
The Aethereal Network on Chip after Ten Years:
Goals, Evolution, Lessons, and Future

(Invited Paper)

Kees Goossens
Eindhoven University of Technology

k.g.w.goossens@tue.nl

Andreas Hansson
University of Twente

a.hansson@utwente.nl

ABSTRACT
The goals for the Æthereal network on silicon, as it was
then called, were set in 2000 and its concepts were defined
early 2001. Ten years on, what has been achieved? Did
we meet the goals, and what is left of the concepts? In
this paper we answer those questions, and evaluate different
implementations, based on a new performance:cost analysis.
We discuss and reflect on our experiences, and conclude with
open issues and future directions.

Categories and Subject Descriptors
B.7 [Hardware]: Intregrated Circuits

General Terms
Performance

Keywords
Network on chip, rate control, circuit switching

1. APPLICATION DOMAIN AND GOALS
Work on the Æthereal network on chip (NOC) started at

Philips Research, for systems on chip (SOC) in the consumer-
electronics (CE) domain, in particular digital TV (DTV)
and set-top boxes (STB). These systems include applications
such as audio and video decoding and improvement that
have real-time requirements and high computational perfor-
mance at low cost (high bandwidth (Gb/s) to area (mm2) ra-
tio). Moreover, unlike for general-purpose computing, con-
sumers do not tolerate CE devices misbehaving or crashing.
Hence CE SOCs have to be robust, in the sense that a faulty
IP or application, must not cause the entire system to break.

DTV and STB SOC architectures were characterised by
the use of a single external SDRAM for all inter-IP shared-
memory communication [5]. All IPs, most of which were
hardware accelerators, had dedicated wires to the SDRAM,
leading to many global wires and wire congestion at the
SDRAM interface. IPs required a guaranteed minimum
bandwidth and maximum latency to ensure an end-to-end

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prot or commercial advantage and that copies
bear this notice and the full citation on the rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specic
permission and/or a fee.
DAC 2010, June 13-18, 2010, Anaheim, California, USA.
Copyright 2010 ACM ACM 978-1-4503-0002-5 ...$10.00.

SOC bandwidth and latency for video and audio process-
ing. In contrast, the CPU’s average latency and bandwidth
requirements were strict, but not real time.

With this background, several trends were emerging in
2000, which we took as our problem statement:

1. Physical, back-end problems, in particular difficult tim-
ing closure and congestion of many long global wires, intro-
duction of multiple synchronous regions and GALS.

2. Logical, scalability problems, in particular tri-state and
broadcast busses with a single global arbiter, and bottle-
necks in the SOC architecture such as a single shared SDRAM
for all inter-IP communication.

3. Increasing cost of designing ; integration of working
components often did not lead to a working system, both at
the physical level (e.g. resizing bus tri-state buffer strenghts)
and at the logical level (e.g. resizing depths of decoupling
FIFOs between IPs). Moreover, analysing or determining
the real-time performance of SOCs was time-consuming and
complex. Finally, post-silicon SOC validation and debug
were taking an increasing percentage of the design cycle.

Note that low power was absent from the list of require-
ments, as DTV and STB applications are tethered.

2. CONCEPTS
We discuss Æthereal’s concepts in turn. We use a multi-

hop interconnect to solve back-end and scalability problems.
Next, real-time applications and the cost of designing are
addressed by guaranteed performance with a corresponding
notion of time. The consumer-electronics domain requires
low cost, for which we introduced best-effort traffic.

2.1 Guaranteed Performance
To offer real-time performance (guaranteed service, GS),

e.g. a maximum latency or a guaranteed minimum band-
width over a finite interval, resource budgets must be re-
served and enforced. A connection with its associated mini-
mum bandwidth and maximum latency is the NOC equiva-
lent of a resource budget. Real-time NOCs have essentially
two options: non-blocking routers with rate control [16], and
(virtual)-circuit switching.

Rate Control. Non-blocking routers with a rate-controlled
service discipline [16] are the first way to achieve real-time
guarantees. Routers are non-blocking, i.e. when packets
arrive at a router, they can be routed directly to the ap-
propriate output links without switching conflicts on the
crossbar. Queueing occurs only at the output ports of the
router. With these assumptions, only links are arbitrated,
and a connection can be modelled as traversing a number
of queueing servers, with each server modeling the output

link of a router. Many different arbitration policies can be
used, with different characteristics in terms of latency, buffer
sizes, utilisation, fair use of slack, etc. [16]. Note, however,
that priorities alone offer guarantees to only one circuit, and
controlling the rate is essential. Traditionally, N2 output
buffers and a N×N2 crossbar are used. Alternatively, N
output buffers with a N×N crossbar can be used, with both
running at N times the link frequency. But this is not feasi-
ble in NOCs, where the router and link speeds are the same.
Mango [2] is a rate-controlled NOC, but uses virtual-circuit
buffering rather than the traditional output buffering.

Note that rate-controlled service disciplines require that
all routers act as independent servers. A packet cannot,
therefore, block a link (or router crossbar) for other packets.
As a result, either store-and-forward or virtual-cut-through
switching must be used. Or, if virtual channels are used
for guaranteed services, as is often proposed, as many chan-
nels as circuits must be used, in addition to a non-blocking
crossbar. This then coincides exactly with Mango’s virtual-
circuit buffering with a non-blocking crossbar.

Circuit Switching. SOCBus [15] was the first pure
circuit-switching NOC. No resources, i.e. wires between and
inside routers and any (pipeline) buffers, are shared between
connections. Once a connection has been established, real-
time guarantees are trivially achieved. However, pure circuit
switching does not reduce the number of global wires.

Traditionally, frequency multiplexing (FDM) and/or time
multiplexing (TDM) have been used to address this. Note
that even with FDM or TDM data never contend for re-
sources in the network: they never wait and no buffers are
required. Optical NOCs [3] use FDM, and Æthereal and
Nostrum [10] use TDM. Since the flight time of photons is
neglible and because they are hard to buffer, FDM circuit-
switching NOCs are not pipelined.

In TDM NOCs, however, pipeline buffers on links or in
routers are essential to ensure high operating speeds. Hence
a connection does not use the same time slot for its en-
tire path; instead it increments at every hop. Figure 1 il-
lustrates how multiple connections are mapped on a TDM
NOC. Since only one datum is guaranteed to arrive in every
time slot at every input, and since it leaves in the next time
slot, routers only require a pipeline buffer at each input. The
table in each router indicates to which input each output is
connected, for each slot (allowing multicast.) Since circuit
switching is used and routers know where to switch incom-
ing data to, guaranteed-service (GS) data required no rout-
ing headers. Later versions of Æthereal, described below,
employ virtual -circuit switching where packets with routing
headers tell routers where they should go.

Thus links are shared (reducing the number of global wires),
and routers are small (N minimal input buffers, minimal
N × N crossbar). Routers are also fast: no arbitration is
required, as contention is absent since all communication is
statically scheduled. But TDM requires that all routers have
a global notion of time, to keep their TDM slots aligned.

2.2 Notion of Time
TDM (and FDM) (virtual)-circuit switching treat the en-

tire NOC as a single shared resource with a single arbiter. In
other words, packets wait only at the ingress network inter-
faces (NI) until their TDM slot, after which they progress
without contention to the egress NIs, with minimal latency.
This differs from rate-controlled (and other) NOCs, where

i3
i0

i0

o2 o3 o1 o2

i0
i0

o2

i0
i1

T1 T2 T3

i0
o1

o0 i2
o2

i3 o3

i1
R1 R2 R3

i0

i3 o3

o2

i0
o1

o2

b

a c
a

c

b

Figure 1: Contention-free routing.

each router independently arbitrates incoming packets. Ar-
biters at each router in a packet’s path are not aligned, and
a packet may incur the worst-case delay at every hop.

Æthereal has a global notion of time because all routers
are always in the same TDM slot. Our main innovation was
to implement the single global arbiter and the global notion
of time in a distributed manner. The NOC is defined as
a dataflow graph, where routers are single-rate actors. On
reset, all routers produce a token on all outputs. Follow-
ing this, in an infinite loop they all read a token on all in-
puts, increment the slot, and switch each token to an output
according to the switching table. (Note the absence of con-
tention.) Tokens are either empty or full (corresponding to a
circuit datum, or a virtual-circuit packet). This model has
been implemented synchronously, mesochronously [8], and
asynchronously [4]. In fact, since no contention occurs, the
asynchronous router requires a synchroniser to wait for all
incoming tokens, but no asynchronous arbiter for the cross-
bar. Since all routers only advance to the next slot when
their neighbours have, the NOC is logically synchronous and
runs at the speed of the slowest router.

This model of time is suitable for analytical performance
analysis, as well as allocation/synthesis, i.e. computing paths,
slots, and buffer sizes for given communication requirements
(bandwidth and latency, use cases), see Section 3.4

2.3 Low Cost and Best Effort
Minimal area cost was a foremost concern from the out-

set. Although this was achieved by TDM circuit switching,
we made the classic mistake of confusing utilisation with ef-
ficiency. TDM is not work conserving, i.e. slots may be
empty even though data is waiting in the NIs. We therefore
included lower-priority best-effort (BE) traffic in the NOC
that used the unallocated and unused slots. The NOC logi-
cally consisted of a GS NOC and a BE NOC (input buffers,
round-robin arbitration) that only shared the links. How-
ever, BE traffic increased the GS flit size of one word to the
flit size (and latency) of three words for BE. However, utili-
sation is not relevant, but the performance:cost ratio is. And
the addition of BE traffic significantly worsened the latter.

Since RAM or flip-flop based BE buffers occupied up to
80% of the router, we designed a dedicated hardware FIFO [14]
that reversed this ratio. In the NIs it implemented the
(virtual)-circuit buffers, and also served as the clock-domain
crossing between IP and NOC clock domains.

2.4 Routing, Flow Control and Deadlock
The NIs were strictly decoupled in a kernel and a shell,

corresponding to the network and transport layers of the
protocol stack. Shells serialise distributed-shared-memory

protocols, such as AXI, to a streaming protocol accepted by
the kernel, which may also be used directly by IPs.

Input buffering is used for both GS (one phyt) and BE
(a number of flits) in routers, which is independent from
the number of circuits passing through. (Virtual)-circuit
buffering is used in both ingress and egress NIs, i.e. a request
and response buffer per connection.

Absence of contention for GS traffic entails that no link-
level flow control is required, but end-to-end (NI-NI) flow
control per connection is essential. We opted for credit-
based flow control because it results in smaller buffers than
other schemes, although it requires higher bandwidth. Rout-
ing deadlock does not occur due to absence of contention.
End-to-end flow control avoids all deadlocks, including mes-
sage and higher-protocol deadlocks; we therefore have a com-
bined request/response NOC [7]. Stalled IPs cannot, there-
fore, negatively impact other IPs, increasing robustness. BE
traffic uses link-level flow control, and is also connection-
based to avoid all deadlocks. Special BE setup and tear-
down packets were used to create and remove connections,
concurrently and pipelined from any NI.

In conclusion, the need for real-time performance led to
TDM circuit switching; a focus on low cost led to the inclu-
sion of best-effort traffic; and the robustness requirement led
to use of end-to-end flow control. Our main innovation was
the use of a single global TDM arbiter that was implemented
through distributed handshaking between routers.

3. EVOLUTION AND CURRENT STATUS
Given the basic concepts, a decade of continuing research

resulted in a multi-processor NOC-based platform called
CompSOC [6] with an accompanying design flow. We first
discuss the architecture changes, then the design flow.

3.1 Use Cases and Composability
Robustness was one of the goals of Æthereal, which trans-

lated in GS connections and end-to-end flow control. Quite
soon, however, the concept of use case, a set of concurrently
running applications, became important. In many SOCs,
multiple applications can run together, and can be switched
on or off dynamically, often under user control. Use cases
have two important repercussions. First, assuming that all
applications are always active is unduly pessimistic and ex-
pensive. Hence the mapping of connections on the NOC
should take applications and use cases into account.

Second, the notion of robustness was refined to compos-
ability, i.e. absence of interference between applications.
Within an application, tasks exchange data and are hence
dependendent on each other. Between applications, how-
ever, interference should be avoided. Only in this way can
they 1) be developed, verified, and debugged independently
(e.g. by independent software vendors, ISV), and 2) can they
be integrated in a larger system without any unexpected
side effects to application or system. Our notion of compos-
ability separates the resource sharing (scheduling) within
applications, which may be real-time or not, from that be-
tween applications, which must be independent. This refines
Kopetz’s time-triggered approach [9], and enables dynamic
scheduling and the use of slack within applications.

In essence, use cases and composability both require a vir-
tual platform per application. Users of resources, including
tasks on processors, connections in a NOC, and buffers in
memories, are given a resource budget. A virtual platform

is the collection of resources and budgets of an application
(a set of tasks, connections, and buffers). For a predictable
(real-time) platform, only minimum budgets have to be de-
fined. For a composable platform, the budgets must be
constant, and the times they are handed out to an applica-
tion are independent of other applications. Intuitively, using
TDM on all resources (independently) is the simplest way to
achieve this: slots allocated to an application are fixed and
independent of others, and unallocated or unused slots go
to waste. Although Æthereal’s GS connections are therefore
composable, memories (especially SDRAM) [1], and proces-
sors require more work.

3.2 Best Effort, Low Latency, and Cost
Our approach for GS did not change. However, the in-

clusion of BE traffic was a mistake, and it is no longer (by
default) used in the NOC for three reasons. 1) (our) best
effort does not offer low latency in a loaded NOC; 2) the
performance:cost ratio is much worse than for GS traffic; 3)
use of BE quickly breaks composability between applications.

GS traffic such as video streams, tends to have strict min-
imum bandwidth (and jitter) constraints, but is relatively
latency tolerant. Processor traffic, especially cache misses,
on the other hand, is latency critical, with a focus on av-
erage rather than minimum latency and bandwidth. Intu-
itively, low-latency traffic should use BE connections. Unfor-
tunately, this is not the case, because BE traffic has a lower,
not higher, priority than GS traffic. However, perhaps more
important, the performance of BE depends strongly on the
NOC xload and slack. Since in DTV and STB applications
GS reserves and uses up to 60% of the NOC capacity, BE
performs rather poorly and does not offer a low latency.

GS vs. GS+BE Performance:Cost Trade-Off
Consider the raw performance:cost ratio of a 8x8 GS+BE
router with 4-flit BE buffers of 0.6 GHz / 0.07 mm2 (65 nm)
versus that of a GS-only router of 1.9 GHz : 0.022 mm2. The
difference is a factor of 10, which allows us to replace, at no
additional cost, a BE connection with a given required av-
erage bandwidth by a GS connection guaranteeing 10 times
the required bandwidth. Only if the difference between aver-
age and worst-case required bandwidth is more than a factor
of 10, or if statistical multiplexing between different connec-
tions can be relied upon, then perhaps a case can be made for
BE. In this simple example we have not taken into account
effects such as (absence of) contention, or the maximum
load of a BE NOC (around 50%) versus that of a GS NOC
(closer to 100%). Figure 2(a) shows a frequency:area:power
trade-off for 5x5 GS routers and GS+BE routers (with in-
put buffers of 4 or 8 flits), both with and without clock gat-
ing, for a 65 nm low voltage library. Similarly, GS NI and
GS+BE NI with 16 TDM slots and 8 ports figures (without
connection buffers) are shown. (We use frequency rather
than raw link bandwidth as performance metric to more eas-
ily compare routers and NIs. In Figure 2(b), described in
Section 4.2, we extend the experiment to nett bandwidth.)
Since GS routers contain little buffering, clock gating makes
not much of a difference. GS+BE routers do contain much
buffering (additional 5x4x3 or 5x8x3 words for BE), and
they are at least twice as large and power consuming as GS
routers. All buffers are based on registers, and use of our
hardware FIFOs will reduce both area and power, especially
for GS+BE components. In all cases the clock uses between
14 and 22 percent of the power.

0
2

4
6

8

x 104

0
1000

2000
3000

0

10

20

30

40

50

cost (area in µm2)
performance
(freq. in MHz)

co
st

 (e
ne

rg
y

in
 m

W
)

GS router
(gating)

GS+BE router
(8 flits, gating)

GS+BE router
(8 flits, no gating)

GS+BE router
(4 flits, no gating)

GS+BE router
(4 flits, gating)

GS+BE NI
(no gating)

GS router
(no gating)

GS+BE NI
(gating)

GS NI
(no gating)

0 0.5 1 1.5 2 2.5
x 1011

0

2

4

6

8

10

12

14

co
st

 (a
re

a
in

 m
m

2)

performance (effective cumulative bandwidth in b/s)

2D mesh (incl. buf.)

2D mesh (excl. buf.)

point point (incl. buf.)

point point (excl. buf.)STB

synthetic

synthetic

synthetic

STB

STB

automotive

synthetic

reference real
automotive design

reference real
STB design

STB

Figure 2: Left: performance:area:energy trade-off for router and NI. Right: performance:cost trade-off for GS NOCs.

Best Effort and Composability
Assume two applications, one best-effort by independent
software vendor (ISV) one, and another real-time applica-
tion by another ISV. BE traffic uses the unallocated or un-
used slots in the NOC. The unused GS slots belong to a dif-
ferent application the one that the BE connection belongs
to. Hence the BE application is influenced by the absence
or presence of the real-time application. The BE connec-
tion (application) receives more or less bandwidth depend-
ing on the use of the NOC by the GS connection (appli-
cation). Note that extra slots can cause an application to
miss its deadline if it is not performance monotonic, through
scheduling anomalies. At a more mundane level, it compli-
cates debugging the BE application, because its behaviour
depends on the other real-time application, the sources or
even executable of which the ISV may not have at its dis-
posal, because it is supplied by another ISV.

Related to the removal of BE traffic, we moved to virtual-
circuit switching using packets, which allows deletion of the
slot tables from routers, making them much smaller. Arbi-
trary topologies can be used, without routing restrictions.
To set up and tear down connections, only NIs are now
programmed, using memory-mapped IO on GS connections.
Adding or removing connections is composable, i.e. does not
affect other active connections.

3.3 Protocol Stack, Busses, and Clocking
Although the division of the NI in the transport-level shell

and network-level kernel was good first start, we further split
the shell in a local bus, a simpler shell, and a clock-domain
crossing block. The local master bus essentially demulti-
plexes distributed-shared-memory requests, and enforces the
right order on the responses. The shared-memory requests
and responses are (de)serialised to a streaming protocol by
shells. Slave busses are similar, except that they multiplex
incoming requests, and hence require arbitration. Our de-
sign flow, described below, generates the hardware, but also
computes the configuration (i.e. address maps, arbiter set-
tings) for all those components, based on end-to-end (i.e.
master-bus-NOC-bus-slave) requirements.

Regarding clocking, busses and shells operate on the IP
clock, and they are connected by clock-domain-crossing blocks;
routers operate mesochronously on the NOC clock [8].

3.4 Design Flow
The NOC architecture is only half the work: during the

past ten years most of the effort on Æthereal was spent on
the development of a design flow. Based on the specifica-
tion of IP blocks and their (multi-use-case) communication
requirements, it automates the following tasks:

1. Dimensioning and instantiation of hardware, i.e. gen-
erating a NOC topology, and then (constrained) optimising
of the NIs, local busses and their decoders and arbiters, and
binding of IPs to these, as well as the sizes of buffers in NIs.

2. For all use cases, computing the run-time-programmable
configuration of hardware, i.e. paths, TDM slots, address
maps for master busses, and arbiter settings for slave busses.

3. Generating drivers to (re)program the NOC with a
configuration, at run time, and with real-time constraints.
Applications (i.e. their connections) can be composably
started and stopped independently at run time.

4. Generation of TLM SystemC models and RTL imple-
mentation, including traffic generators, testbench, and per-
formance monitors.

5. Automatic inclusion of a test & debug infrastructure,
e.g. distributed monitors, event propagation for cross-triggering,
and transaction-based stepping/stopping control [12].

Our design flow is fully automated for ASIC and FPGA
(synthesis, compilation, loading, etc.). It is unique in allow-
ing constraints on both bandwidth and latency, from which
NI buffer sizes and arbiter settings for shared-slave busses
are computed. Performances is guaranteed for connections
(end to end: master-NOC-slave-NOC-master), and even for
entire applications running on CompSOC platform, using
dataflow modeling [11, 6].

4. REFLECTIONS AND LESSONS
In this section we reflect on our experiences; in particular,

“selling points,” scalability, TDM, and admission control.

4.1 (Unique) Selling Points

Æthereal was conceived for the DTV and STB domain,
where, ironically, it turned out to be the hardest to com-
pete with the incumbent architecture [5]. An interconnect
with a single slave (i.e. the external SDRAM controller)
for many masters (CPU, VLIWs, and many hardware ac-
celerators) is naturally a circuit-switching tree with a sin-
gle arbiter at the root. However, in the end, a NOC was
found to be superior for several reasons. First, with the
concept of use cases, applications could be switched on and
off individually. Previously, each combination of applica-
tions would be modelled as a separate application of which
there were hundreds, and which required a global reset to
start or stop. Second, the use of a protocol stack allowed
more efficient (serialised and pipelined) link-level protocols,
which reduced the number of long global wires. This alle-
viated the SOC back-end problems such as timing closure.
Third, since the circuit switching operated at the granu-
larity of large SDRAM transactions the NIs required much
distributed buffering, leading to many SRAM instances. By
using a NOC, the interconnect transport granularity was re-
duced to flits. Hence buffering of SDRAM bursts could be
concentrated at the SDRAM interface, which allowed the
use of fewer, larger (and hence more area efficient) on-chip
SRAMs. Finally, the SOC architecture started to include
multiple slaves, e.g. multiple SDRAM interfaces and chip-
to-chip links. Rather than duplicate multiple tree-like inter-
connects, a NOC naturally allowed balancing of traffic over
multiple SDRAMs, either within or between use cases.

NXP’s automotive infotainment SOCs had very different
architectures, with multiple embedded memories, and mul-
tiple data and control busses with bridges. These were a
natural candidate for a replacement by a NOC, although
back-end problems were not as severe as for the DTV and
STB SOCs. Instead composability was the compelling rea-
son for our NOC, since multiple applications from indepen-
dent (software) vendors were integrated in a single SOC.
Composability aims to ease application integration, and en-
sure application/SOC robustness and stability, which are
essential in the automotive domain.

In both cases, it is not feasible to introduce composability
or predictability in the entire SOC in one go. However, since
the NOC integrates the IPs, composability can already be
achieved if they are not shared by different applications.
This is usually the case for hardware accelerators, and often
feasible for processors (especially DSPs and VLIWs). Only
the off-chip SDRAM is almost always shared, and must be
made composable and predictable too [1].

4.2 Scalability
NOCs are claimed to be scalable, which here we define

as: the performance:cost ratio of the NOC is constant, i.e.
cost depends linearly on the requirements on bandwidth and
latency. This encompasses adding slaves, increasing the of-
fered load, and to some extent the diversity in requirements
(ratios of bandwidths) of different connections. The per-
formance:cost ratio of a GS NOC versus a GS+BE NOC
was discussed in Section 3.2. Here we concentrate on the
scalability of the GS NOC.

First, observe that our GS routers are independent, in
terms of performance (frequency) and cost (area, notably
buffers), of the number of connections passing through them.
This contrasts with rate-controlled routers, where virtual-
circuit buffering or output buffers are used. The size of the

latter depends on the frame size of the guarantees, which is
comparable to the slot table size, and indirectly the number
of connections (more on this below). As mentioned previ-
ously, this is not the case for NIs, which use virtual-circuit
buffering (also to avoid deadlock, with end-to-end flow con-
trol). Hence the total area cost of all NIs depends on the
number of connections. Their performance does not, how-
ever, since the connection buffers are not in the critical path.
The total area cost of a NOC hence depends on the topology
(i.e. the number of routers, and packetisation and schedul-
ing parts of NIs) plus a (NI buffering) part that depends
linearly on the number of connections. (A minor complica-
tion is that each NI requires a connection for programming.)

Assuming that NI buffers are dimensioned for maximum
performance (cf. end-to-end flow control), and that NOC
clients always accept data as soon as it is offered, the band-
width of a GS NOC scales linearly with its number of routers,
as there is no contention. However, this supposes that all
TDM slots are used, which depends on the IP port to NI
binding and on the NOC topology. The worst performance
(equal to that of a single link) occurs when all connections
are routed over a single link in the NOC. Conversely, the
best performance (the sum of all links) is obtained when
each connection, consisting of two IP ports, is implemented
with a dedicated source NI and destination NI, connected
without intervening routers. These two extremes also illus-
trate that the number of TDM slots reflect the (design-time)
contention of the given use case and topology, i.e. more slots
are required when more (diverse) connections share a link.
The GS NOC saturates at 100% load, unlike a BE NOC
which effectively saturates much earlier.

Scalability Experiment
The scalability of (any) NOC depends to a large extent on
the scalability of the required traffic: if all traffic converges
on a single slave, then no NOC will scale. The reference use
case used here is a reasonable intermediate, and contains
70 GS connections, with 32 masters and 32 slaves. 10% of
the connections have a maximum con/divergence degree of
10 (i.e. creating bottlenecks); the rest has a maximum de-
gree of 3. Each connection has a burst size between 8 and 32
bytes, and a random nett required bandwidth between 35 and
205 MB/s. cumulative total of 8046 MB/s is available on the
AXI write data groups. The design flow computes the re-
quired raw bandwidth requirements (which is 24 GB/s in to-
tal), taking into account AXI byte masks and addresses, and
NOC packetisation and end-to-end flow control credits. To
vary the requirements we uniformly scale the bandwidths of
all connections between 0.2 and 3.8 times the reference, with
a maximum cumulative nett required bandwidth of 30 GB/s.
Given the use case, our design flow finds the smallest NOC
of a given topology (point-to-point or mesh), and a valid
configuration (paths, slots), and with the required buffers.
Real requirements for a set-top box SOC and automotive
infotainment SOC are similarly scaled (0.2-3.4 and 0.2-4.4).
Cost is the area (estimated by the design flow) in 90 nm of a
NOC running at 500 MHz with 32 TDM slots, and includes
local busses, NIs, and routers. Importantly, it includes the
additional capacity (routers, buffers, TDM slots) required
due to less-than-perfect mapping, routing, and slot alloca-
tion, but also more slots for low latency, etc.

Figure 2(b) shows the cost of a NOC as we increase the
required performance. It illustrates that sharing wires is
beneficial, as the mesh topology is significantly cheaper that

the point-to-point topology. However, they converge under
heavy loads, as links are progressively more shared (making
NI buffers larger), and/or requiring more links and routers.
The former effect dominates, as shown by the increasing
percentage of buffer area. For both topologies, however, the
performance:cost ratio is remarkably constant, showing that
our GS NOC is indeed scalable. The use of static source
routing or TDM is no impediment to scalability.

4.3 Time-Division Multiplexing
Our choice of TDM has often been contested, for sev-

eral reasons. First, TDM inversely couples latency and rate,
i.e. a low latency is obtained only at the expense of a high
bandwidth. Hence, in essence, low latency means more (less-
shared) wires, rather than fewer wires shared with priority-
based rate-control, such as Mango [2]. Second, TDM is in-
terpreted to imply a synchronous design. As discussed previ-
ously, mesochronous and asynchronous implementations are
also possible, with the limitation that slot tokens keep part
of routers or NIs alive, even when no data is sent.

In our opinion these disadvantages are more than offset
by the advantages, namely: for any number of slots TDM is
cheap and fast, i.e. has no arbitration in the routers, and NI
arbitration can be pipelined. It also attains 100% maximum
effective bandwidth, and the restrictions on the distribution
of budgets it can offer are less severe (limited by the num-
ber of slots vs. by the number of priorities and precision
of rates). Most important, however, is that TDM is com-
posable, both in steady state, and during (re)configuration:
connections that are not reconfigured do not experience (tran-
sient) interference. (Rate-controlled) priority-based approaches
fail on all these points. Note that TDM is overly composable,
in the sense that it also disallows the use of slack between
connections of the same application. Ideally a two-level ar-
bitration scheme is used; TDM between applications and
a work-conserving scheduler within an application. How-
ever, this requires at least a virtual-circuit buffer per appli-
cation [13] and a more complex arbiter.

4.4 Admission Control
Admission control, or the complexity of checking whether

a connection can be accommodated on a given NOC, varies
for NOCs that offer guaranteed services. For pure circuit
switching it only requires computing a free path between
source and destination. For unbuffered frequency-division-
multiplexing (FDM) circuit switching, admission control re-
quires both (a single) frequency assignment and routing from
source to destination, which is more complex. For TDM
NOCs, the complexity is higher yet, as successive links on
the path require consecutive slots. In our platform connec-
tion admission control is performed at design time, when
multiple use cases are mapped. At run-time admission con-
trol takes place at the level of entire applications.

5. OPEN ISSUES ANDFUTUREDIRECTIONS
Although Æthereal achieved its goals, several new trends

can be discerned: for hardware technology, changing per-
formance:cost trade-offs, and cost of designing. Below, we
discuss their impact.

1) Increasing variability and unreliability in existing sil-
icon technologies can be addressed by NOCs in much the
same way general computer networks have, through protocol
layering and gross overdimensioning. Even then, the Asyn-
chronous Transfer Mode (ATM) network, an inspiration for

Æthereal, found guaranteed services hard to achieve. In the
medium term, an asynchronous Æthereal will suffice (note
that only the hardware changes, the design flow not). In
the long run, building real-time systems from heterogeneous,
and worse, unstable components will be hard.

2) Emerging new technologies, in particular optical and
wireless NOCs, and 3D die stacking, open up the SOC and
NOC design space. Optical NOCs and wireless (within pack-
age) communication are interesting additions to, rather than
replacements of, conventional NOCs. Hierarchical and het-
erogeneous NOCs pose challenges for end-to-end performance
guarantees. 3D stacking per se does not necessarily impact
a NOC much beyond the link level. But its effects on the
SOC architecture will reflect back on the NOC requirements,
especially due to new memory hierarchy options.

3) With the claimed emergence of “dark silicon,” i.e. not
all silicon can be used simultaneously, the performance:cost
trade-offs change. It is then effective to over-dimension and
operate at lower frequencies. In theory, multiple parallel,
simpler components work better than fewer complex com-
ponents. A GS NOC fits the bill, except that in the extreme
case, components are not even shared, leading to pure cir-
cuit switching. But it remains to be seen if the abundance of
transistors materialises, and if it also holds for global wires.

4) The cost of designing ASICs and FPGA-based systems
is rising unabatedly. We must ease programming with multi-
ple application-specific programming models with platform
support (note that we advocate software coherency for se-
lected applications), and with divide-and-conquer design ap-
proaches such as composability (virtualisation, including of
performance). For variability run-time support for test, cal-
ibration, and post-silicon debug is required [12].

Acknowledgements Many people contributed to Æthe-
real. We thank them all, especially Jef van Meerbergen.

6. REFERENCES
[1] B. Akesson, et al. Composable resource sharing based on

latency-rate servers. In DSD, 2009.
[2] T. Bjerregaard, et al. Scheduling discipline for latency and

bandwidth guarantees in asynchronous NOC. In ASYNC, 2005.
[3] L. P. Carloni, et al. NOCs in emerging interconnect paradigms:

Advantages and challenges. In NOCS, 2009.
[4] T. Felicijan, et al. Asynchronous TDMA networks on chip.

Technical Note 2004/00801, Philips Research, Jan. 2004.
[5] K. Goossens, et al. Interconnect and memory organization in

SOCs for advanced set-top boxes and TV. In Interconnect
Centric Design for Advanced SoC and NoC. Kluwer, 2004.

[6] A. Hansson, et al. CoMPSoC: A template for composable and
predictable multi-processor system on chips. TODAES, 2009.

[7] A. Hansson, et al. Avoiding message-dependent deadlock in
network-based systems on chip. vlsi Design, May 2007.Hindawi

[8] A. Hansson, et al. aelite: A flit-synchronous network on chip
with composable and predictable services. In DATE, 2009.

[9] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer, 1997.

[10] M. Millberg, et al. Guaranteed bandwidth using looped
containers in temporally disjoint networks within the Nostrum
network on chip. In DATE, 2004.

[11] P. Poplavko, et al. Task-level timing models for guaranteed
performance in multiprocessor NOCs. In CASES, 2003.

[12] B. Vermeulen et al. Debugging distributed-shared-memory
communication at multiple granularities in NOCs. NOCS 2008.

[13] W.-D. Weber, et al. A quality-of-service mechanism for
interconnection networks in system-on-chips. In DATE, 2005.

[14] P. Wielage, et al. Design and DFT of a high-speed area-efficient
embedded asynchronous FIFO. In DATE, 2007.

[15] D. Wiklund, et al. Socbus: switched network on chip for hard
real time embedded systems. In IPDPS, 2003.

[16] H. Zhang. Service disciplines for guaranteed performance
service in packet-switching networks. Proc. IEEE, Oct. 1995.

