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Abstract
Post-silicon validation and debug, or ensuring that

software executes correctly on the silicon of a multi-
processor system-on-chip (MPSOC) is complicated,
as it involves checking global properties that are dis-
tributed on the chip. In this paper we define an ar-
chitecture to non-intrusively observe global properties
at run time using distributed monitors. The architec-
ture enables to perform actions when a property holds,
such as stopping (part of) the system for inspection.
We apply this architecture to the problem of software
races that result in incorrect communication between
concurrent tasks on different processors. In a case
study, where we implemented monitors, event distribu-
tion, and instruments to stop communication between
intellectual property (IP) blocks, we demonstrate that
these races can be detected and classified as timing vi-
olations or as FIFO protocol violations.

1 Introduction
Multi-processor system-on-chips (MPSOCs) consist

of a number of processors combined in a single in-
tegrated circuit (IC) with supporting peripherals. It
is hard to ensure that MPSOCs meet their specifi-
cation due to their hardware and software complex-
ity. Post-silicon validation is required to check that
the silicon meets its specification and software test-
ing/validation/verification is needed to ensure that the
software meets its specification. Pre-silicon verifica-
tion of software and hardware individually does not
imply that the combination of software and hardware,
the complete system, meets the specification because
execution models may not match, and fault models
may not capture all failures. As a result post-silicon
debug is often required to find out why the final phys-
ical system does not work as expected.

Post-silicon debugging of MPSOCs is challenging
because they contain multiple unsynchronised clock
domains. Global properties about the system there-
fore require communication between multiple dis-
tributed units in different domains (possibly far apart)
with non-neglible communication delays. There are
several problems to overcome. First, there is a need

to be able to monitor local properties, preferably in
a non-intrusive way such that the functional opera-
tion is not impacted. Second, results of local dis-
tributed monitors must be combined for global prop-
erties. Sending information over the functional inter-
connect may impact performance and/or cost and is
therefore not desirable. Adding extensive additional
infrastructure for post-silicon debug is costly. Third,
there is no common time reference in the system due to
the use of multiple clock domains, which complicates
the notion of globally consistent view on the system.
Fourth, the fact that local properties may become true
millions of clock cycles apart from each other requires
efficient handling and analysis of large data volumes.

In this paper we focus on software races, which are
erroneous system executions, arising from a mismatch
between the assumptions made about how (correct)
software executes on a (correct) platform. For exam-
ple, when a processor executes a store instruction to a
remote memory, depending on the type of the cache,
the write data may not be copied immediately from
the local cache to the remote memory. Or, as shown
in our case study, when writing data to different dis-
tributed memories, subtle incorrect (or unstated) as-
sumptions about communication delays may result in
incorrect system behaviour. In particular, we defined

1. possible races conditions,
2. properties to be monitored at distributed units,
3. flexible monitors to capture the properties,
4. a signalling infrastructure between monitors,
5. how to program monitors to capture races, and
6. made a case study that verifies that we can check

for the occurrence of races at run-time and classify
errors as timing or FIFO protocol related.

This paper is organized as follows. Related work is
in Section 2 and a high-level overview is in Section 3.
Races are described in Section 4, our distributed debug
architecture in Section 5. A case study where we find
races at run time is given in Section 6. We conclude
with Section 7.



2 Related Work
The fundamental problem during silicon debug is

how to observe the state of the system. One straight-
forward approach is to use the existing scan-chains to
capture the state of the system at a given time [1].
While it is cost-effective, as scan-chains are present
to enable manufacturing test, it is intrusive, as the
system must be stopped. Hence it only allows a single
snap-shot of the system to be made. Furthermore it is
difficult to resume the system to make additional snap-
shots. Stopping the clocks for a globally consistent
snap-shot is also difficult due to the multiple clock
domains [2, 3].

A non-intrusive debug approach is to use trace
buffers, which is common in processors of today [4].
The constant increase of complexity enforces larger
trace buffers, and techniques to compress data have
been developed [5]. With the advent of MPSOCs,
there is a need for multiple trace buffers, monitors to
trigger on events, and communication between mon-
itors. An MPSOC debug architecture with a sepa-
rate interconnect for debug is proposed in [6]. In a
similar set-up, re-use of the functional interconnect is
proposed to send debug data [7], or synchronization
tokens [8]. The functional application is impacted by
this debug activity, which is not desirable.

While a significant number of works have been pro-
posed on silicon debug, no work details races that can-
not be envisioned at the software level, nor demon-
strates how to detect these races.

3 High-level Overview
Figure 1 shows two communicating tasks, t1 and

t2, where producer task t1 generates elements that are
used by consumer task t2. In the figure, task t1 is
mapped to CPU1 while task t2 is mapped on CPU2.

The communication between tasks is handled using
First-In First-Out blocks (FIFOs) mapped on mem-
ory. For efficiency, logical FIFOs are commonly im-
plemented as circular buffers, as only pointers and
not elements have to be updated when operating on
the FIFO. Associated with each FIFO are four point-
ers: FIFOtop, FIFObottom, RDptr, and WRptr. The
FIFOtop and FIFObottom pointers define the size of
the FIFO and the RDptr and WRptr pointers define
where to read from, respectively, write to in the FIFO
at a given point in time.

Before writing to or reading from the FIFO the pro-
ducer and consumer poll the read and write pointers.
To minimise the latency for this, it is common to keep
pointers in a memory close to the producer and con-
sumer. Figure 1 shows that the pointers WRptr and
RDptr are kept in an on-chip memory which is accessi-
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Figure 1: A task graph and an example mapping

ble with a low latency, while the (usually much larger)
FIFO data is kept in the large, slower off-chip memory.

The producer constantly enters new tokens into
the FIFO by the transactions detailed in Figure 2
while the consumer constantly requests tokens from
the FIFO by the transactions detailed in Figure 3.
Figure 1 shows that the transactions p.2, p.3, p.6 op-
erate on the on-chip memory while p.5 operates on
the off-chip memory, and that the transactions c.2,
c.3, c.6 operate on the on-chip memory while c.5 oper-
ates on the off-chip memory. The transactions by the
producer and the consumer in Figure 1 over time are
shown in Figure 4, using time lines of [9]. The pro-
ducer, consumer, on-chip memory, and off-chip mem-
ory each have a time line indicating when transactions
are issued and when they take effect. The example
trace shows how both producer and consumer poll the
points, followed by the successful transfer of one token.

(p.1) while (true)
(p.2) read RDptr
(p.3) read WRptr
(p.4) if ok_to_write
(p.5) write data
(p.6) write WRptr

Figure 2: Producer side

(c.1) while (true)
(c.2) read RDptr
(c.3) read WRptr
(c.4) if ok_to_read
(c.5) read data
(c.6) write RDptr

Figure 3: Consumer side

4 Races and distributed Conditions
Modern high-performance on-chip interconnects,

such as multi-layer busses and networks on chip
(NOC), are pipelined and concurrent, to serve many
transactions at the same time. As a result, there is
no single sequential system trace, as was the case for
older sequential interconnects. Distributed memories,
effects in the NOC such as different path lengths, con-
gestion, differential Quality-of-Service guarantees, as
well as slave arbitration and different slave speeds of
execution, make it often hard to predict when transac-
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Figure 4: Time diagram for producer and consumer

tions are delivered and executed. As a result, read and
write transactions issued in given order by a proces-
sor may execute in a different order at different slaves.
Next, we illustrate how communication races may oc-
cur, using a NOC [10].

Figure 5 shows an execution trace of the transac-
tions for the example of Figure 1 that although issued
in a valid order may lead to an incorrect execution.
The problem is that the update of WRptr (p.6) issued
at i is quickly transported to and written in the on-
chip memory at j. Hence, it can overtake the slower
write data (p.5), which is issued at g and written in
the off-chip memory at h. The consumer reads the
updated pointer WRptr (c.3) at o, but the old data
(read data c.5) at r. To detect this race, it is required
to monitor properties at the on-chip memory, and off-
chip memory, and then correlate these distributed lo-
cal properties to detect the race, which is a global
property.

A race similar to WRptr can occur for RDptr. FI-
FOs with more than one token have a pipelined be-
haviour involving multiple tokens and concurrent pro-
ducer and consumer transactions. For clarity, in the
remainder, we focus on only one producer operation
(sequence of transactions as in Figure 2) and one con-
sumer operation (sequence of transactions as in Figure
3), although our approach is also valid for the more
complex, pipelined cases.

5 Distributed Debug Architecture
We describe our proposed monitor and how it is

integrated in the existing on-chip debug architecture,
described in [2].
5.1 Monitor

The monitor, shown in Figure 6, consists of a bus
reader, three data matchers (DMs), and a state ma-
chine (SM). The monitor is non-intrusive, and it only
observes the bus to which it is attached, and events
from other monitors that arrive over the Event Distri-
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Figure 5: Time diagram of a race
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Figure 6: Overview of the monitor

bution Interconnection (EDI). The EDI is a separate
dedicated debug interconnect, which is fast and low-
cost [2]. Likewise, the outputs from the monitor are
sent to other monitors using the EDI.

The bus reader is specific to the bus protocol, and
forms the interface between the bus and the moni-
tor. It takes inputs from the bus and extracts ad-
dress (adr), data (write data and read data), along
with a valid signal for each (adr valid, write valid,
read valid), and command information (cmd).

The cmd from the bus reader is clocked and turned
into c indicating read or write. Outputs from the bus
reader is fed to three programmable data matchers,
which produces three outputs, a, w, r, respectively.
Each of these three data matchers consists of two sym-
metric parts, left and right (Figure 7). The low (high)
register can be initialized to a pre-defined value or
set during execution to the input data. The low and
high registers can independently be updated to an in-
put value or to an incremented value. The low and
high register can be masked such that a set of bits are
ignored. The masked outcome is compared against
the input (data), which also can be masked. A data
matcher can check:

1. if (part of) its input is (not) equal, less or greater
than a given value or the previous input, or

2. if (part of) its input is in a static or moving range
[min, max].



The outputs of the three programmable data
matchers (a, w, r) and the read or write command
(c) are feed to the state machine.
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The state machine (Figure 8) is RAM-based to al-
low full programability. The RAM input of 4 + n + q
bits is a concatenation of the output of the data match-
ers plus command (4 bits - (a, w, r, c)), the EDI out-
put (n bits), and the state output of the state machine
(q bits). The size of the RAM is 2(4+m+q) words of
n + q bits each.
5.2 Interconnect

Our generic MPSOC, including the NOC, is shown
in more detail in Figure 9. Each IP block, processor,
memory, etc., is connected to a local bus with its ar-
biter (A) to a protocol shell (S) that translates a spe-
cific bus protocol to a stream of data words. These are
then transported by the NOC from network interface
(NI) to NI, using intermediate routers [10].

Figure 9 also shows the EDI [2] (shaded), which is
routed parallel to, but independent from, the func-
tional router network. Since the EDI broadcasts
events, it is simpler, faster, and cheaper than the
NOC. Extending our previous EDI implementations,
it contains multiple planes, to allow for multiple events
and identification of the event’s originator. The EDI
delivers events to monitors, protocol-specific instru-
ments (PSI) [11], or IP blocks, who ignore or use them,
e.g. to stop communication or computation.

6 Case Study
In this section, we detail the properties that need to

be monitored for the detection of the WRptr race, the
subsequent monitor implementation, and simulation
results.
6.1 Distributed Conditions to Monitor

While the commands at the producer and the con-
sumer all are issued in correct order, unexpected laten-
cies in interconnects may result in the race detailed in
Figure 5. For a generic MPSOC with debug facilities
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Figure 8: State machine
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as in Figure 9, the monitors to detect the race must
be located near the memories. Figure 10 shows the
timing diagram including the monitors M2 and M3.

The race can be detected by, first, checking if the
consumer has read an updated pointer in the on-
chip memory and, second, when the condition is true,
checking if the consumer reads in the wrong part of
the FIFO.

We denote the first condition, producer updates
write pointer (WRptr, p.6) followed by the consumer
reads the updated pointer (read WRptr, c.3), by j < o,
where < denotes occurs before. When the property is
true, monitor M2 informs all other monitors by send-
ing an event on its EDI2.

When the first property (j < o detected by monitor
M2) is true, the second property to check is if the con-
sumer reads data (c.5) before the producer’s data has
arrived (p.5), i.e. monitor M3 checks r < h. Checking
updates or accesses of the read (or write) pointer only
requires monitoring a single memory address. How-
ever, accessing FIFO data requires checking access to
data in a range of addresses. If the producer and con-
sumer software software operates correctly, i.e. access
data at the right addresses, it is sufficient to check that
the consumer reads and the producer writes within
the FIFO’s address range (defined by FIFOtop and
FIFObottom). The first condition (j < o) indicates that
there is a potential risk of a race. If the consumer then
reads in the FIFO before the producer data arrives in
the FIFO (r < h), then the race has occured. As a
result, read and write accesses need only be checked
in a fixed range (or even a single location). In this
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Figure 10: Inserted monitors

paper we only describe the detection of races for a
single outstanding token (or producer/consumer syn-
chronization). However, our approach is more general
and allows pipelined monitor events, at the cost of a
more advanced implementation.
6.2 Monitor Implementation

In this section we show how to program the moni-
tors, to observe the race.
6.2.1 Monitor M2

Monitor M2 is to detect if j < o and then signal this to
monitor M3 on EDI e2. To detect condition j (p.6) and
o (c.3), the data matcher must create an event a (in
Figure 6) for transactions with address WRptr. Event
a is generated by pre-loading the address of WRptr in
both high and low registers of the monitor (see Figure
7). If the input is true on both the left and the right
hand side, the input is the pointer address. Read and
write transactions generate events c and c′ directly.

Given events a, c and c′, the state machine is de-
fined as in Figure 11 and Table 1. The state machine
is in the initial state 0 until j, that is a & c′ (p.6) is
valid, and then the state machine moves to state 1. If
in state 1 and a & c (c.3) becomes valid there is a po-
tential race as the pointer is updated and the updated
pointer has been read; hence, e2 output is generated
and the state machine returns to state 0.

Table 1 shows the implementation of the state ma-
chine. As a RAM is used, all states are to be defined
(all possible combinations of don’t care states (-)). We
assume one EDI signal for each monitor, which for our
example in Figure 9 gives four EDIin signals. Moni-
tor M2 does not react to any other monitor; hence, all
EDIin signals are ignored (marked as don’t care (-)).
6.2.2 Monitor M3

Monitor M3 is to detect activity on e2, which indicates
that the property to be checked by monitor M2 has
triggered. If M2 is activated, monitor M3 is to detect
r < h, and then signal on e3 if a timing error occurs

0

a⋅c’/-a⋅c/e2

1

Figure 11: State diagram for monitor M2 where
a=address hit, c=read and c’=write

EDI in Current state event EDI out next state
0 1 2 3 a w r c 0 1 2 3
- - - - 0 0 - - - 0 0 0 0 0
- - - - 0 - - - 1 0 0 0 0 0
- - - - 0 1 - - 0 0 0 0 0 1
- - - - 1 - - - 0 0 0 0 0 1
- - - - 1 0 - - - 0 0 0 0 1
- - - - 1 1 - - 1 0 0 1 0 0

Table 1: RAM content for monitor M2

or on e0 if a FIFO protocol error occurs, such that an
event receiver, for example a PSI, can be notified. As
discussed above, detecting where in the FIFO access is
performed is not necessary as given a possible pointer
violation (detected by monitor M2), it is necessary to
check that the consumer reads prior to the producer
writes in the FIFO data area. To detect condition r
and h, an a hit is needed on transactions in the FIFO.
The event a is generated by pre-loading the FIFOtop

in the high and the FIFObottom in the low registers of
the monitor (see Figure 7).

For the implementation of monitor M3, we assume
a token size of 8 words (8 individual reads/writes). We
use six state bits (variable state) where bits 3 down to
0 keep track of the difference in number of writes (#w)
and reads (#r), bit 4 indicates if a token has been
completely written to the memory, and bit 5 defines if
the FIFO protocol is followed. A signal on e3 indicates
a timing error due to the interconnect and a signal on
e0 indicates a FIFO protocol violation.

The state is included in the RAM, hence, the fol-
lowing if-statements are executed concurrently:

if w(write) then
increment state[3-0] // #w −#r
if state[3-0] = 8 (#w −#r) then

set state[4]=1 // token complete
end if

end if
if e2 then

set state[5]=1 //FIFO protocol used
end if
if r(read) then

if state[4]=0 //token incomplete then
if state[5]=1 //FIFO protocol used then

output e3; stop;
else

output e0; stop;
end if
decrement state[3-0] // #w-#r
if #w −#r = 0 then

state[4]=0 //reset - token incomplete
state[5]=0 //reset - FIFO protocol not used

end if
end if

end if



Figure 12: Simulation results of run-time race checking.

6.3 Experimental Results
We have implemented the MPSOC in Figure 1 and

Figure 9. We simulate the producer-consumer inter-
action using a shared memory FIFO, see Figure 12.
CPU1 queries the value of the RDptr (A) to check
whether there is room in the FIFO. It subsequently
writes eight 32-bit data words as one token into the
FIFO (B), and updates the write pointer (C). In par-
allel, CPU2 continuously queries this write pointer to
see if there is data in the FIFO. When it subsequently
reads the write pointer after the producer has updated
it (D), Monitor 2 changes state, and informs Monitor
3 via EDI 2 (F). All the while, Monitor 3 is keeping
track of the data words writing by the producer in the
FIFO (E1, E2, . . . , E8). When a read request from
the consumer comes in before the final data word of
the token is written by the producer into the FIFO
memory (E8), this is signalled as an race violation on
EDI 3 (G). In our case, all eight data words in the
token are read before the final data word is written.
Of those eight, the last three data words are actually
read before they are written, and therefore contain old,
incorrect data.

7 Conclusions
Software running on multi-processor system-on-

chips with an advanced interconnect, such as a
network-on-chip, may cause races that are difficult to
detect. We have in this paper detailed races, shown
that distributed monitoring can detect the races, de-
fined properties needed to detect a particular race,
proposed a flexible and programmable monitor to
check for properties and shown how to include and
use the monitors in an existing debug interconnect.
We have made a case study showing that a race can
be detected and eventual errors can be classified as
timing errors or FIFO protocol violations by program-
ming distributed monitors.
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