
Obtaining consistent global state dumps

to interactively debug systems on chip with multiple clocks

(Invited Paper)

Bart Vermeulen

Central R&D, NXP Semiconductors

Email: bart.vermeulen@nxp.com

Kees Goossens

Eindhoven University of Technology

Email: k.g.w.goossens@tue.nl

Abstract

Post-silicon debugging of a system on chip (SOC) is

complex due to (1) the intrinsic limits on the internal

observability, (2) the absence of a single global clock,

and (3) the need for asynchronous intellectual property

(IP) blocks to interact with each other. These aspects

prevent the instantaneous capture of a complete and

consistent state of the SOC, and make the SOC non-

deterministic at both the clock cycle level and the

behavioral level. To debug an embedded system when

the states that are extracted are irreproducible and

inconsistent is nearly impossible. In this paper, we

therefore introduce a method to capture a consistent,

complete state of a multiple-clock SOC for interactive

debugging. We reuse the same functionality that is used

to ensure correct functional communication between

asynchronous IP blocks, namely the handshake sig-

nals common in on-chip communication protocols. We

merge the required on-chip hardware to support this

debug functionality with the traditional debug archi-

tecture that reuses the manufacturing scan chains for

debug. Our experimental results show that it is possible

to ensure a globally consistent state is observed when

the system is stopped on a breakpoint event.

1. Introduction

Present day systems on chip (SOCs) contain multi-

ple programmable processor cores, hardware accelera-

tors, and dedicated peripherals. Besides hardware func-

tionality, they contain a growing amount of embedded

software that runs on these SOCs. Both the hardware

and the software complexity of SOCs increases rapidly.

The reuse of intellectual property (IP) blocks signifi-

cantly reduces the time required to design a SOC. IP

blocks however commonly use different clock signals,

either for layout or power management reasons, or

because they have to interface to the outside world

via standardized, fixed frequencies. Many embedded

systems today have tens of clock domains, and have

to use a globally-asynchronous locally-synchronous

(GALS) design style [1]. For simplicity we split

the different GALS styles into synchronous (includ-

ing mesochronous) and asynchronous (including ple-

siochronous and heterochronous) [2].

The correctness of a design from high-level spec-

ification, via register transfer level (RTL) and gate-

level implementations, to physical chip layout, has

to be verified before silicon is manufactured, using

e.g. formal verification, simulation, and emulation.

These techniques provide confidence that no errors

were introduced and the resulting design should behave

according to its specification. During this verifica-

tion process, trade-offs have to be made between the

amount of design detail to include and the number of

use cases to verify. Functional and electrical problems

may go undetected as it is impossible to verify all use

cases at the level of the physical implementation. In

particular for SOCs with asynchronously operating IP

blocks, it is not feasible to verify the behavior for all

combinations of internal clock frequencies and phases.

Structural test programs will find manufacturing

defects after an SOC is manufactured, but seldom catch

functional timing errors, for example in synchroniza-

tion protocols. Certain problems may therefore only

manifest themselves after this manufacturing test, and,

even worse, outside of controlled test and verification

environments such as automated test equipment, simu-

lators, and emulators. The root cause of any remaining

problem that is discovered during the post-silicon

validation of a chip, has to be found and removed as

quickly as possible to ensure that the product can be

sold to the customer on time and for a competitive

price. Industry benchmarks [3] show that validation

and debug consumes over 50% of the project time.



Post-silicon debugging of a GALS SOC is a com-

plex task [4], [5]. In this paper we analyze three

reasons for this complexity: (1) intrinsic limits on the

internal observability, (2) the absence of a single global

clock, and (3) the need for asynchronous IP blocks

to interact with each other. These aspects prevent the

instantaneous capture of the entire state of the SOC for

analysis. They also make the SOC non-deterministic at

both the clock cycle level and the behavioral level.

To debug an embedded system when the extracted

states are irreproducible and inconsistent is nearly im-

possible. In this paper, we therefore introduce a method

and architecture to capture a consistent, complete state

of a multiple-clock SOC for interactive debugging. We

use the same functionality that is used to ensure correct

functional communication between asynchronous IP

blocks. The hardware to support this also reuses the

manufacturing scan chains, as for scan-based silicon

debug [8]. Our experimental results show that, using

e.g. the valid/accept handshake signals common in

most on-chip communication protocols as the basis for

stopping the execution of the SOC, it is possible to

ensure that a consistent global state is observed, when

the system is stopped on a breakpoint event.

This paper is organized as follows. In Section 2,

we analyze the complexity of debugging asynchronous,

multiple-clock SOCs, and present prior work. Section 3

details our approach to debugging a GALS SOC, the

required on-chip infrastructure, and proof that our

approach leads to a consistent global state when the

SOC is stopped on an event. Section 5 presents our

experiments, and Section 6 concludes this paper.

2. Problem description and related work

2.1. Limited intrinsic observability

Post-silicon debugging is intrinsically limited by the

lack of internal observability. A chip package, many

metal layers, very small transistor dimensions, and a

thick substrate all cause physical debug methods, such

as mechanical probing, laser voltage probing, and laser

assisted device alteration to be very time-consuming,

error-prone, and expensive [6]. Hence, electrical debug

methods, where functional or dedicated access paths

are embedded in the chip to facilitate debugging, have

been adopted. Still the amount of debug data that a

SOC produces in real-time is huge. Consider a 10-

million transistor design running at 100 MHz; sam-

pling one signal per transistor per clock cycle produces

10
15 bits per second. The exponential increase in the

number of transistors on a single chip [7] compared

to the (linearly increasing) number of input/output

(I/O) pins makes it impossible to observe all electrical

signals inside the chip at every moment.

Hence, people resort to a combination of two, com-

plementary approaches; (1) real-time trace, and (2) in-

teractive debugging. Real-time trace debug approaches

store a subset of the system state in real-time into an

on-chip or off-chip memory. Given silicon area and

I/O speed constraints, this subset is necessarily small.

In contrast, in the interactive debugging techniques,

the execution of the system is stopped at a point of

interest. Once stopped, the state of the execution can

be inspected in detail without running into any real-

time I/O limitations. Afterwards, the execution can

e.g. be restarted, resumed, or stepped. Manufacturing

test scan chains are often reused to interactively debug

silicon [8]–[10]. They are used to extract the chip state,

contained in the flip-flops and embedded memories,

and store this state dump off-chip for subsequent

analysis. This approach is (1) low cost, as the scan

chains are already needed inside the chip to facilitate

manufacturing test, and (2) comprehensive, as the full

state can be extracted. Additional state restoration

techniques can expand the scope of a state dump to

include the combinational signals between the flip-

flops [11], [12].

The execution of the chip first has to be stopped

to activate the scan chains. Stopping occurs by pro-

gramming a breakpoint before or during the execution

of the chip, for a particular condition of interest at

a given location. At run-time, the functional clock

is then gated when this breakpoint is reached. Once

stopped, the circuit can be switched into scan test

mode, and the content of the scan chains and embedded

memories extracted via the scan chains. Dahlgren et

al. [5] automate this process of creating state dumps

at multiple clock cycles using multiple execution runs

for the UltraSPARC micro-processor. They show that it

is possible to spatially and temporally localize design

issues based on the early detection of significant devia-

tions between state dumps obtained from known good

and from known bad samples. Their method works

well for fully-synchronous systems, or at the level

of single IPs, where determinism at the clock-cycle

level still exists. However as we will show in the next

two subsections, there is often very little clock-cycle

determinism between IP blocks at the system level in

a GALS SOC.

2.2. Absence of a single global clock

To analyze the behavior of a malfunctioning SOC we

need to examine its state. However, a GALS SOC lacks

a single global clock that clocks all state elements.



This causes problems when trying to instantaneously

sample multiple signals. The state of an IP block in

one clock domain is not guaranteed to be stable when

sampled with the clock of another, asynchronous clock

domain. As a result, the sampled state in the former

clock domain can be inconsistent, either in itself or

with respect to the state in the latter clock domain. In

general, it is not possible to sample consistent states

of any two, asynchronous IP blocks at single points

in time. Figure 1 illustrates this problem; the circles

on each IP block’s time line indicate a state change

in the IP block. When sampling the state of the target

using the initiator clock as the sample clock, either one

of the two states indicated by the black circles, or an

invalid intermediate state, is observed.

Figure 1. Sampling problems with multiple clocks.

When asynchronous IP blocks need to functionally

communicate (or are shared), synchronization and ar-

bitration have to take place. Both operations cause

the SOC to become non-deterministic at the clock-

cycle level, as explained below. To permit functional

communication between asynchronous IP blocks, mod-

ern SOCs circumvent the sampling problem by using

handshake-based communication protocols. All mod-

ern on-chip communication protocols, e.g. the ad-

vanced extensible interface (AXI) [13], the open core

protocol (OCP) [14] and the device transaction level

(DTL) [15] protocols, use a handshake mechanism

to reliably communicate data between any two, asyn-

chronous IP blocks. During the handshake, the data

on the output of an initiator is held stable until the

target has explicitly indicated that it has sampled it. An

example of a four-phase handshake protocol is shown

in Figure 2.

Data is prepared by the initiator on its data outputs

before its valid output signal is asserted. This signal is

then synchronized to the target clock domain inside the

target. Once the target sees the activated valid signal,

it samples its data inputs, and asserts its accept output

signal. This accept signal is then synchronized to the

initiator clock domain inside the initiator. Once the

initiator sees the activated accept signal, it deasserts

its valid output, upon which the target subsequently

deasserts its accept signal. Using a handshake-based

communication protocol ensures that the data on the

output of the initiator is held functionally stable for the

duration of the handshake, and therefore ensures that

the data is correctly sampled by the target.

Figure 2. Handshake-based communication be-

tween clock domains.

2.3. Non-deterministic IP block interactions

For a target to observe that an initiator is offering

data, the target first has to sample the valid control

signal. The time it takes the target to decide whether

this signal is asserted are not, depends on the amount

of time between the assertion of this signal and the

active edge of the target clock. The shorter this interval,

the longer it can take the target to reach a decision

[16]. As the valid signal is asynchronous to the target

clock, it is not possible to bound this duration. Hence

the actual transfer of a single data element across an

asynchronous clock domain boundary can take one

or more target clock cycles, and makes the asyn-

chronous IP interactions, and consequently the SOC

non-deterministic at the clock cycle level.

A similar situation occurs when the local clock

signals need to be gated, to allow inspection of the

system state at a breakpoint via the scan chains. Inside

a clock generation unit (CGU), an asynchronous stop

request signal is sampled to decide whether or not to

stop the functional clock this cycle. Figure 3 shows

an example circuit and associated timing diagram to

gate a functional clock, clk in x, when the stop request

signal stop req is asserted.

The output signal clk out x drives the clock inputs

of the flip-flops and memories inside an IP block.

The falling-edge triggered Flip-flop Y ensures that the

output clock signal is never gated when it is active, as

this may cause a glitch to appear on the output clock

signal clk out x. Flip-flop X is needed to reduce the

chance of metastability on Signal B. When the request

signal is asserted, the output clock signal should be

gated after one rising edge and one subsequent falling

edge on the functional input clock. However, the closer

the assertion of the request signal occurs to the active



edge of the functional clock signal, the longer the

actual stopping of the clock domain can take. When

the state of the IP block is not guaranteed to be stable

during this synchronization process, the duration of

the synchronization will determine the exact clock

cycle at which the state is sampled, making the state,

subsequently extracted via the scan chains, also non-

deterministic at the clock cycle level.

Figure 3. Example clock gate circuitry.

When asynchronous IP blocks need to share a

(scarce) resource, an arbiter is required to decide the

order in which the requests from multiple IP blocks

are processed. As detailed above, the requests from

different IP blocks may arrive at different clock cycles

at this arbiter over multiple executions of the SOC.

The time it subsequently takes the arbiter to reach a

decision on which request to process first, depends on

the amount of time between the arrival times of the

requests at the arbiter. The shorter this interval, the

longer the decision process can take in the arbiter [16].

An example of this is shown in Figure 4.

Figure 4. Multiple interleavings due to arbitration.

The requests from the producer and consumer to the

shared memory in Figure 4 occur very close in time.

Small fluctuations may change the order in which the

arbiter actually receives and processes these requests.

This may affect the state of the system at the behavioral

level, as the result of e.g. a read operation by the con-

sumer may be different, depending on whether a write

operation by the producer was processed before or after

it. Hence GALS also introduces non-determinism at

the behavioral level.

In conclusion, obtaining stable state dumps is prob-

lematic in GALS SOCs. It is not possible to sample

an entire consistent SOC state, or stop the entire SOC

at a single point in time. Furthermore, each time the

SOC has to be (re)run to create a state dump, it

is not possible to guarantee exactly the same clock

frequencies and phase relations between the clocks,

causing the internal synchronization and arbitration

processes to take less or more time to complete. SOC

state dumps that are extracted on a particular clock

cycle may therefore vary significantly between runs,

without that difference being indicative of an error.

3. Consistent SOC states

We address the problems described in the previous

section by raising the abstraction level of the SOC

execution above the clock cycle level. To achieve this,

we reuse the functional mechanisms that ensure correct

data communication between asynchronous IP blocks.

For this, we also leverage work done by Chandy and

Lamport [17] and Miller and Choi [18] in the domain

of distributed systems, in particular on snapshot al-

gorithms for distributed computations. Subsection 3.1

summarizes their basic distributed system model and

algorithms to obtain consistent global states by using

in-band communication between processes. Subsec-

tion 3.2 presents our adaptation of their theory to post-

silicon, interactive debugging using the scan chains.

Using additional design for debug (DfD) hardware, we

can obtain consistent global states for asynchronous,

multiple-clock SOCs.

3.1. Distributed snapshot algorithms

A distributed system can be modeled as a set of

asynchronous processes, p1, p2, ..., pi, ..., pn [17], [18],

in which processes communicate with each other by

sending and/or receiving messages via channels. We

denote the communication channel from process pi to

process pj by Cij . Channels are assumed to be error-

free, and to deliver the messages in the order sent.

The delay across a channel is arbitrary but finite. The

notation mij denotes a message from process pi to

process pj .

A process is defined as a set of states, an initial

state, and a set of events. Each event ex
i in process pi

is an atomic action, which changes the state of process



pi and possibly the state of an output channel Cij or

input channel Cki. The channel state is the sequence

of messages that were sent on it, but excluding those

messages that were received from it. The state of

channel Cij can be changed by process pi by sending

a message mij along Cij . The state of channel Cki

may be changed by process pi by receiving a message

mki along Cki.

The global state of a distributed system is defined as

the collection of states of all processes and communi-

cation channels. Because the system is distributed and

it is not possible to instantaneously capture the states of

all processes and channels, two conditions are specified

for a consistent global state [19]: (1) Every message

mij that is recorded in the state of process pi as sent,

must either be recorded in the state of channel Cij , or

in the state of process pj , and (2) every message mij

that is recorded as received in a process pj , must be

recorded as sent in the state of process pi. Condition

(1) ensures that no messages are lost in the record

of the global state, and Condition (2) ensures that no

effect is recorded without also its cause being recorded.

The distributed snapshot algorithms of [17], [18] yield

a consistent global state, despite the fact that the states

are not recorded at the same physical time.

Both algorithms allow a process to either initiate a

snapshot recording, or respond to a snapshot record-

ing marker sent by another process. When a process

initiates a snapshot recording, it first records its own

state and subsequently sends out a marker on all its

out-bound communication channels. As long as it does

not receive a marker on each of its in-bound communi-

cation channels, it records any incoming messages as

being part of the state of the corresponding channel.

When a process receives a snapshot recording marker

on one of its in-bound communication channels, and

it hasn’t already records its own state, it will do so.

A key difference between the two algorithms is that

in the algorithm by Miller and Choi, each process also

immediately stops its execution after it has recorded its

own state and has output snapshot recording markers.

It does continue to record incoming messages as being

part of the state of the corresponding channel though.

3.2. Our CSAR approach

We first describe our CSAR approach [20], followed

by the required on-chip hardware support in Section 4.

Our CSAR approach resembles the algorithm by

Miller and Choi the most. The mapping of the dis-

tributed system model to a GALS SOC is fairly

straightforward, as each IP block can be modeled as

an asynchronous process. The communication channels

between the IP blocks are mapped to the the on-chip

communication architecture, e.g. a multi-layer bus, or

a network on chip (NOC). The non-zero delay and

error-free channel characteristics apply to most com-

munication architectures, and also the in-order delivery

of data often applies with respect to a single IP block.

We however do differ from the algorithms described

above in two respects.

Firstly, we introduce a protocol-specific instrument

(PSI) between the processes and their channels to

gate the handshake control signals after reaching a

breakpoint, instead of recording the process state,

or stopping the execution of processes immediately.

By gating the control signals, we effectively stop

all communication between IPs. When single-threaded

processes subsequently need to communicate with each

other, they will functionally stall on the gated hand-

shake control signals. The state of these processes

will not change as long as they are stalled. During

this stall interval, it is safe to gate the clocks to each

individual process, as regardless of how long it takes

to synchronize the clock stop request signal in the

local clock domains, this clock-level non-determinism

no longer effects the process state that is extracted later

on via the scan chains.

Secondly, we use a simple, high-speed, and low-cost

event distribution interconnect (EDI) to distribute the

analogy of the markers to (the PSIs between) the other

IP blocks in the system. The EDI has the exact same

topology as the on-chip communication architecture,

but is faster, as it requires only one clock cycle of the

communication architecture for each communication

hop. An event therefore reaches (the PSIs between)

the other IP blocks connected to the communication

architecture, ahead of any messages that were sent after

it. It can then trigger any local PSI to prevent those

messages from being passed to the target IP block.

For each handshaked data element (i.e. message),

one of the PSIs controls its admission into a channel

and another PSI its reception from that channel. Com-

bined, these PSIs therefore unambiguously position a

particular message either in a process state or a channel

state, and prevent the inconsistent recording of the data

element as being part of both the sender (receiver) and

the channel state. As data elements are never lost in our

SOC, and there is no ambiguity about their location,

our approach satisfies the two conditions specified in

[19] and therefore yields a consistent global state.

4. On-chip DfD hardware

We use the DfD architecture described in [21] that

was subsequently extended for communication-centric



debug in [22] to extract a consistent global state from

the manufacturing test scan chains inside the chip. Be-

low we first briefly describe the overall architecture and

then detail the implementation of the key components,

the PSIs and the EDI.

4.1. Architecture overview

Figure 5 shows a simple SOC that contains the

debug architecture required to capture consistent global

states. Although this example is fairly simple, our

approach easily scales to any number of IP blocks.

Figure 5. Debug hardware architecture.

An initiator and a target IP block are connected via

PSIs to the on-chip interconnect (in this case a NOC).

As the name suggests, the implementation of these

PSIs is specific to the communication protocol used

for this connection. The PSIs receive events from the

EDI nodes, which originate from one or more monitors

in the SOC. These monitors are programmed with the

breakpoint condition. All debug components can be

programmed and queried via the on-chip IEEE Std

1149.1-2001 test access port (TAP) controller [23] and

the debug control interconnect (DCI). Once the PSIs

have stopped all communication handshakes inside the

SOC, the local clocks can be gated, and the SOC

switched to debug scan mode. In this mode, all scan

chains can be accessed via the debug data interconnect

(DDI) to extract a state dump of the entire system.

As detailed above, the state we extract from the scan

chains is globally consistent. Below, we detail the

specific implementations of the PSIs and EDI.

4.2. Protocol-specific instrument (PSI)

A PSI intervenes in the communication between

two asynchronous IP blocks. It receives the hand-

shake signals from both IP blocks and under normal

circumstances passes these signals transparently on

to the other IP block. However, the PSI gates all

outgoing handshake control signals upon receiving a

stop request. Effectively an initiator no longer sees

the target accept the data, and the target no longer

sees the initiator offering data. (Note that the initiator

or target clock cycle at which the handshake is dis-

abled may vary, due to intrinsic synchronization non-

determinism.) If the initiator or the target requires the

data to make progress, they will stall until this data

becomes available. In this state, when the state of

the processes no longer changes, we can safely gate

the functional clocks, use the DDI and scan chains

to create a state dump via the TAP, and return the

system in the exact same state, without disrupting the

functional behavior. As we also control the gating of

the handshake control signals in all PSIs, we can then

selectively re-enable communication in all or a subset

of the channels.

Figure 6 shows an example PSI implementation,

corresponding to the handshake protocol depicted in

Figure 2, with an example waveform where an ini-

tiator attempts to communicate after a stop event. As

described, this attempt fail because the PSI blocks all

communication after a stop event.

Figure 6. Example PSI implementation.

As shown in Figure 6, a PSI implementation only

requires a minimum number of additional gates on

each boundary between IP blocks. Often the size of

a PSI implementation is dominated by its configura-

tion register, i.e. its test point register (TPR), which

determines when and how communication is stopped

or resumed. This is particularly the case for the more



complex communication protocols, such as the AXI,

OCP and DTL protocols.

4.3. Event distribution interconnect (EDI)

As described in Section 3.2, the EDI is used as

a low-cost, simple, and high-speed infrastructure for

events, e.g. to initiate stopping of all communication.

Debug events may be generated by a variety of mon-

itors [24]–[27]. Although the EDI has the exact same

topology as the on-chip communication architecture,

events are not sent as in-band or side-band, as opposed

to in-band [18], [28]. Communication on the EDI is

completely decoupled from the communication on the

main communication architecture. Hence it is faster

than the main communication architecture, and also

faster than in [17], [18]. Messages can therefore be

captured quicker, for a more precise breakpoint. Fig-

ure 7 shows the implementation of an EDI node and

an EDI clock domain crossing (CDC).

Figure 7. EDI node and clock domain crossing.

An EDI node is parameterized in its number of lay-

ers and I/O ports. The latter corresponds to the number

of neighboring EDI nodes, PSIs and monitors. Each

layer can independently process an incoming event.

The silicon cost of an EDI layer, and therefore also an

EDI node, is dependent on the network topology. The

total cost of the EDI is linear in the number of layers.

Each EDI node can be programmed with an output

mask using its TPR. This mask determines to which

outputs an incoming event is propagated, irrespective

from the input the event came from. The EDI dis-

tributes events faster than the functional communica-

tion interconnect propagates messages. This permits

the EDI to reduce the time to stop all on-chip com-

munication as much as possible. However, stopping

can never be instantaneous due to the communication

delays involved and the asynchronous clocks.

An EDI CDC permits safe communication of events

across an asynchronous clock domain boundary. In-

coming events from one clock domain are accumulated

using a gray counter, the value of which is tracked to

generate an equal number of events in the other clock

domain. The EDI CDC never loses events, even though

the amount of time between events can be changed.

5. Experimental results

Figure 8 shows a simple, multiple-clock circuit to

illustrate our approach.

Figure 8. Example multiple-clock circuit.

Two central processing units (CPUs), located in

separate, asynchronous clock domains, communicate

via two channels. After reset, CPU 1 starts by writing

eight data words into Channel 1. Both processors then

repeatedly execute, in parallel, the same basic loop,

in which CPU 1 (CPU 2) reads four words from

input Channel 2 (Channel 1), modifies these words,

and writes them into output Channel 1 (Channel 2).

The circuit has been extended with our PSI and EDI

components to permit state sampling after stopping

the communication handshakes between the IP blocks.

We conducted experiments with two clock periods,

p1 = 2, 000, 003 fs and p2 = 3, 000, 016 fs, for each of

the two clock signals. These clock periods were chosen

because they are prime, and yield frequencies below

500 MHz. In four experiments, we used each of the

four possible combinations of clock periods, (p1,p1),

(p1,p2), (p2,p1), (p2,p2), and created state dumps at

each clock cycle of the clock of CPU 1, respectively

the clock of CPU 2. Figure 9 shows the results when

calculating the stability of state bits across multiple

state dumps, taken at the same absolute clock cycle

count, but for the different combinations of clock

periods. Note how on average around 10% of the state

is unstable when sampled on an absolute clock cycle

count, irrespective of whether the clock of CPU 1 or

CPU 2 is used.

When we repeat the exact same experiment, but

instead halt the execution of the circuit using PSIs on

the communication handshakes between CPU 1 and

Channel 1, respectively CPU 2 and Channel 2, the

total number of unstable bits reduces to 0%. Rather

than showing a flat line at 0%, Figure 10 illustrates



this observed stability for the program counters (PCs)

and two processor registers (r[2], r[3]) of both CPUs,

for clock period combinations (p1,p2) and (p2,p1).

Although the circuit stops at a different absolute cycle

count in time, it stops at the same handshake count

in time (handshake #85 in this case). This results in

stable and consistent register values for all registers

in our example circuit, regardless of the specific clock

period combination used.

Cycle count

0 100 200 300 400 500 600 700 800 900 1000

U
n
st

ab
le

 b
it

s 
(%

 o
f 

to
ta

l)

0.0 

2.5 

5.0 

7.5 

10.0 

12.5 

15.0 
Clock 1 Clock 2

Figure 9. Unstable state bits at cycle level.

Figure 10. Example of state stability at handshake

level.

6. Conclusion

In this paper we introduced a method and archi-

tecture to retrieve consistent global states from GALS

SOCs. In essence, we abstract from absolute time by

raising the moment of state sampling to the functional

level of handshakes of IP communication protocols,

such as AXI and OCP. The EDI distributes events (or

state recording markers) that safely [but potentially at a

non-deterministic time] stop the handshakes and hence

communication between IP blocks. This ensures that

(1) the states of individual (single-threaded) IPs are

stable, and can hence be sampled deterministically, and

that (2) the states of different IPs are consistent with

each other, i.e. every data element (message) is found

either in the state of the sender or receiver IP, or in

the state of the channel between them. To evaluate our

CSAR approach further, we plan to apply this method

to a multiple-clock SOC running more realistic user

applications.

References

[1] J. Muttersbach et al., “Practical Design of Globally-
Asynchronous Locally-Synchronous Systems,” in ASYNC,
2000.

[2] D. Messerschmitt, “Synchronization in digital system design,”
J. on Sel. Areas in Comm., vol. 8, no. 8, oct 1990.

[3] B. Roberts, “The verities of verification,” Electronic Business,
Jan. 2003.

[4] S. K. Goel et al., “Hierarchical data invalidation analysis for
scan-based debug on multiple-clock system chips,” in ITC,
2002.

[5] P. Dahlgren et al., “Latch Divergency in Microprocessor
Failure Analysis,” in ITC, 2003.

[6] D. Josephson, “The good, the bad, and the ugly of silicon
debug,” in DAC, 2006.

[7] S. I. Association, “The International Technology Roadmap for
Semiconductors,” 2008.

[8] K. Holdbrook et al. “microSPARC: A Case Study of Scan-
Based Debug.” in ITC, 1994

[9] G. Rootselaar et al., “Silicon Debug: Scan Chains Alone Are
Not Enough,” in ITC, 1999.

[10] D. Josephson et al., “Debug Methodology for the McKinley
Processor,” in ITC, 2004.

[11] Y.-C. Hsu et al., “Visibility enhancement for silicon debug,”
in DAC, 2006.

[12] H. F. Ko et al., “Automated trace signals identification and
state restoration for improving observability in post-silicon
validation,” in DATE, 2008.

[13] AMBA AXI Protocol Specification, ARM, Jun. 2003.
[14] OCP International Partnership, “Open Core Protocol Specifi-

cation,” 2001.
[15] Device Transaction Level (DTL) Protocol Specification. Ver-

sion 2.2, Philips Semiconductors, Jul. 2002.
[16] D. J. Kinniment, Synchronization and Arbitration in Digital

Systems. Wiley Publishing, 2008.
[17] K. M. Chandy et al., “Distributed snapshots: determining

global states of distributed systems,” ACM Trans. on Comp.

Sys., , vol. 3, no. 1, 1985.
[18] B. Miller et al., “Breakpoints and halting in distributed pro-

grams,” in ICDCS, 1988.
[19] A. D. Kshemkalyani et al., Distributed Computing: Principles,

Algorithms, and Systems. Cambridge University Press, 2008.
[20] B. Vermeulen et al., “Debugging multi-core systems on chip,”

in Multi-Core Embedded Systems, G. Kornaros, Ed. CRC
Press, Sep. 2010, ch. 5.

[21] B. Vermeulen et al., “Core-based Scan Architecture for Silicon
Debug,” in ITC, 2002.

[22] B. Vermeulen et al., “Debugging Distributed-Shared-Memory
Communication at Multiple Granularities in Networks on
Chip,” in NOCS, 2008.

[23] IEEE, IEEE Standard Test Access Port and Boundary-Scan

Architecture. IEEE Computer Society, 2001.
[24] ARM, “Embedded Trace Buffer,” ARM Ltd., Tech. Rep.,

http://www.arm.com/.
[25] R. Leatherman et al., “An embedding debugging architecture

for SOCs,” Potentials, IEEE, vol. 24, no. 1, 2005.
[26] C. Ciordaş, et al., “A Monitoring-aware Network-On-Chip

Design Flow,” J. of Sys. Arch., vol. 54, 2008.
[27] B. Vermeulen et al., “A Network-on-Chip Monitoring In-

frastructure for Communication-centric Debug of Embedded
Multi-Processor SoCs,” in VLSI-DAT, 2009.

[28] S. Tang et al., “In-band cross-trigger event transmission for
transaction-based debug,” in DATE, 2008.


