock) by other pat-

terns, and the following refresh pattern encounters no blocking.

In this case, the time between two consecutive refresh patterns

Refresh Block Refresh Refresh
Time

2 · tREFItREFI

tREFI − tref − tblock

0

treftblocktREFI

Fig. 5. The minimum distance between two refresh patterns.

is tREFI − tref − tblock, as illustrated in Figure 5. For every

such interval, we add the time to execute a refresh pattern

to the latency from other interfering patterns, as shown in

Equation (8). This approach is somewhat pessimistic, since

two such worst-case intervals cannot occur multiple times in a

row. However, this pessimism only affects requestors with very

long memory latencies that are in the range of several refresh

periods. The equation rounds the number of interfering refresh

patterns up, reflecting that a refresh can happen immediately

in an arbitrary interval. Hence, all requestors always have at

least one refresh pattern in their worst-case latency.

A key feature of Equation (8) is that it does not make any

assumptions about the arbiter, since the number of interfering

requests is left as a parameter. This separates the analysis

of the arbiter and the resource, enabling the controller to be

used in a predictable manner with a variety of arbiters. This

is a differentiating feature with respect to the state of the art

that enables the hybrid controller to satisfy a wider range of

latency requirements.

ttot(x) =

⌈

taux(x + 1)

tREFI − tref − tblock

⌉

· tref + taux(x + 1) (8)

VIII. EXPERIMENTAL RESULTS

This section evaluates the theory provided in this paper

in four experiments. The first experiment bounds memory

efficiency for a number of memories, assuming large requests.

This demonstrates how memory efficiency fundamentally re-

duces for faster memories and how the problem is mitigated by

increasing burst count. The second experiment takes data ef-

ficiency into account and shows that fast memories inherently

requires large requests to efficiently bound net bandwidth.

The third experiment evaluates the tightness of our bound on

memory efficiency, and the last experiment investigates the

bandwidth/latency trade-off when increasing burst count.

A. Experimental setup

The experiments in this section consider four different mem-

ories with different speeds: DDR2-400, DDR2-800, DDR3-

800, DDR3-1600. These memories cover the span from the

slowest specified memory in the DDR2 generation to the

fastest specified DDR3 device. All memories have a capacity

of 512 Mb and 16-bit interfaces. The DDR2 memories have

four banks, and the DDR3 memories eight. The generalized

theory has been implemented in the configuration flow of

the memory controller [21]. The configuration flow supports

three heuristic algorithms for memory pattern generation. Due

to limited space, we cannot discuss these algorithms further

in this paper. For all experiments, we generate patterns sets



TABLE I
LENGTH OF GENERATED PATTERNS FOR A DDR2-400 MEMORY.

BL/BC 4/1 8/1 8/2 8/4
Dominance wr mix rd mix rd mix rd

tread 11 16 32 64
twrite 13 16 32 64
trtw 0 2 2 2
twtr 0 4 4 4
tref 27 32 32 32

using two of these algorithms (ASAP scheduling and bank

scheduling) and choose the most efficient result. We disregard

of a branch and bound algorithm, since this algorithm does not

finish patterns with high burst count for fast memories within

10 days. Omitting this algorithm is not a severe restriction,

as it has been shown to provide the same efficiency as bank

scheduling for all finished patterns [21].

B. Bounding memory efficiency

This experiment demonstrates how burst count affects mem-

ory efficiency using the proposed analysis. This exercises our

configuration flow, but does not use the implementation of the

controller. We disregard data efficiency in this experiment by

assuming that requests are equal to the access granularity of

the memory. The effects of data efficiency are investigated in

the following experiment. We use a DDR2-400 memory and

generate sets of patterns with burst counts 1, 2, and 4, all with

BL = 8. To provide a low-latency option, we also generate

a pattern set with BC = 1 and BL = 4. Table I lists the

lengths of the generated memory patterns. Note that the most

efficient pattern set with BL = 4 is write dominant and hence

not supported by earlier work. More details on the generated

patterns are provided in [21].

Figure 6 shows the bounds on memory efficiency and net

bandwidth for all considered memories. The generated pattern

sets for these memories are all mix-read-dominant, except

for the DDR2-800 with BC = 2 and BC = 4, which are

both mix-write-dominant. Again, this shows that although mix-

read-dominant patterns are common, they are not always most

efficient. The extended search space provided by the proposed

generalization increases the time required by the configuration

flow, although it still finishes in a few seconds. Since the

configuration flow runs at design time, we conclude that

the additional complexity of the new concepts is negligible.

Figure 6 allows us to draw two additional conclusions. 1)

Memory efficiency monotonically increases with burst count,

assuming large requests. This is seen for all tested memories in

Figure 6a, and is the motivation for introducing the burst count

parameter to the access patterns. 2) Newer faster memories

inherently offer higher peak bandwidths, but lower mem-

ory efficiency, due to increasingly severe timing constraints.

However, the provided net bandwidth is still increasing with

clock frequency if requests are large. Figure 6a indicates that

memory efficiency is reducing as memories get faster. The fact

that net bandwidth is increasing despite the reducing memory

efficiency is clearly shown in Figure 6b, where DDR3-1600

provides the highest net bandwidth with large requests.
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Fig. 6. Memory efficiency and net bandwidth comparisons between different
DDR2 and DDR3 memories, assuming large requests.

C. The impact of small requests

For our second experiment, we study the impact of small

requests when bounding the net bandwidth offered by the

memories. This experiment uses the same memory patterns

and analysis as the previous, except that data efficiency is

taken into account. Figure 7 shows the bound on net bandwidth

provided by the different memories and settings for different

request sizes. For simplicity, we assume that the request sizes

of all requestors are the same, taking the choice of memory

arbiter out of the equation. The bars in the plot can be

read from either y-axis, depending on if net bandwidth or

memory efficiency is of interest. All graphs have the same

scale, allowing the net bandwidths provided by the different

memories to be compared. From this experiment, we learn

that while increasing burst count consistently increases net

bandwidth with large request, it may reduce if requests are

small. The reason is that increasing burst count also increases

the access granularity of the memory, resulting in more waste

for small requests. Similarly, increasing the number of banks

from 4 to 8 improves bank and command efficiencies, but

can still reduce net bandwidth, due to the larger access

granularity. A consequence of this behavior is that our DDR2-

800 provides more net bandwidth for small requests than the

DDR3-800. However, the tables turn as requests become big

enough to benefit from the larger granularity. We conclude

from the figure that achieving high worst-case bandwidths

with an interleaving memory map fundamentally requires large

requests. In fact, the DDR2 memories with 4 banks require

requests of 64-128 B to provide a net memory efficiency of

above 80%, while the DDR3 memories require requests of

256 B to accomplish the same. If the requests in the system

are small, there is hence no benefit in using a faster SDRAM

memory unless it is cheaper to buy. A good example of this

is that the DDR2-800 with four banks provides the most net

bandwidth for requests of 32 B.

D. Tightness of net bandwidth bound

In our third experiment, we evaluate the tightness of our

lower bound on net bandwidth by simulation using a SystemC

model of the hybrid controller. We measure the running

average net bandwidth, which we expect to converge to a

value greater than or equal to our derived bound during the

simulation. The experiment is conducted by sending an equal

mix of read and write requests to a DDR2-400 memory using

the mix-read-dominant pattern set with BL = 8 and BC = 1,
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Fig. 7. Bound on net bandwidth for different memories and request sizes.

previously shown in Table I. The sizes of the requests are

64 B, which is equal to the access granularity of the pattern,

thus providing a data efficiency of 100%. The bound on net

bandwidth with this setup is 660 MB/s. We simulate the

memory controller twice. In the first simulation, we let read

and write requests arrive in a random order. In the second

simulation, arriving requests are alternating reads and writes

to illustrate what happens during worst-case conditions. The

simulation time in both cases is 100 ms. The results of this

experiment are shown in Figure 8, where the provided net

bandwidth is plotted over time. The figure shows the first 16 µs
of the simulation, which is just enough to get two interfering

refresh patterns. In both simulations, net bandwidth shoots

towards 800 MB/s as the first request arrives. This is because

the bank and command efficiency of the patterns is 100% and

hence that data is transferred on every cycle of the pattern. The

efficiency then gradually reduces as read/write switches cause

lost cycles on the data bus. We note that the impact of these

switches is considerably higher when the worst-case switching

behavior is enforced. We see the effects of refresh at 7.8 µs
and again at 15.6 µs, where the efficiency reduces due to the

32 idle cycles required to precharge all bank and refresh the

memory. The measured bandwidth is very close to the bound

at the end of the refresh pattern, indicating that this is the time

at which the memory efficiency calculation “evens out”. This

is not surprising, considering that all events covered by the

bound, such as read/write switches and refresh, have happened

at this time. After 100 ms when the simulation ends, the worst-

case simulation converges at a net bandwidth of 661.0 MB/s,

which is less than 0.2% from the derived bound. This is not

completely unexpected, since we have enforced exactly the

behavior assumed by the bound. The normal simulation, on

the other hand, converges at 694 MB/s, thus providing about

4% additional net bandwidth due to the reduced number of

read/write switches. Similar results on tightness are observed

when repeating the experiment for the other memories and

burst counts with appropriate changes in requested bandwidth

and request sizes. We hence conclude that the bound on net

bandwidth is tight.
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E. Bandwidth/latency trade-off

The fourth and last experiment investigates the bandwidth

and latency trade-off that follows from the introduction of the

burst count parameter. For this purpose, we generate 5000

synthetic use-cases, each with six requestors. The memory

used in this experiment is a DDR2-400. The requestors issue

requests with sizes 64 · i bytes, where i is a uniformly varying

integer in the range 1-8. Together, the requestors require 660

MB/s in all use-cases. This corresponds to 82.6% of the peak

bandwidth offered by the memory, which is very close to

100% of the net bandwidth provided by the memory with

BC = 1. The generated service latency requirements are

randomized according to 27 · j clock cycles at 200 MHz,

where j is a uniformly varying integer in the range 1-100.

Some latency requirements may hence be quite tight, while

others may be quite relaxed and up to 50% longer than the

refresh interval of the memory. To illustrate the bandwidth

and latency trade-off, we let our configuration flow [21]

configure the use-cases in four different ways. First, using only

memory patterns with BC = 1, then using only patterns with

BC = 2, followed by only using BC = 4. Lastly, we use

an iterating scheme normally used by our configuration flow.

This scheme tries all of these burst counts and chooses the

best result. All generated patterns use BL = 8. We consider

three metrics: 1) the percentage of use-cases where bandwidth

requirements are satisfied for all requestors, 2) the percentage

where latency requirements are satisfied for all requestors,

and 3) the percentage where both bandwidth and latency

requirements are satisfied for all requestors. The memory is

shared using a Credit-Controlled Static-Priority arbiter [23],

[24], comprising a rate regulator and a static-priority scheduler.

The rate regulator has a precision of six bits in the service

allocation mechanism, resulting in small, but not negligible,

over-allocation due to discretization. The configuration flow

assigns priorities according to an optimal algorithm that runs

in polynomial time [25]. The results of this experiment are

shown in Figure 9. Note that using a large number of synthetic

benchmarks enables us to clearly illustrate the bandwidth and

latency trade-off, although the actual numbers vary depending

on the generated requirements.

Bandwidth requirements are satisfied in 21% of the use-

cases with BC = 1, due to the high load required by the

requestors in combination with over-allocation in the service
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allocation mechanism in the rate regulator. The success rate

increases to 54% with BC = 2, because of the extra 55

MB/s provided by the longer patterns. At this point, some

requests may be larger than access granularity of the memory,

being 128 B, although the reducing data efficiency does not

yet eliminate the benefits of the increased bank efficiency.

However, further increasing the burst count to BC = 4
reduces the percentage of satisfied bandwidth requirements

to 23%, since the access granularity of 256 B is now too

large compared to the sizes of the requests. This results in that

more bandwidth is wasted than is added by the longer access

patterns. While the percentage of use-cases with satisfied

bandwidth requirements initially increases with burst count,

the percentage of satisfied latency requirements monotonically

decrease, starting at 55% with BC = 1, 11% for BC = 2,
and ending at 0% with BC = 4. Looking at the percentage

of use-cases with both bandwidth and latency requirements

satisfied, we conclude that it is kept at approximately 10%

for both BC = 1 and BC = 2, in the first case because of

unsatisfied bandwidth requirements, and in the second case

because of failing latency requirements. The total success rate

with BC = 4 is 0%, due to the failing latency requirements.

Lastly, we look at the results with the iterative approach that

is normally used by our configuration flow. We ignore the

separate results for bandwidth and latency requirements, since

these depend on which pattern set is chosen for a use-case

if either set of requirements fail. Instead, we focus on the

percentage of use-cases where all requirements are satisfied.

The iterative approach satisfies the requirements of almost

twice as many use-cases as any of the fixed burst counts,

clearly demonstrating the value of considering pattern sets with

different burst counts.

IX. CONCLUSIONS

This paper addresses efficient use of SDRAM memo-

ries with formal verification of real-time requirements. A

predictable memory controller has been proposed that pro-

vides hard bounds on bandwidth and latency by dynamically

scheduling memory patterns, which are statically computed

sequences of SDRAM commands. This controller enables

formal verification of real-time requirements, although the

proposed memory patterns are inefficient for faster memories,

such as DDR3 SDRAM.

The main contributions of this work are: 1) A pattern pa-

rameter called burst count that considers that efficient accesses

to faster memories require larger requests with multiple bursts

per bank. 2) A classification of memory pattern sets into four

categories based on the combination of patterns that cause

worst-case bandwidth and latency to be provided. 3) Bounds

on bandwidth and latency that cover all pattern types and

burst counts. 4) Memory efficiency trends for DDR2/DDR3

memories are demonstrated and discussed. We experimentally

evaluate the tightness of the bound on bandwidth and show

that simulation results with worst-case stimuli deviates from

the bound with less than 0.2%. Experiments also show that

burst count enables real-time requirements to be satisfied for

more use-cases and that the most efficient pattern sets are not

always covered by earlier theory.

Future work involves integrating this analysis into the data-

flow based performance verification tool of our MPSoC design

flow. This enables latency and throughput requirements of

applications to be verified and sufficient buffer sizes in the

memory controller to be derived.
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