
5

Debugging Multi-Core Systems-on-Chip

Bart Vermeulen

Distributed System Architectures Group
Advanced Applications Lab / Central R&D
NXP Semiconductors
Eindhoven, The Netherlands
bart.vermeulen@nxp.com

Kees Goossens

Electronic Systems Group
Electrical Engineering Faculty
Eindhoven University of Technology
Eindhoven, The Netherlands
k.g.w.goossens@tue.nl

CONTENTS

5.1 Introduction . 156

5.2 Why Debugging Is Difficult . 158

5.2.1 Limited Internal Observability 158

5.2.2 Asynchronicity and Consistent Global States 159

5.2.3 Non-Determinism and Multiple Traces 161

5.3 Debugging an SoC . 163

5.3.1 Errors . 164

5.3.2 Example Erroneous System 165

5.3.3 Debug Process . 166

5.4 Debug Methods . 169

5.4.1 Properties . 169

5.4.2 Comparing Existing Debug Methods 171

5.4.2.1 Latch Divergence Analysis 172

5.4.2.2 Deterministic (Re)play 172

5.4.2.3 Use of Abstraction for Debug 173

5.5 CSAR Debug Approach . 174

5.5.1 Communication-Centric Debug 175

155

156 Multi-Core Embedded Systems

5.5.2 Scan-Based Debug . 175

5.5.3 Run/Stop-Based Debug 176

5.5.4 Abstraction-Based Debug 176

5.6 On-Chip Debug Infrastructure 178

5.6.1 Overview . 178

5.6.2 Monitors . 178

5.6.3 Computation-Specific Instrument 180

5.6.4 Protocol-Specific Instrument 181

5.6.5 Event Distribution Interconnect 182

5.6.6 Debug Control Interconnect 183

5.6.7 Debug Data Interconnect 183

5.7 Off-Chip Debug Infrastructure 184

5.7.1 Overview . 184

5.7.2 Abstractions Used by Debugger Software 184

5.7.2.1 Structural Abstraction 184

5.7.2.2 Data Abstraction 187

5.7.2.3 Behavioral Abstraction 188

5.7.2.4 Temporal Abstraction 189

5.8 Debug Example . 190

5.9 Conclusions . 193

Review Questions . 194

Bibliography . 194

5.1 Introduction

Over the past decades the number of transistors that can be integrated on a
single silicon die has continued to grow according to Moore’s law [5]. Higher
customer expectations, with respect to the functionality that is offered by a
single mobile or home appliance, have led to an exponential increase in system
complexity. However, the expected life cycle of these appliances has decreased
significantly as well. These trends put pressure on design teams to reduce
the time from first concept to market release for these products, the so-called
time-to-market .

To quickly design a complex system on chip (SoC), design teams have
therefore adopted intellectual property block re-use methods. Based on cus-
tomer requirements, pre-designed and pre-verified intellectual property (IP)
blocks, or a closely-related set of IP blocks (e.g., a central processing unit
(CPU) with its L1 cache), are integrated on a single silicon die according to
an application domain-specific platform template [15]. Not having to design

Debugging Multi-Core Systems-on-Chip 157

these IP blocks from scratch and leveraging a platform template significantly
reduces the amount of time required to design an system on chip (SoC), and
thereby its time-to-market.

Furthermore, during the design of an SoC a structural, temporal, behav-
ioral and data refinement process is used to effectively tackle its complexity
and efficiently explore its design space within the consumer and technology
constraints. During this process, details are iteratively added to a design im-
plementation until it is ready for fabrication. This process is illustrated in
Figure 5.1, which is adapted from [38].

FIGURE 5.1: Design refinement process. (Adapted from A.C.J. Kienhuis. De-
sign Space Exploration of Stream-based Dataflow Architectures: Methods and
Tools. Ph.D. thesis, Delft University of Technology, 1999.)

The correctness of each refinement step, from one level of design abstrac-
tion to a lower level, has to be verified. Techniques such as formal verification,
simulation, and emulation provide confidence that no errors were introduced
and the resulting design should behave according to its original specification.

The ability to exhaustively verify a design before it is manufactured is
severely restricted by the aforementioned increased system complexity. To
both timely prepare a design and have sufficient confidence for its release to
the market, verification engineers have to make trade-offs between the levels
of design abstraction and the number of use cases to verify at each level. Func-
tional problems may go undetected as it is impossible to cover all use cases at
the level of the physical implementation before manufacturing. Problems may
only manifest themselves after manufacturing test of an SoC, and even worse

158 Multi-Core Embedded Systems

outside of controlled test and verification environments such as automated
test equipment, simulators, and emulators. The root cause of any remaining
problem discovered during the initial functional validation of the silicon chip
has to be found and removed as quickly as possible to ensure that the product
can be sold to the customer on time and for a competitive price. Industry
benchmarks [55] show that this validation and debug process consumes over
50 percent of the total project time while the number of designs that are right
first time is less than 40 percent.

The focus of this chapter is to describe the debugging of a silicon im-
plementation of an SoC, which does not behave as specified in its product
environment. During debugging, we need to find the root cause that explains
the difference in the implementation’s behavior from its specified behavior
during a system run. We use the term “run” to mean a single execution of the
system. For this we propose to use an iterative refinement and reduction pro-
cess to zoom in on the location where and the point in time when an error in
the system first manifests itself. This debug process requires both observation
and control of the system in the environment where it fails.

The remainder of this chapter is organized as follows. Section 5.2 first
provides a more in-depth analysis of the fundamental problems that need to be
solved to debug an SoC. In particular, it is not easy to observe and control the
system to be debugged. Section 5.3 describes how these fundamental problems
affect the ideal debug process, and it subsequently defines the debug process
used in practice. Section 5.4 presents an overview and comparison of existing
debug methods. We introduce our debug method in Section 5.5. Section 5.6
defines the on-chip infrastructure to support our debug method, followed by
the off-chip debug infrastructure in Section 5.7. We apply our method on a
small example in Section 5.8, and conclude with Section 5.9.

5.2 Why Debugging Is Difficult

In this section, we identify three problems that make debugging intrinsically
difficult: (1) limited internal observability, (2) asynchronicity, and (3) non-
determinism.

5.2.1 Limited Internal Observability

One of the biggest problems while debugging a system is the volume of data
that potentially needs to be examined to find the root cause. Worst case: this
volume is equal to the amount of time from start-up of the system to the
first manifestation of incorrect behavior on the device pins multiplied by the
product of the number of electrical signals inside the chip and their operating
frequencies. This data volume is huge for multimillion transistor designs run-

Debugging Multi-Core Systems-on-Chip 159

ning at hundreds of megahertz. Consider for example a 10 million transistor
design running at 100 megahertz. If we sample one signal per transistor per
clock, then this design produces 1015 bits of data per second.

The exponential increase in the number of transistors on a single chip [5]
compared to the (linearly increasing) number of input/output (I/O) pins
makes it impossible to observe all electrical signals inside the chip at every
moment during its execution. If the same design has 1,000 pins, then even if
we could use all these pins to output the data this design produces per second,
we would have to operate these pins at speeds of 1012 bits per second per pin
to output all data, which is clearly beyond current technological capabilities.
Typically the number of device pins available for observation is much less as
the chip still has to function in its environment and a large number of pins
are reserved for power and ground signals.

5.2.2 Asynchronicity and Consistent Global States

In the remainder of this chapter we assume that each IP block in the system
operates on a single clock, i.e., is synchronous. However, the clocks of different
IP blocks can be multi-synchronous or asynchronous with respect to each
other.

Multi-synchronous clocks are derived from a single base clock by using
frequency multipliers and dividers or clock phase shifters. Data transfers be-
tween IP blocks take place on common clock edges, where explicit knowledge
of the clock frequencies and phase relations of the IP blocks is used to correctly
transfer data. Source-synchronous communication that tolerates limited clock
jitter also falls in this category.

In contrast, asynchronous clocks have no fixed phase or frequency rela-
tion. Many embedded systems today use the globally-asynchronous locally-
synchronous (GALS) [47] design style. As a consequence, all modern on-
chip communication protocols use a so-called valid-accept handshake to safely
transfer data between IP blocks, e.g., in the Advanced eXtensible Interface
(AXI) [4] protocol, the Open Core protocol (OCP) [50] and the device trans-
action level (DTL) [54] protocol. As illustrated in Figure 5.2, the initiator
prepares the “data” signals and activates its “valid” signal, thereby indicat-
ing to the target that the data can be safely sampled. The target samples the
data using its own clock and signals the completion of this operation to the
initiator by activating its “accept” signal. This handshake sequence ensures
that the data are correctly communicated from the initiator to the target,
irrespective of their functional clock frequencies and phase. The handshake
sequence is part of the communication function of the IP block, and is usually
implemented with stall states in an internal finite state machine (FSM). For
ease of explanation, we assume the initiator and target stall while transferring
data.

Debug requires the sampling of the system state for subsequent analysis.
The state of an individual IP block can be safely sampled because it is in

160 Multi-Core Embedded Systems

FIGURE 5.2: Safe asynchronous communication using a handshake.

a single clock domain, and an external observer simply has to use the same
clock as used by the IP block. Sampling requires synchronicity to the clock
of the IP block to prevent capturing a signal while it is making a transition.
Proper digital design requires that IP signals are stable around the functional
clock edges for an interval defined by the setup and hold times of the flip-flops
used. The active edges of the functional clock therefore make good sampling
points for external observation.

However, for debugging a system, we may need to inspect the global state,
i.e., the combined local states of all IP blocks in the system. For multiple
IP blocks, their safe sampling points are determined by the greatest common
divisor of their frequencies. Only at these points, a consistent global state can
be sampled, as the state of each IP block can be safely sampled at these
points and the combination of all IP states also reflect the global state at
these points. At all other points in times, it is not guaranteed safe to sample
the state of all IP blocks. One or more local states are therefore unknown
at those points preventing debug analysis. With two multi-synchronous clock
domains, sampling on the slower clock may lead to missing some possible
state transitions in the IP block with the faster clock. Conversely, sampling
the state of the IP block running on the slower clock, with the faster clock is
unsafe as we may sample in the middle of a state transition.

If two IP blocks are asynchronous with respect to each other, then there is
no guarantee that their safe sampling points will ever coincide, and no points
in time at which the global state can be consistently sampled may exist.

Consider as an example two IP blocks A and B. Block A has a clock period
TA of 2 ns, block B has a clock period TB of 3 ns. We define the clock phase
φA−B between these two clocks as the time between the rising edge of clock
A and the rising edge of clock B. If φA−B = 0.5 ns at a certain point in time
t = t0, then there is no point in time where the rising edges of clocks A and
B coincide. For this, Equation 5.1 must hold for integer values of m and n.
However the left-hand side of Equation 5.3 is always even for integer values of
m, while the right-hand side of Equation 5.3 is always odd for integer values
of n. Therefore there are no points in time where the rising clock edges for

Debugging Multi-Core Systems-on-Chip 161

clocks A and B coincide.

TA × m = φA−B + TB × n (5.1)

2 × m = 0.5 + 3 × n (5.2)

4 × m = 1 + 6 × n (5.3)

This is also illustrated in Figure 5.3.

FIGURE 5.3: Lack of consistent global state with multiple, asynchronous
clocks.

In general for a GALS system, it may therefore not be possible to correctly
sample a globally consistent state at all (or even any) points in time at the
clock cycle level. The only points at which the state of multiple IP blocks can
potentially be safely captured is during synchronization operations, in which
the state of both IP blocks has to be functionally defined and therefore has
to be stable. It may therefore be possible to capture a consistent global state
at these functional synchronization points. Synchronisation may however take
place at different levels of abstraction, and require behavioral knowledge of the
design to implement. Examples of using behavioral information to improve the
ability to capture a globally consistent state will be introduced in Section 5.5.

5.2.3 Non-Determinism and Multiple Traces

Clock-domain crossings not only complicate the definition of a globally consis-
tent state, but also cause variation in the exact duration of the communication
between clock domains. When the initiator and target clocks have different
(or even variable) frequencies or phases, then a valid-accept handshake can
take a variable number of initiator and/or target clock cycles due to metasta-
bility [53, 64] (see A in Figure 5.4).

162 Multi-Core Embedded Systems

FIGURE 5.4: Non-determinism in communication between clock domains.

Essentially, in a GALS system it is not possible to safely sample a signal
from another clock domain using a constant number of local clock cycles, due
to metastability [65]. Although statistically it is very likely that the sampled
signal is stable quickly, e.g., after one target clock cycle, it is possible that it
takes (much) longer. This is illustrated in Figure 5.4 with the two handshakes,
labeled B and C, respectively. B takes one initiator clock cycle, and C two
cycles, even though in both cases the target responds within a single target
clock cycle. This behavior occurs between asynchronous IP blocks in an SoC,
but also for communication on the chip pins, for data transfers to and from
the chip environment.

Critically, this local (inter-IP) non-determinism in communication behav-
ior propagates to the system level, where it manifests itself in multiple commu-
nication traces [31, 60]. With the term “trace” we refer to a unique sequence
of observed system states during a run. Figures 5.5a and 5.5b illustrate this
phenomenon.

(a) System under Debug. (b) Transaction ordering and multiple traces.

FIGURE 5.5: Example of system communication via shared memory.

As an example, Figure 5.5a shows two masters, called Producer and Con-
sumer, communicating directly with a shared memory on different ports using

Debugging Multi-Core Systems-on-Chip 163

transactions, each transaction comprising a request and an optional response
message. Examples of transaction requests include read commands with read
addresses, and write commands with write addresses and data. Corresponding
responses are read data and write acknowledgments, respectively. All modern
on-chip communication protocols fit this model [19].

The shared memory in our example only has one execution thread, and
therefore can only accept and execute a single request at a time. We will
further assume for illustration purposes that a read by the Consumer is only
correct if the Producer writes to the shared memory before the Consumer
reads from it. Figure 5.5b shows Master 1 initiates a write request “q11,”
soon followed by a read request from Master 2 “q21.” Master 1’s request
is executed first by the slave, resulting in a response “p11.” Afterwards the
request of Master 2 is executed by the Slave, resulting in a correct response
“p21.” Another sequence with a different, incorrect outcome is however also
possible and is shown with the subsequent requests (“q12” and “q22”). This
time, due to a different non-deterministic delay on the communication path
between the masters and the slave, write request “q21” from the Producer is
executed after read request “q22” from the Consumer. This response “p22”
returned to the Consumer will be incorrect because the Consumer read the
response before the Producer could write it.

Executing transactions in different orders can have an impact on the func-
tional behavior of the IP blocks. For example, consider that Master 1 produces
data in a first-in first-out (FIFO) data structure for Master 2, and signals that
new data is ready by updating a FIFO counter or semaphore in the shared
memory [49]. If Master 2 reads the counter from memory using polling, then
both sequences are functionally correct. However, in the scenario shown on
the right-hand side of Figure 5.5b Master 2 reads the old counter value, and it
would require another polling read to observe the new counter value, resulting
in a delayed data transfer. Whether this is a problem or not depends on the
required data rates. It would definitely be erroneous, however, if the requests
of the masters were write operations with different data to the same address.
In this case, the functional behavior of the system would be non-deterministic,
and possibly incorrect, from this point onward.

5.3 Debugging an SoC

In this section we define errors and explain how the analysis in Section 5.2 of
what makes debugging intrinsically difficult affects the ideal debug process.
We subsequently describe the debug process that has to be used in practice.

164 Multi-Core Embedded Systems

5.3.1 Errors

We assume that the observed global states are consistent in some sense, which
is justified in Section 5.5. As shown in Subsection 5.2.3 multiple runs result in
the same or different traces due to non-determinism. An error is said to have
occurred when a state in a trace is considered incorrect with respect to either
the specification or an (executable) reference model. Such a state is called
an “erroneous state.” Note that we consider errors, i.e., the manifestations of
faults, and we consider the objective of debugging to be to find and remove the
root cause of these errors (i.e., the faults causing them). Fault classifications
and discussions on the relation between faults and errors can be found in
[6, 9, 39, 44].

Error observations can be classified in three orthogonal ways: within a
trace, between traces, and between systems.

• Within a trace. When all states following an erroneous state are er-
roneous states as well, the error is permanent , otherwise the error is
transient . Transient errors may happen, for example, when erroneous
data is overwritten by correct data, before it propagates to other parts
of the system.

• Between traces. An error is constant when it occurs in every run (and
hence in every trace). This is always the case when the system is deter-
ministic as deterministic systems have only a single trace. An error is
intermittent when it occurs in some but not all runs. For a system to
exhibit intermittent errors, it has to be non-deterministic, as discussed
in Section 5.2.3. It therefore produces different traces over multiple runs.

• Between systems. Finally, until now we assumed that the system does
not change between runs. This is not necessarily the case. The debug
observation or control of the system is often intrusive, i.e., it changes the
behavior of the system. This phenomenon is also known as the “probe
effect.” As a result, often the error disappears and/or other errors appear
when monitoring or controlling the system. In these cases, we basically
generate traces for two different systems, so the resulting traces may be
very different and hard to correlate. We call these uncertain errors, after
the uncertainty principle1, as opposed to certain errors.

For simplicity, we will assume in the remainder of this chapter that all
errors are permanent and certain, though they may be intermittent. We use a
small example to see how these differences in error types can manifest them-
selves during debugging of an embedded system.

1Gray [25] introduced “Bohrbugs” and “Heisenbugs.” However, these terms are not used
consistently in the literature, and we will therefore not use them.

Debugging Multi-Core Systems-on-Chip 165

5.3.2 Example Erroneous System

We illustrate constant, certain and intermittent errors by re-using the simple
example system of Figure 5.5a and focus on the states of the individual IP
blocks. The possible system traces are illustrated in Figure 5.6.

FIGURE 5.6: System traces and permanent intermittent errors.

Each circle corresponds to a consistent global state. The text inside the
label indicates from top to bottom the state of Master 1, Master 2, and the
Slave respectively. A shaded state indicates that the error has propagated into
the global system state. Figure 5.6 also shows the largest scope, i.e., when the
consistent global state comprises the local states of both Master 1 and Master 2
and the Slave. “qi” refers to the sending or receiving of a request of Master i,
and “pi” for the corresponding response.

We can now illustrate how intermittent errors occur using Figure 5.6. A
run proceeds along a certain trace, such as the one that is highlighted by the
solid line. In the first state “(q1 q2 -)” both masters generate their request
to the slave memory at the same time. As a result of non-deterministic com-
munication between the masters and the shared slave, our example system
can have multiple execution traces. Figure 5.5b illustrates this by focusing
on the interleaving of transactions. In Figure 5.6 we concentrate on the di-
vergence of the global states and resulting multiple traces instead. As shown
in Figure 5.5b, the memory may accept and execute the request of Master 2
first (with global state “(q1 q2 q2)”), and offer an erroneous response “p2.”
Before this response is accepted by Master 2, the memory accepts and exe-
cutes request “q1,” causing the global state “(q1 q2 q2; q1).” Master 2 then
accepts “p2” (with global state “(q1 q2; p2 q2; q1)”), followed by Master 1’s
acceptance of response “p1.” The global end state is where both masters have
received the response to their request (“(q1; p1 q2; p2 q2; q1)”).

166 Multi-Core Embedded Systems

In an alternative trace the slave executes request “q1” before request “q2.”
Master 1 subsequently receives a correct response “p1,” followed by a correct
response “p2” for master 2. The global end state for this trace is “(q1; p1 q2;
p2 q1; q2),” which differs from the end state of the previous trace by the order
in which the slave handled the incoming requests (“q1” before or after “q2”).

Hence, when executing the system a number of times it can generate dif-
ferent traces. Even with non-intrusive observation (i.e., with certain errors),
the error may only be triggered and consequently visible in a subset of the
traces and is therefore intermittent. Moreover, the error, i.e. the return of the
incorrect response “p2,” can become visible at Master 2 at different points in
time in the different traces. This makes intermittent errors particularly hard
to find [16, 25].

5.3.3 Debug Process

The process of debugging relies on the observation of the system, i.e., its
states, for a certain duration of time, and at discrete points in time. This
observation results in a state trace. The state can be observed at various
levels of abstraction, which determines in how much detail we look at the
system. We can consider for instance only which applications are running,
which transactions are active, which signal transitions occur, or what the
voltage levels are on the physical wires.

At a given level of abstraction, the scope of the observation determines how
much of the system we observe and for how long we observe it. This scope
may be varied between runs. For example, Figures 5.7, 5.8, and 5.6 illustrate
observations with increasing (spatial) scope.

FIGURE 5.7: Scope reduced to include Master 2 only.

Figure 5.7 includes only Master 2 in the scope. We see two distinct end
states as the order in which the requests from Master 1 and Master 2 are
executed by the slave can still cause the response for Master 2 (“p2”) to be
different between runs. Figure 5.8 includes both Master 1 and Master 2 where
both the request execution ordering by the slave and the order of acceptance
of the responses by the individual masters splits the traces in six different
traces. Figure 5.6 provides the most detail by including the state of all master
and slave IP blocks.

Debugging Multi-Core Systems-on-Chip 167

FIGURE 5.8: Scope reduced to include Master 1 and Master 2 only.

The observation and control of the system takes place in the same scope
and at the same abstraction level. The debug process essentially involves it-
eratively either increasing or decreasing the scope and abstraction level of ob-
servation and control until the root cause of the error is found. In the ideal
debug process, we observe only the relevant state to find the root cause for
a particular error and for a minimal duration. This process is shown in Fig-
ure 5.9a.

First, we reduce the scope, i.e., zoom in on the part of the system where
and when the error occurred. Preferably, we “just” walk back in time to when
the error first occurred [43, 63], and observe only the state of the relevant
IP blocks. Then we refine (lower the level of abstraction) to observe those
IP blocks in more detail. For example, we refine the state of an IP block to
look at its implementation at register transfer level (RTL) to logic gates or
from source code to assembler, or we refine communication events to their
individual data handshakes or clock edges. In Figure 5.1 the path from the
highest abstraction level down to the physical implementation level can also
be interpreted as an instance of the debug process, whereby the reduction of
the debug scope takes places within one abstraction level, and the refinement
takes place between abstraction levels.

However, in practice, debugging is more challenging due to the lack of
internal observability and control, the difficulty involved in reproducing errors,
and the problems in deducing their root cause. The effect of these three factors
on the debug process is shown in Figure 5.9b.

1. Lack of observability . We can inspect given traces, but we need to restart
every time we want to observe the trace of a new run. Each trace may
take a long time (hours or even days), to trigger the error, resulting in
a huge data volume to analyse.

168 Multi-Core Embedded Systems

(a) Ideal (b) In practise

FIGURE 5.9: Debug flow charts.

2. Lack of error reproducibility . Non-determinism causes multiple traces
and intermittent errors, as discussed in Section 5.3.2. Finding the first
state that exhibits the error may take a long time because every run of
the system proceeds (non-deterministically) along one of many potential
traces, with possibly very different probabilities. For example, the high-
lighted trace in Figure 5.8 may only be taken in 0.001 percent of the
runs. Consequently the time between two runs that both exhibit the
error may be very long.

3. Deduction of root cause. At some point during the debug process we
arrive at Figure 5.7, where we have a minimal scope that exhibits the
error. To deduce why either a good or bad trace is taken, we need to
either increase the scope and observing the state of more IP blocks or
refine the state of the IP blocks we are already looking at and observe
their state in more detail. We need to intelligently guess that adding the
state of the slave to the observed state is a good idea. A larger observed
state will however usually result in a larger number of possible traces,
as illustrated in Figure 5.6. In subsequent runs, the scope will have to
be reduced to the relevant parts again. The decision when to increase
the scope and when to refine the state is not trivial. Even without non-
determinism, the cause of the error is often not evident when a good to
bad state transition occurs, as we see an effect but cannot automatically

Debugging Multi-Core Systems-on-Chip 169

deduce the cause. We then either increase the information to investigate
by increasing the scope or by refining the state. This is illustrated in
Figure 5.6, where the state of the slave is added. In a subsequent run it
is then possible to observe that executing “q2” before “q1” is the cause
(at this abstraction level) of the error.

With this general debug process in mind, we describe in the following
section various existing debug methods that have been proposed in literature.

5.4 Debug Methods

To simplify or automate the debug process, several methods have been pro-
posed in the literature. They all assume that it is possible to find a consistent
global state. Observing this global state at certain points in time over multiple
runs results in a set of traces. Essentially, the existing debug methods differ in
how often they observe what state while the system is running, and whether
this is intrusive or not. We first define several properties we use to classify
common debug methods.

5.4.1 Properties

We compare different, existing debug methods using three important debug
properties: their use of abstraction techniques, their scope, and their intru-
siveness.

Choosing the right abstraction level helps reduce the volume of data to ob-
serve. This reduces the bandwidth requirements for the observation infrastruc-
ture as well as the demands on the human debugger. We consider four basic
abstractions [45]: (1) structural, (2) temporal, (3) behavioral, and (4) data.

• Structural abstraction determines what part of the system we observe
within one abstraction level (e.g., all IP blocks, or only the masters)
and at what granularity (e.g., subsystem, single IP block, logic gates, or
transistors).

• Temporal abstraction determines what and how often we observe. For
example, traditional trace methods observe the state at every cycle in
an interval, or sample the state periodically. Alternatively, only “inter-
esting” relevant state may be observed at or around relevant communi-
cation or synchronization events. Examples include the abstraction from
clock cycles to handshakes (illustrated by the removal of internal clock
cycles in Figure 5.4), moving to transactions, or to software synchro-
nizations using semaphores and barriers.

170 Multi-Core Embedded Systems

• Behavioral abstraction determines what logical function is executed by
a (hardware) module. For example, in a given use case, a processor may
be programmed to perform a discrete cosine transform (DCT), and a
network on chip (NoC) may be programmed to implement a number
of “virtual wires” or connections. In another use case, they may have
different logical functions.2

• Data abstraction determines how we interpret data. At the lowest level
we observe voltage levels in a hardware module. We abstract from this
voltages first to the bit level and subsequently use knowledge of the
module’s logical function at that moment in time to interpret the values
of these bits. For example, a hardware module that implements a FIFO
contains logical read and write pointers defining the valid data. Only
with this knowledge can we display the collection of bits as a FIFO.
Similarly, a processor’s state can be abstracted to its pipeline regis-
ters [37], a memory content, for example, to a DCT block, and registers
in a NoC to a connection with FIFOs, credit counters, etc.

Existing debug methods also vary in their scope, which was introduced
in the previous section. Scope uses structural and temporal abstraction, but
considers only one abstraction level.

Increased abstraction (and reduced scope) serve to reduce the volume of
data that is observed. The system state can either be observed when the
system is running, called real-time trace, or when it is stopped, called run/stop
debug , or both.

During real-time trace debugging, the data is either stored on-chip in
buffers, streamed off the chip, or both. This is only possible when the vol-
ume of data is not too large and hence may require the use of abstraction
techniques. This trace process may be intrusive or not.

During run/stop debugging, the system is stopped for observation, which
is by definition intrusive. However, in return, it usually allows access to much
more system state because ample time and bandwidth are available for in-
spection, as the system execution has been stopped.

Every debug process relies on the observation of the system, i.e., accessing
its state. Intrusive observation affects the behavior of the system under ob-
servation, and may lead to uncertain errors. Non-intrusive observation does
not affect the behavior of the system (aside from consuming some additional
power), but does require a dedicated and independent debug infrastructure,
making it more expensive to implement on-chip than the infrastructure to
support intrusive observation.

2This is a different slant on behavioral abstraction from [45], where it is defined as partial
specification. In any case, the distinction of behavioral abstraction and temporal and data
abstraction is to some extent arbitrary.

Debugging Multi-Core Systems-on-Chip 171

5.4.2 Comparing Existing Debug Methods

Without making changes to the design of a chip, a debug engineer has the
classic physical and optical debug methods at his disposal, such as wafer
probing [7], time-resolved photo-emission [48] (also known as picosecond imag-
ing circuit analysis (PICA) [34]), laser voltage probing (LVP) [51], emission
microscopy (EMMI) [30], and laser assisted device alteration (LADA) [59].
These physical and optical techniques are non-intrusive, provided that re-
moving the package and preparing the sample cause no behavioral side effects.
They provide observability at the lowest level of abstraction only, i.e., voltage
levels on wires between transistors in real time.

Unfortunately these methods can only access the wires that are close to
the surface. Access to other, deeply embedded transistors and wires is often
blocked by the many metal layers used today to provide the connectivity
inside the chip, and to aid in planarization. Back-side probing techniques help
somewhat to reduce the problems of the increasing number of metal layers.
In nanometer CMOS processes, these methods still suffer from a number of
drawbacks. First, the number of transistors and wires to be probed is too large
without upfront guidance. Moreover, the transistors and wires may be hard
to access because they are very small. Finally, device preparation for each
observation is often slow and expensive.

Hence these methods can only efficiently localize root causes of failures if
the error is first narrowed down to the physical domain (such as crosstalk,
or supply voltage noise). To reach this point, and walk the debug path in
Figure 5.1 all the way down to the level of the physical implementation, we
need to reduce the scope and lower the level of system abstraction.

Logical debug methods have been introduced for this purpose. Logical de-
bug methods use built-in support called design for debug (DfD) to increase
the internal observability and controllability, and act as a precursor to the
physical and optical debug methods by helping to quickly reduce the scope
containing the first manifestation of the root cause.

These logical debug methods reduce the data volume by making a trade-
off between focusing on the real-time behavior of the system and maximizing
the amount of state that can be inspected. Only a small subset of the entire
internal state can be chosen for observation when the real-time behavior of the
system is to be studied due to the aforementioned I/O bandwidth constraints.
Whether this is intrusive or not depends on the infrastructure that is used
to transport and/or store the data. ARM’s CoreSight Trace [2] and FS2’s
PDTrace [46] architectures are examples of non-intrusive, real-time trace.
Sample on the Fly [37] is a real-time trace method used for central processing
units (CPUs) that periodically copies part of the CPU state in dedicated scan
chains that can then be read out non-intrusively. Memory-mapped I/O can
be used to read and write addressable state over the functional/inter-IP inter-
connect while the system is running, for example, with ARM’s debug access
port (DAP) [2], or FS2’s Multi-Core Embedded Debug (MED) system [41].

172 Multi-Core Embedded Systems

This will however be more intrusive than a dedicated observation and control
architecture.

By stopping the system at an interesting point in time, a much larger
volume of data can be inspected. This run/stop-type approach however is
intrusive. The infrastructure used to access the state and its implementation
cost are then the limiting factors. For example, the manufacturing test scan
chains provide a low-cost infrastructure, which can be used to read out the
entire digital state when the system is stopped [71].

The majority of published, logical debug methods do not address the prob-
lems caused by asynchronicity, inconsistency of global states, non-determinism
or multiple traces. However, there are several notable exceptions that we dis-
cuss next: latch divergence analysis, deterministic (re)play, and the use of
abstraction for debug.

5.4.2.1 Latch Divergence Analysis

Latch divergence analysis [13] aims to automatically pinpoint erroneous states.
It does so by running a CPU many times, and recording its state at every clock
cycle. The traces that are obtained from runs with a correct end result are
then compared with each other. The unstable part of each state, called latch
divergence noise, is filtered out. This step yields the stable substate across all
good traces. Similarly, the stable substate across traces with an incorrect end
result is computed. This substate is then compared with the stable substate
of the good traces.

The inference is that the unstable parts are caused by noise, e.g., through
interaction with an analog block or uninitialized memory, and can be safely
filtered out, as they are not caused by the error. An advantage of this method
is that it can be easily automated. However, this method does not distinguish
noise in substates due to intermittent errors, i.e., those that only occur in some
traces, and correct but only partially specified system behavior. Filtering out
the noise caused by the partial specification of the behavior may obscure the
root cause of an error.

5.4.2.2 Deterministic (Re)play

Instant replay [42], and deterministic replay [18, 56] aim to reduce the time
between runs that exhibit an error. When an error is observed, the system is
subsequently placed in “record” mode and restarted. The system is repeat-
edly run until the error is observed again. This step corresponds to the dashed
“record loop” in Figure 5.9b. At this point, the debug process can start by
replaying the same run and observing the recorded trace as highlighted in
Figure 5.7, provided that the recording contains enough information to deter-
ministically replay the trace containing the error. The key idea is that a previ-
ously intermittent error appears in every replayed run (“deterministic trace”
in Figure 5.9b). Deterministic replay requires all sources of non-determinism
to be recorded at the granularity at which they cause divergence in a trace.

Debugging Multi-Core Systems-on-Chip 173

It also requires an additional on-chip infrastructure to force the single trace
that triggers the error once it has been recorded.

Deterministic replay has been used successfully for software systems, where
the non-determinism is limited to the explicit synchronization of threads or
processes. The number of divergence points is relatively small, and the fre-
quency of synchronization is low in these cases [42]. However, for embed-
ded systems with multiple asynchronous clock domains, we have seen in Sec-
tion 5.2.3 that a clock domain crossing between asynchronous clock domains
gives rise to non-determinism. Therefore the delay across this interface needs
to be recorded. Since an SoC easily contains more than a hundred IP ports
connecting asynchronously to an interconnect [22], running at hundreds of
megahertz, the data rate to be recorded quickly reaches gigabits per second.
It is expensive in silicon areas to non-intrusively record this data on-chip and
expensive in device pins to stream it non-intrusively off-chip. However, an
intermediate means of communication, namely source-synchronous embedded
systems, has been successfully used for a limited number of processors [60].

Pervasive debugging [29] has been proposed with the same goal as de-
terministic replay. It proposes to model the entire system in sufficient detail
such that non-deterministic effects become deterministic. This may be pos-
sible for (source)-synchronous systems. However, it is infeasible for systems
that contain asynchronous clock domains, or contain errors relating to phys-
ical properties (e.g., crosstalk, or supply voltage noise) and environmental
effects (ambient temperature, chip I/O, etc.). Relative debugging [1], where
an alternative (usually sequential) version of the system is used as a reference
to check observed states against, suffers from the same limitations.

Finally, synchro-tokens [31] may be interpreted as deterministic play. All
synchronizations of a GALS system are made deterministic in every run (and
not only during debug), from the view of the communicating parties. Hence,
there is a unique global trace (the “deterministic trace” namely the (software)
synchronization points, in Figure 5.9b), and all errors are constant. The main
drawback of this method is that it reduces performance by essentially statically
scheduling the entire system.

5.4.2.3 Use of Abstraction for Debug

System simulations for debug tend to focus on only one or two abstraction
levels at a time. For example, traditional software debug allows observation
and control (e.g., single-stepping) per function, per line in the source code,
and can show the corresponding assembly code. It is difficult to debug multi-
threaded or parallel software programs using conventional software debuggers
because the parallel nature of programs is not supported well. However, spe-
cialized debuggers make the distinction between inter-process communication
and intra-process computation. By abstracting to synchronization events [8]
they allow the user to focus on less but more relevant information.

174 Multi-Core Embedded Systems

Hardware descriptions define parallel hardware, but traditional hardware
simulation does not make a distinction between inter-IP communication (e.g.,
VHSIC (Very High Speed Integrated Circuit) Hardware Description Language
(VHDL) or Verilog signals) and intra-IP computation (e.g., VHDL variables).
Traditional hardware simulation is more limited because it simulates either
the RTL or the gate-level description, and does not show any relation between
them. In recent years, transaction-level modelling and related visualisation
techniques have been introduced to abstract away from the signal level IP
interfaces and allow a user to focus on the transaction attributes instead [61]
or correlate gate level with RTL descriptions [33].

Traditionally, when debugging real hardware that executes software, ei-
ther functional accesses, real-time trace, or state-dump methods are used to
retrieve the system state, as described earlier. Once the state has been col-
lected, it can be interpreted at a higher level, e.g., by re-presenting it at the
gate level or RTL level [68]. Recently, DfD hardware has been added to ob-
serve and control the system at higher levels of abstraction. Examples include
transaction-based debug [24], programmable run-time monitors [11, 73], and
observation based on signatures [72].

Overall, we observe that the existing software debug methods are quite ma-
ture, especially for sequential software, but less so for parallel software. Exist-
ing hardware debug methods are even more limited. Abstraction is currently
only applied in a limited fashion, and then almost exclusively for software
debug.

5.5 CSAR Debug Approach

In this section we define a debug approach called CSAR and discuss its char-
acteristics. Following this, Sections 5.6 and 5.7 describe how this approach is
supported, both on-chip and off-chip. Section 5.8 illustrates how our approach
works for a small example.

The CSAR debug method can be characterized as:

• Centered on Communication

• Using Scan chains

• Based on Abstraction

• Implementing Run/stop control

Each characteristic is described in more detail below.

Debugging Multi-Core Systems-on-Chip 175

5.5.1 Communication-Centric Debug

Figure 5.10a illustrates traditional computation-centric debug, in which the
computation inside IP blocks, especially embedded processors, is observed.
When something of interest happens, this is signaled to the debug controller
that can take action, such as stopping the computation in some or all IP
blocks.

With an increasing number of processors, the communication and synchro-
nization between the IP blocks grow in complexity and become an important
source of errors. To complement mature existing computation-centric proces-
sor debug methods, we focus on debugging the communication between IP
blocks, as shown in Figure 5.10b.

(a) Computation-centric (b) Communication-centric

FIGURE 5.10: Run/stop debug methods.

Older on-chip interconnects, such as the advanced peripheral bus (APB)
and ARM high performance bus (AHB) [3], are single-threaded. This means
that only one transaction is processed by the interconnect at any point in
time. As a result, the interconnect forces a unique trace for all IP blocks at-
tached to these buses even when using a GALS design style. For scalability
and performance reasons, recent interconnects, such as multi-layer AHB and
AXI buses [4], and NoCs [14, 36, 52], are multi-threaded. In other words, they
allow multiple transactions between a master and a slave (pipelining), and
concurrent transactions between different masters and slaves. Moreover, sup-
port for GALS operation where the IP-interconnect interface is asynchronous
is common. Hence no unique trace exists anymore, as we have seen in Sec-
tion 5.2.

The aim of communication-centric debug is to observe and control the
traces that the interconnect, and hence the IP blocks attached to it, follow.
This gives insight in the communication and synchronization between the IP
blocks, and allows (partially) deterministic replay.

5.5.2 Scan-Based Debug

As only a limited amount of trace data can be stored on chip or sent off-chip,
we only allow the user to observe state when the system has been stopped. We

176 Multi-Core Embedded Systems

re-use the scan chains that embedded systems use for manufacturing test to
create access to all state in the flip-flops and memories of the chip via IEEE
Standard 1149.1-2001, Test Access Port (TAP) [71]. This helps minimize the
hardware cost.

5.5.3 Run/Stop-Based Debug

As the state can only be observed via the scan chains when the system has
been stopped, non-intrusive monitoring and run/stop control are used to
stop the system at interesting points in time. This is implemented by non-
intrusively monitoring a subset of the system state, and generating events on
programmable conditions.

Ideally we deterministically follow the erroneous trace. Rather than col-
lecting and storing information for replay (recall Figure 5.9b), we iteratively
guide the system toward the error trace by disallowing particular communi-
cations and thereby forcing execution to continue along a subset of system
traces. This allows the user to iteratively refine the set of system traces to
a unique trace that exhibits an error. This may be interpreted as partially
deterministic replay, or “guided replay,” although errors may become uncer-
tain, as this process is currently intrusive because the guidance of the system
does not occur in real-time, but only after the system has been stopped using
off-chip debugger software.

5.5.4 Abstraction-Based Debug

We use temporal abstraction to reduce the frequency and number of obser-
vations to those that are of interest. In particular, rather than observing a
port between an IP and the interconnect at every clock cycle, we can observe
only those clock cycles where information is transferred, i.e., by abstracting to
handshakes. In Figure 5.4 this would correspond to observing only the commu-
nication behavior at the gray and black clock cycles, and ignoring the internal
behavior at the white clock cycles. Conventional computation-centric debug
can be used to observe the internal behavior of the IP blocks in isolation.

As an example, a DTL transaction request consists of a command and
a number of data words (indicated by the command). Each of these can be
individually abstracted to a handshake, called element . Similarly, a response
consists of a number of data words. A message is a request or a response, and
a transaction is the request together with the (optional) response. Figure 5.11
shows several temporal abstraction levels: clock cycles, handshakes, messages,
transactions, etc. Each time we combine a number of events to a coarser event
that is meaningful and consistent by itself.

We also use structural and behavioral abstraction (refer to the left-hand
side of Figure 5.11). Our debug observability involves retrieving the functional
state (i.e., the bits in registers and memories) from the chip. We re-use the
scan chains (the lowest level in Figure 5.11) that are inserted for manufactur-

Debugging Multi-Core Systems-on-Chip 177

temporal

abstraction

structural, behavioral

& data abstraction

distr. mem, shared mem.

(M S+) (M+ S)

distributed shared mem.

(M+ S+)

transaction instruction

message operation

handshake (element)

clock

use case

application

connection task/thread

distributed

(barrier step)

local step

(single step)
channel function

IP

module

register

bit

scan chain

run time

behavioral &

data abstraction

design time

structural

abstraction

abstraction

level

high

low

FIGURE 5.11: Debug abstractions.

ing test of the chip, when the system has stopped. This provides an intrusive
means to “scan out” all or part of the state from the chip. The resulting
state dump is a sequence of bits that still has to be mapped to registers and
memories in gate-level and RTL descriptions. One level higher are modules,
which correspond to the structural design hierarchy. These abstraction lev-
els only describe structure, i.e., how gates and registers, are (hierarchically)
interconnected.

The next level makes a significant step in abstraction by interpreting struc-
tural modules as functional IP blocks. In other words, we make use of behav-
ioral information that allows us to interpret a set of registers. For example, a
simple IP block, which implements a FIFO contains data registers, and read
and write pointers. Without an abstraction from structure to behavior, they
are all simply registers. At the functional IP level however, we can interpret
the values in the read and write registers and, for example, display only the
valid entries in the data registers.

The higher levels of abstraction, from channel to use case, go one step fur-
ther. They abstract from hardware to software, or from the static design-time
view to the dynamic run-time view, in other words, not from what compo-
nents the system is constructed from, but to how it has been programmed.
Because we focus on communication, we move from structural interconnect
components such as network interfaces (NIs) and routers to logical commu-
nication channels and connections that are used by applications. Processors
execute functions, which are part of threads and tasks, which themselves in
turn are part of the complete application. The application that runs on the

178 Multi-Core Embedded Systems

system depends on the use case. The implementation of these abstractions is
described in Section 5.7.2.

5.6 On-Chip Debug Infrastructure

5.6.1 Overview

Dedicated debug IP modules have to be added to an SoC at design time
to provide the debug functionality described in the previous sections. These
modules include (refer to Figure 5.12):

• Monitors to observe the computation and/or communication and gen-
erate events

• Computation-specific instruments (CSIs) to act on these events and con-
trol the computation inside the IP blocks

• Protocol-specific instruments (PSIs) to act on these events and control
the communication between the IP blocks

• An event distribution interconnect (EDI) to distribute the events
from the monitors to the computation-specific instruments (CSIs) and
protocol-specific instruments (PSIs)

• A debug control interconnect (DCI) to allow the programming of all
debug blocks and querying of their status by off-chip debug equipment
(see Section 5.7)

• A debug data interconnect (DDI) to allow access to the manufacturing-
test scan chains to read out the complete state of the chip

The following subsections describe the functionality of each of these mod-
ules in more detail.

5.6.2 Monitors

Monitors observe the behavior of (part of) a chip while the chip is executing.
They can be programmed to generate one or more events when a particular
point in the overall execution of the system is reached [58], the system com-
pletes an execution step at a certain level of behavioral or temporal abstrac-
tion [24], or an internal system property becomes invalid [17]. These events
can be distributed to subsequently influence either the system execution or
the start or stop of real-time trace.

Monitors can also derive new data from the observed execution data of
a system component by, for example, filtering [12] or compressing the in-
formation into a signature value using a multiple-input signature register

Debugging Multi-Core Systems-on-Chip 179

FIGURE 5.12: Debug hardware architecture.

(MISR) [66, 72]. As we focus on run/stop debugging, this type of monitor
functionality falls outside the scope of this chapter.

Monitors are specialized to observe either the execution behavior of the
computation (i.e., intra-IP) or the communication (i.e., inter-IP).

• Computation monitors can be added to the producers, the consumers,
and the communication processing elements inside the communication
architecture. CPUs traditionally include on-chip debug support [40],
which enables an event to be generated when the program counter (PC)
of the CPU reaches a certain memory address. This ability allows the
event to be generated on reaching a certain function call, a single source
code line, or an assembly instruction. When so required, events can also
be generated at the level of clock cycles [28], by counting the number
of clock cycles since the last CPU reset. For hardware accelerator IP
blocks, custom event logic may be designed [70] that serves the purpose
of partitioning the execution interval of an IP block into regular sections
at possibly multiple levels of temporal abstraction.

• Communication monitors [11, 73] can be added on the interfaces of
the producers, the consumers and the communication architecture, or
within the communication architecture itself (i.e., in a NoC also on the
interfaces between the routers and NIs). They observe the traffic and can
generate events when either a transaction with a specific set of attributes
is observed, and/or when a certain number of specific transactions have
been communicated from a particular producer and/or to a particu-

180 Multi-Core Embedded Systems

lar consumer. As the communication protocols used in different chips
may implement safe communication differently, a communication mon-
itor may utilize a protocol-specific front end (PSFE) to abstract away
these differences and provide the transaction data and attributes to a
generic back end, which processes this data and determines whether the
event condition has occurred. For a bus monitor, the filter criteria typi-
cally include an address range, a reference data value, an associated mask
value, and optionally a transaction ID identifying the source of the trans-
action. A network monitor observes the packetized data stream on a link
between two routers or between a router and a NI. Filter criteria may
include whether the data on the link belongs to a packet header, a packet
body, or the end of a packet, information on the quality of service (QoS)
of the data (best effort (BE) or guaranteed throughput (GT)), whether
a higher-level message has ended, and/or the sequence number of a data
element in a packet.

Upon instantiation, the monitor is connected to a specific communication
link, at which time the appropriate PSFE can be instantiated, based on the
protocol agreed upon between the sender and the receiver [66]. The monitors
are programmed and queried via the Debug Control Interconnect (DCI) (see
Section 5.6.6 for details).

5.6.3 Computation-Specific Instrument

CSIs are instantiated inside or close to an IP block. Their purpose is to stop
the execution of the component at a certain level of behavioral or temporal
granularity when an event arrives. CPUs traditionally support interrupt han-
dling, whereby the CPU’s program flow is redirected to an interrupt vector
look-up table on the arrival of an event. This table contains an entry for each
type of interrupt (event) that can occur together with an address from which
to continue execution. Debug events can be handled by an IP block as if it
is an interrupt. Interrupts on the other hand can also be seen as signals that
indicate the IP block’s progression and can also be monitored.

Most CPUs support stalling the processor pipeline to halt execution in
those cases where data first has to arrive from the communication architecture
before its execution can continue. This stalling mechanism can be implemented
either in the data path of the pipeline or in the control path (i.e. in the
clock signal). In the latter option, special gating logic is added to the clock
generation unit (CGU) [28] that prevents the pipeline from being clocked.
These functional stalling mechanisms can be re-used for run/stop debugging
to halt the execution of the processor at very low additional hardware cost.

Computation-specific Instruments (CSIs) are programmed and queried
through the DCI to perform a specific action, such as starting, stopping, or
single stepping, at a certain granularity (function entry/exit, source code line,

Debugging Multi-Core Systems-on-Chip 181

assembly instruction, clock cycle), when an event is received through the Event
Distribution Interconnect (EDI).

5.6.4 Protocol-Specific Instrument

Section 5.2.2 described how we cannot always stop multiple IP blocks with
asynchronous clocks such that their states are consistent. However, they can
communicate safely with each other at different levels of abstraction, e.g.,
by using a valid-accept handshake as illustrated in Figure 5.2. By using the
functional synchronization mechanisms, we can recover a consistent global
state for debugging [24]. In Figure 5.2 the initiator raises its valid signal to
indicate that the data it wishes to send is valid. The initiator stalls until the
target signals that it consumed the data by raising the accept signal. The
white circles in Figure 5.4 indicate these stall cycles of an IP block.

Essentially, because the internal state of the IP does not change while it is
stalled, it can be safely sampled on any clock. In Figure 5.4 this is illustrated by
the two black clock cycles. If the target does not accept the request handshake
of the initiator then the dashed synchronization will not occur. The initiator
will instead stall, allowing its state to be safely sampled.

We assume that all IP blocks communicate via an interconnect, such as a
NoC [21], as shown in Figure 5.13.

FIGURE 5.13: Example system under debug.

Every IP block will communicate at some point using the interconnect,
possibly after some internal computation. If we control the handshakes be-
tween the IP blocks and the interconnect, it is possible to stall the IP blocks
and the NoC when they offer a request or wait for a response. When all IP
blocks are stalled, their states can be safely sampled, and a consistent global
state is available.

However, note that the states are consistent in the sense that each IP block
is in a stall state, waiting for a request or response. The global state may be
inconsistent at a higher level of abstraction. For example, consider inter-IP
communication based on synchronized tokens in a FIFO [49], described in
Sections 5.2.3 and 5.3.2. Stopping at the level of transactions, many of which
constitute the transfer of a single token, does not guarantee that a token is

182 Multi-Core Embedded Systems

either at the producer or the consumer. It may be partially produced, fully
produced but not yet synchronized, etc. This can only be resolved by lifting
the abstraction level yet again. In general, the Chandy-Lamport’s “snapshot”
algorithm [10] or derivatives thereof can be used to ensure that a collection
of local states is globally consistent. Sarangi et al. [60] demonstrate this for
source-synchronous multiprocessor debugs.

Protocol-specific instruments (PSIs) are instantiated on the communica-
tion interfaces of producers and consumers or inside the communication ar-
chitecture where they control the data communication. A protocol-specific
Instrument (PSI) is protocol-specific because it requires knowledge of the com-
munication protocol to determine when a request or response is in progress,
and when there are pending responses (for pipelined transactions). Based on
this information and its program, a PSI can determine when it should stop
the communication on a link after an event arrives from the EDI.

The communication on a bus is stopped by gating the handshake signals,
thereby preventing the completion of the communication of the request or
response. Communication requests are no longer accepted from the producers
and no longer offered to the consumers. Responses are no longer accepted from
the consumers nor offered to the producers.

Stopping the communication may take place at various levels of granu-
larity, e.g., individual data elements, data messages, or entire transactions.
PSIs are programmed through the DCI to perform a specific action, such
as starting, stopping, or single stepping, at a certain behavioral or temporal
granularity when an event is received through the EDI.

5.6.5 Event Distribution Interconnect

The EDI connects the event sources (the monitors) with the sinks (the CSIs
and PSIs). The EDI acts as a high-speed broadcast mechanism that propagates
events to all event sinks. Ideally, when an event is generated anywhere in
the SoC, all on-going computation and communication execution steps are
stopped as soon as possible, at their specified level of behavioral or temporal
abstraction.

There are several possible ways to distribute a debug event:

1. Packet-level event distribution [62] uses the functional interconnect as
an EDI. Re-using the functional interconnect does increase the demands
on the communication infrastructure as the additional data volume has
to be taken into account. This is undesirable because events are only
generated during debugging and not during normal operation. Perma-
nent bandwidth reservations can be made if the communication archi-
tecture supports this to avoid the “probing” effect the debug data has
on the timing of the functional data. However, permanently reserving
this bandwidth may be expensive.

Debugging Multi-Core Systems-on-Chip 183

2. Cycle-level event distribution [67]. A global, single-cycle event distribu-
tion is not scalable and difficult to implement independently from the
final chip lay-out. In our solution, a network of EDI nodes is used that
follows the NoC topology. The EDI node is parametrized in the number
of neighboring nodes. Each node synchronously broadcasts at the NoC
functional clock speed any events it receives from neighboring monitors
or EDI nodes to the other EDI nodes in its neighborhood. This trans-
port mechanism incurs one clock cycle delay for every hop that needs to
be taken to reach the event sinks.

The latter method is the fastest, is scalable and re-uses the communication
topology. Therefore it forms the basis of our EDI implementation. Event data
travels as fast as or faster than the functional data that caused the event. This
is quick enough to distribute an event to all CSIs and PSIs before the data on
which the monitor triggered leaves the communication architecture. This is a
very important property we can use for debug as it allows us to keep the data
that caused the event within the boundaries of the communication architecture
for a (potentially) infinite amount of time. The actual processing of this data
by the targeted consumer can then be analysed at any required level of detail.
This is achieved by subsequently controlling the delivery operation for this
data at the required debug granularity by programming the PSI and CSI near
the consumer from the debugger software (see Section 5.7).

5.6.6 Debug Control Interconnect

The purpose of the DCI is to allow the functionality of the debug components
to be controlled and their status queried.

The DCI allows run-time access to the on-chip debug infrastructure from
off-chip debug equipment independently and transparently from the functional
operation of the SoC. Examples of debug status information include whether
any of the programmed events inside the monitors have already occurred,
and/or whether the computation or communication inside the system has
been stopped in response.

The state of the monitors, the PSIs and the CSIs becomes observable
and controllable via so-called test point registers (TPRs) that connect to a
IEEE Standard 1149.1-2001, TAP Controller (TAPC) as user-defined data
registers [35]. These TPRs can be accessed and therefore programmed and
queried using one or more user-defined instructions in the TAPC.

5.6.7 Debug Data Interconnect

The purpose of the Debug Data Interconnect (DDI) is to allow the system
state to be observed and controlled after an event has stopped the relevant
computation and communication.

Once the execution of a chip has come to a complete stop, preventing

184 Multi-Core Embedded Systems

debug accesses from disturbing its execution is no longer a concern. The only
concern is storage of the state inside the IP blocks.

We use the manufacturing-test scan chains to implement the DDI, as pro-
posed by [32, 57, 71] and use a standard design flow with commercial, off-the-
shelf (COTS) gate-level synthesis and scan-chain insertion. The IEEE 1149.1-
compliant scan-based manufacturing test and debug infrastructure are made
accessible from the TAP. Using the TAPC, data can be scanned out of the
chip for use by the off-chip debug infrastructure described next.

5.7 Off-Chip Debug Infrastructure

5.7.1 Overview

This section presents the off-chip debug infrastructure and describes the tech-
niques it can use to raise the debug abstraction level above the bit- and clock-
cycle level, as depicted in Figure 5.11. We also present a generic debug appli-
cation programmer’s interface (API), which allows debug controllability and
observability at the behavioral computation and communication level.

Figure 5.14 shows a generic, off-chip debug infrastructure. Our debug-
ger software, called the integrated circuit debug environment (InCiDE) [69],
connects to the debug port of the chip in potentially different user environ-
ments. Figure 5.14 shows a simulation environment, a field-programmable
gate array (FPGA)-based prototyping environment, and a real product envi-
ronment as three examples. The debugger software gains access the on-chip
debug functionality through the debug interface, as described in Section 5.6.
The debugger software allows the user to place (parts of) the SoC in functional
or debug mode, and to inspect or modify the state of functional IP blocks or
debug components.

5.7.2 Abstractions Used by Debugger Software

The InCiDE debugger software is layered and performs structural, data, be-
havioral, and temporal abstractions (refer to Figure 5.11) to provide the user
with a high-level debug interface to the device-under-debug (DUD). Each ab-
straction function is described in more detail in the following subsections.

5.7.2.1 Structural Abstraction

Structural abstraction is achieved by applying the following three consecutive
steps.

1. Target Abstraction

Target-specific drivers are used to connect the debugger software using

Debugging Multi-Core Systems-on-Chip 185

Behavioral abstraction

FIGURE 5.14: Off-chip debug infrastructure with software architecture.

the same software API to different implementation types of the DUD.
Debug targets include simulation, FPGA prototyping, and product en-
vironments. A target driver enables access to the TAPC in its corre-
sponding environment and allows performing capture, shift, and update
operations on user data registers connected to the TAPC. An example
tool control language (TCL) function call may look like Listing 5.1.

Listing 5.1: Writing and reading a user-defined data register.

1 set r e s u l t [tap write read [l i s t 0100 01011]]

which will shift the binary string “01011” (right-bit first) into the user-
defined data register belonging to the TAPC binary instruction opcode
“0100” via the test data input (TDI). The bit-string that is returned
contains the values captured on the test data output (TDO) pin of the
TAP on successive test clock (TCK) cycles during this shift operation.
This layer also provides the tap reset and tap nop n commands to reset
the TAPC and have no operation for n TCK cycles, respectively.

186 Multi-Core Embedded Systems

2. Data Register Access Abstraction

The mechanisms to access the various user-defined data registers con-
nected to the TAPC are not always identical. For example, access to
the debug scan chain requires that other user data registers are pro-
grammed first. As described in Section 5.6, this scan chain is connected
as a user data register to the TAPC. To access it, the circuit first has to
be switched from functional mode to debug scan mode and its functional
clock(s) switched to the clock on the TCK input. In our architecture [71],
a test control block (TCB) is used for this. The TCB is also mapped as a
user-defined data register under the TAPC but can be accessed directly,
i.e. without having to program another user-defined data register first.
To access the debug scan chain, this layer therefore takes care of first
programming the TCB to subsequently enable operations on the debug
scan chain. For instance, the previous access to the debug scan chain is
“wrapped” by this layer into Listing 5.2, while binary instruction op-
codes are also replaced by more understandable instruction names.

Listing 5.2: Abstracting away from TAPC data register access details.

1 set r e s u l t [tap write read [l i s t \
2 PROGRAMTCB <debug mode> \
3 DBG SCAN 01011 \
4 PROGRAMTCB <f un c t i o na l mode> \
5]]
6 set r e s u l t [lindex $ r e s u l t 1]

This layer hides the subtle differences in the exact bit strings that are
needed to enable access to the debug scan chain in different SoCs.

3. Scan-to-Functional Hierarchy Abstraction

This layer replaces the scan-oriented method of accessing flip-flops in
user-defined data registers with a more design(er)-friendly method of
accessing flip-flops and registers using their location in the RTL hier-
archy. A multi-bit RTL variable or signal may be mapped to multiple
flip-flops during synthesis. This layer utilizes this mapping information
from the synthesis step to reconstructs the values of RTL variables and
signals during debug from the values in their constituent flip-flops. In
addition, it groups those signals and variables into hierarchical modules.
A designer using this system can refer to signal and variable names us-
ing their RTL hierarchical identifiers and retrieve and set their values
without needing to know the details about the TAPC, its user-defined
instructions and data registers.

For example, the purpose of the previous access, shown in List-
ing 5.2 may have been to set the value of a five-bit RTL signal
“usoc.unoc.u1router.be queue.wrptr” to 0x0B (“01011”). Using this
layer, this can now be accomplished by executing the code in Listing 5.3.

Debugging Multi-Core Systems-on-Chip 187

Listing 5.3: Setting and querying a register.

1 dcd set usoc .unoc .u1 rout e r .be queue .wrpt r 0x0B
2 dcd synchronise

3 puts [dcd get usoc .unoc .u1 rout e r .be queue .wrpt r HEX]

This layer takes care of mapping the individual bits of the value 0x0B
into the correct bits inside the debug scan chain. The “dcd synchronise”
function is used to send the resulting chain to the chip and retrieve the
previous content of the on-chip chain. The “puts” command prints the
value of the register just retrieved from the chip.

These three structural abstraction steps are design-independent and are
the consequences of our choice to access the state in the design using
manufacturing-test scan chains mapped to the TAPC. They can therefore be
applied to any digital design that utilizes the same on-chip debug architecture
as presented in Section 5.6. They do however require structural information
from various stages in the design and design for test (DfT) process, specif-
ically the mapping information of RTL signals and variables to scannable
flip-flops in the design, the location of these flip-flops in the resulting user-
defined data registers, and specific TAPC instructions to subsequently enable
access to these user-defined data registers. In Figure 5.14 all this information
is stored in the debug chain database, which is automatically generated by
our debugger software InCiDE.

5.7.2.2 Data Abstraction

The second abstraction technique employed by the debugger software is data
abstraction. Based on the design’s topology information, the debugger soft-
ware can represent the state of known building blocks at a higher level than
individual RTL signals or values.

For example, this layer can represent the state of a FIFO as its set
of internal signals, including its memory, its read and its write point-
ers using the structural abstraction layers. If a design instance called
“usoc.unoc.u1router.be queue” is an 8-entry, 32-bit word FIFO, the user could
use the command in Listing 5.4 to display its current state.

Listing 5.4: Querying individual registers of a FIFO.

1 dcd synchronise

2 puts [dcd get usoc .unoc .u1router .be queue .mem HEX]
3 puts [dcd get usoc .unoc .u1 rout e r .be queue .wrpt r HEX]
4 puts [dcd get uso c . uno c . u1 r ou t e r . b e queue . r dp t r HEX]

resulting in output such as

188 Multi-Core Embedded Systems

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0x00000007

0x3

0x5

However, the user can also use the data abstraction layer and use the command
in Listing 5.5

Listing 5.5: Printing the state of a FIFO.

1 pr int f i fo uso c . no c . u1 r ou t e r . b e queue VALID ONLY HEX

to get

| usoc.unoc.u1router.be_queue |

|-----------------------------|

| Nr | DATA |

|----|------------------------|

| 03 | 0x00000003 |

| 04 | 0x00000004 |

Note how the software has interpreted the values of the read and write pointer
to only print the valid entries in the FIFO (“VALID ONLY”). Similar data
abstraction functions have been implemented for the other standardised design
modules, such as the monitors, CSIs, PSIs, routers, NIs and CPUs. In addition,
these abstraction functions can be nested, e.g. the data abstraction function
for the router may call multiple FIFO data functions to display the state of
all its BE queues. The design knowledge required for this is contained in the
“topology” file shown in Figure 5.14, which is automatically generated by the
NoC design flow [20, 26].

5.7.2.3 Behavioral Abstraction

The previous two abstraction techniques focused on providing an abstracted
state view and structural interconnectivity of common IP blocks. Behavioral
abstraction targets the abstraction of the programmable functionality of these
blocks. For example, two IP blocks communicate via two NIs and several
routers. A monitor observes the communication data in Router R3 (refer to
Figure 5.15).

Debugging Multi-Core Systems-on-Chip 189

FIGURE 5.15: Physical and logical interconnectivity.

The exact IP modules that are involved depend not only on the physical
interconnectivity but also on the programming of these IP blocks. For debug-
ging a problem at the task graph level, we are first interested in the logical
connection between these blocks. Only when there appears to be something
physically wrong with this logical connection, do we refine the state view and
look at their physical interconnectivity. A debug user can for instance issue a
command as shown in Listing 5.6.

Listing 5.6: Querying the routers in the NoC.

1 set r ou t e r s [get router [get conn {uc3 i n i t i a t o r 1 ta rg e t2 }]]

This command provides a list of all routers that the logical connection
between Initiator 1 and Target 2 uses in Use Case 3. With the data abstraction
functions from the previous subsection, the user is able to display the states
of these routers at the required level of detail.

Enabling debug at the behavioral level requires knowledge of the active use
case, i.e., the programming of the NoC. This information is contained in the
“configuration” file shown in Figure 5.14, which is automatically generated by
the NoC design flow [20, 27].

5.7.2.4 Temporal Abstraction

A fourth debug abstraction technique is temporal abstraction. Traditionally
debugging takes place at the clock cycle level of the CPU that is debugged.
A disadvantage of this technique is that in a non-deterministic system the
same event is unlikely to occur at the exact same clock cycle in multiple runs.
Therefore temporal abstraction couples the debug execution control to events
that are more meaningful to measure the progress made in the system’s execu-
tion. Examples that are enabled using the hardware described in Section 5.6
include “Run until Initiator 1 or 2 initiates a transaction,” and “Allow Tar-
get 2 to return 5 responses” before stopping the on-chip computation and/or
communication [23].

Temporal abstraction first allows multiple clock cycles to be abstracted to
one or more data element handshakes (refer to Figure 5.11). Protocol infor-

190 Multi-Core Embedded Systems

mation on the handshake signals is used for this. The steps to messages on
channels and to transactions on connections move the temporal abstraction
level to the logical communication level.

The two subsequent temporal abstraction steps in Figure 5.11 are more
complex as they involve the synchronized stepping of multiple communication
channels. For this a basic single step for a communication channel is defined
as all PSIs involved leaving their stopped state and process one communica-
tion request. The TCL command “step $L -n S” performs S single steps in
succession for all PSIs in List L. For multiple channels, all stopped PSIs of
the channels involved will need to process one communication request.

Note that this single step method forces a unique transaction order that
must be known in advance to accurately represent the original use case. Oth-
erwise there can be unwanted dependencies between the channels that are
single-stepped, which potentially can lead to a deadlock. For this reason we
also introduce the barrier stepping method and a corresponding TCL com-
mand extension “step $L -n S -some N ,” where at least N out of all PSIs
in List L must perform a single step [23]. Barrier stepping is equal to single
stepping when N is equal to the size of List L.

5.8 Debug Example

In this section we describe the application of the on-chip and off-chip debug
infrastructure of Sections 5.6 and 5.7 using the example in Figure 5.12 and the
NoC topology shown in Figure 5.15. We run our debugger software InCiDE
with its extended API to perform interactive debugging using a simulated
target. The following listing and output demonstrate the use of the API to
control the communication inside the SoC during debug.

Listing 5.7: Example debug use case.

1 tap reset

2 tap nop 1000
3 set my conn [get conn {uc3 i n i t i a t o r 1 ta rg e t2 }]
4 set my routers [get router $my conn]
5 set my router [lindex $my conn 1]
6 set my mon [get monitor $my router]
7 set mon event $my mon {−fw 2 −value 0x0E40}

Line 1 resets the TAPC and Line 2 provides enough time for the system boot
code [27] to functionally program the NoC. Lines 3 and 4 find the connection
(“$my conn”) between Initiator 1 and Target 2 for the active use case , and
the routers (“$my routers”) involved in the connection between Initiator 1
and Target 2. Note that on Line 5 we select the second router (Router R3)
from the list of routers, and retrieve the monitor connected to it (refer to

Debugging Multi-Core Systems-on-Chip 191

Figure 5.15). This monitor is programmed on Line 7 to generate an event
when the third word in a flit (“-fw 2”) is equal to 0x0E40.

8 set my tpr [get tpr [g e t p s i $my conn M req]]
9 set psi action $my tpr −gran e −cond ed i

10 dcd synchronise tpr
11 tap nop 1000
12 dcd synchronise tpr
13 print tpr $my tpr

Lines 8 and 9 find the TPR of the PSI on the master request side of the
connection between Initiator 1 and Target 2. This PSI TPR is programmed
to stop all communication at the granularity of elements (“-gran e”) when an
event comes in via the EDI (“-cond edi”). Lines 10 and 11 write the resulting
TPR debug program into the chip, and wait 1000 TCK cycles. On Line 12
the chip content is read back and on Line 13 the content of the PSI TPR is
printed. This results in the following output.

--

| {initiator1 pi} -> {core4 pt} |

|--|

|Ch. Type | St.En. | St. Gran. | St. Cond. | St.St. | Left |

|---------|--------|-----------|-----------|--------|------|

| Req | Yes | Element | EDI | Yes | Yes |

| Resp | No | Message | EDI | No | No |

--

This table confirms that between Initiator 1 and its network interface
(“core4”), the PSI was programmed to stop the communication on the re-
quest channel at the element level when an event comes in from the EDI. The
PSI has entered the stop state (“St.St.”) on the request channel.

14 continue $my tpr
15 dcd synchronise tpr
16 print tpr $my tpr

Line 14 continues the communication on the request channel, while Lines 15
and 16 query the TPR state, resulting in the following output.

--

| {initiator1 pi} -> {core4 pt} |

|--|

|Ch. Type | St.En. | St. Gran. | St. Cond. | St.St. | Left |

|---------|--------|-----------|-----------|--------|------|

| Req | Yes | Element | EDI | No | Yes |

| Resp | No | Message | EDI | No | No |

--

We observe that the PSI has left the stop state and is currently running,
waiting for another event from the EDI. We now retrieve all PSI TPRs on a
master request side. We program these to stop at the element level when an

192 Multi-Core Embedded Systems

event comes in via the EDI. We subsequently generate an event on the EDI
via the TAP using the “stop” command.

17 set my tpr a l l [get tpr [g e t p s i ∗ M req]]
18 set psi action $my tpr a l l −gran e −cond ed i
19 stop

Once all transactions have stopped, we perform barrier stepping. We request
that three execution steps are taken (at the granularity of data elements) by
at least two PSIs (“-some 2”) with verbose output (“-v”).

20 step $my tpr a l l −n 3 −some 2 −v

This results in the following output.

- INFO: Checking if all Elements have stopped.....

- INFO: All Elements have stopped.

- INFO: Stepping starts.

- INFO: step 1 finished.

- INFO: step 2 finished.

- INFO: step 3 finished.

- INFO: All Elements are stopped.

The printed INFO lines show our barrier stepping algorithm at work. It first
checks whether all selected PSIs (“$my tpr all”) have entered their stopped
state. If so, the software continues all PSIs. It subsequently polls whether at
least two have since left and returned to their stopped state. When this has
happened, the software will issue continue commands for those PSIs only and
initiating the second step. This continues until for a third time, at least two
PSIs have exited and re-entered their stopped state. Once barrier stepping is
completed, we can read the content of the chip and print the content of the
router.

21 dcd synchronise

22 print router $my router HEX

This results for example in the following output.

| BE queue of R3_p1 |

|--------------------|

| Q.Nr | DATA |

|------|-------------|

| 18 | 0x200000123 |

| 19 | 0x300000124 |

- INFO: No valid data in GT queue of R3_p1.

In addition, we can print the state of the network interface.

23 print ni [get ni conn $my conn M req] HEX

Debugging Multi-Core Systems-on-Chip 193

This results in the following output.

| INPUT queue of NI000_p2 |

|-------------------------|

| Q.Nr | DATA |

|------|------------------|

| 21 | 0x08000004 |

| 22 | 0x00000108 |

| 23 | 0x00000109 |

| 24 | 0x0000010A |

| 25 | 0x0000010B |

- INFO: No valid data in OUTPUT queue of NI000_p2.

5.9 Conclusions

In this chapter, we introduced three fundamental reasons why debugging a
multi-processor SoC is intrinsically difficult; (1) limited internal observability,
(2) asynchronicity, and (3) non-determinism. The observation of the root cause
of an error is limited by the available amount of bandwidth to off-chip analysis
equipment. Capturing a globally consistent state in a GALS system may not
be possible at the level of individual clock cycles. In addition, an error may
manifest itself in some runs of the system but not in others.

We classified existing debug methods by the information (scope), the detail
(data abstraction), and the information frequency (temporal abstraction) they
provide about the system. Debug methods are either intrusive or not. We sub-
sequently introduced our communication-centric, scan-based, run/stop-based,
and abstraction-based debug method, and described in detail the required
on-chip and off-chip infrastructure that allows users of our debug system to
debug an SoC at several number of levels of abstraction. We also illustrated
our debug approach using a simple example system.

The analysis and methods presented in this chapter are only the first steps
toward addressing the problem of debugging an SoC using a scientific ap-
proach. The use of on-chip DfD components, and debug abstraction techniques
implemented in off-chip debugger software are ingredients for an overall SoC
debug system. This system should link hardware debug to software debug, for
SoCs with distributed computation, and using deterministic or guided replay.

A significant amount of research still needs to be carried out to reach this
goal. This includes, for example, understanding and determining what parts
of a system need to be monitored, and what parts must be controlled during
debug and in what manner. More generally, pre-silicon verification and post-
silicon debug methods and tools need to be brought together for seamless
verification and debug throughout the SoC design process, and to prevent
gaps in the verification coverage, and duplication of debug functionality.

194 Multi-Core Embedded Systems

Review Questions

[Q 1] Explain why the internal observability is limited in modern embedded
systems.

[Q 2] Using multiple, asynchronous clock domains complicates debugging
more than a single clock domain. Explore why designers utilize mul-
tiple, asynchronous clock domains when this is the case.

[Q 3] Describe the effect multiple, asynchronous clock domains have on the
observation of a consistent global state.

[Q 4] What is the difference between a system run and a system trace?

[Q 5] Which three orthogonal classes of error observation for embedded sys-
tems have been explained in this chapter, and what types of errors occur
in each class?

[Q 6] Describe how a single, unmodified system can produce multiple traces.

[Q 7] Describe the steps of the ideal debug flow.

[Q 8] List the four abstraction techniques presented in this chapter, and ex-
plain their role in the debug process.

[Q 9] Name three optical or physical debug techniques.

[Q 10] Explain the differences between, on the one hand, optical and physical
debug techniques, and on the other hand, logical debug techniques.

[Q 11] What is deterministic replay and what are its requirements?

[Q 12] Name the four key characteristics of the CSAR debug approach.

[Q 13] List the required on-chip functionality to support the CSAR debug
approach

[Q 14] Describe the functionality of the off-chip debug software in relation to
the four abstraction techniques described in this chapter.

Bibliography

[1] D.A. Abramson and R. Sosic. Relative Debugging Using Multiple Pro-
gram Versions. In Int’l Symposium on Languages for Intensional Pro-
gramming, 1995.

[2] ARM. CoreSight: V1.0 Architecture Specification.

Debugging Multi-Core Systems-on-Chip 195

[3] ARM. AMBA Specification. Rev. 2.0, 1999.

[4] ARM. AMBA AXI Protocol Specification, June 2003.

[5] Semiconductor Industry Association. The International Technology
Roadmap for Semiconductors. 2008.

[6] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. In Build-
ing the Information Society, ed. René Jacquart. Dependability And Its
Threats: A Taxonomy, pages 91–120. Kluwer, 2004.

[7] C. Beddoe-Stephens. Semiconductor Wafer Probing. Test and Measure-
ment World, pages 33–35, November 1982.

[8] Michael Bedy, Steve Carr, Xianlong Huang, and Ching-Kuang Shene. A
Visualization System for Multithreaded Programming. SIGCSE Bulletin,
32(1):1–5, 2000.

[9] British Standards Institute. British Standard BS 5760 on Reliability of
Systems, Equipment and Components.

[10] K. Mani Chandy and Leslie Lamport. Distributed Snapshots: Deter-
mining Global States of Distributed Systems. ACM Transactions on
Computer Systems, 3(1):63–75, 1985.

[11] Călin Ciordaş, Kees Goossens, Twan Basten, Andrei Rădulescu, and An-
dre Boon. Transaction Monitoring in Networks on Chip: The On-Chip
Run-Time Perspective. In Proc. Symposium on Industrial Embedded Sys-
tems (IES), pages 1–10, Antibes, France, October 2006. IEEE.

[12] Călin Ciordaş, Andreas Hansson, Kees Goossens, and Twan Basten. A
Monitoring-aware Network-On-Chip Design Flow. Journal of Systems
Architecture, 54(3-4):397–410, March 2008.

[13] P. Dahlgren, P. Dickinson, and I. Parulkar. Latch Divergency in Micro-
processor Failure Analysis. In Proc. IEEE Int’l Test Conference (ITC),
pages 755–763, September/October 2003.

[14] Giovanni De Micheli and Luca Benini, editors. Networks on Chips: Tech-
nology and Tools. The Morgan Kaufmann Series in Systems on Silicon.
Morgan Kaufmann, July 2006.

[15] Santanu Dutta, Rune Jensen, and Alf Rieckmann. Viper: A Multipro-
cessor SOC for Advanced Set-Top Box and Digital TV Systems. IEEE
Design and Test of Computers, pages 21–31, September/October 2001.

[16] Marc Eisenstadt. My Hairiest Bug War Stories. Communications of the
ACM, 40(4):30–37, April 1997.

196 Multi-Core Embedded Systems

[17] Jeroen Geuzebroek and Bart Vermeulen. Integration of Hardware Asser-
tions in Systems-on-Chip. In Proc. IEEE Int’l Test Conference (ITC),
2008.

[18] Holger Giese and Stefan Henkler. Architecture-Driven Platform Indepen-
dent Deterministic Replay for Distributed Hard Real-Time Systems. In
Proc. ISSTA Workshop on the Role Of Software Architecture for Testing
and Analysis, pages 28–39, 2006.

[19] Kees Goossens, Martijn Bennebroek, Jae Young Hur, and Muham-
mad Aqeel Wahlah. Hardwired Networks on Chip in FPGAs to Unify
Data and Configuration Interconnects. In Proc. Int’l Symposium on Net-
works on Chip (NOCS), pages 45–54. IEEE Computer Society, April
2008.

[20] Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago
González Pestana, Andrei Rădulescu, and Edwin Rijpkema. A Design
Flow for Application-Specific Networks on Chip with Guaranteed Perfor-
mance to Accelerate SOC Design and Verification. In Proc. Design, Au-
tomation and Test in Europe Conference and Exhibition (DATE), pages
1182–1187, Washington, DC, USA, March 2005. IEEE Computer Society.

[21] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthereal
Network on Chip: Concepts, Architectures, and Implementations. IEEE
Design and Test of Computers, 22(5):414–421, Sept-Oct 2005.

[22] Kees Goossens, Om Prakash Gangwal, Jens Röver, and A. P. Niranjan.
Interconnect and Memory Organization in SOCs for Advanced Set-Top
Boxes and TV — Evolution, Analysis, and Trends. In Jari Nurmi, Hannu
Tenhunen, Jouni Isoaho, and Axel Jantsch, editors, Interconnect-Centric
Design for Advanced SoC and NoC, chapter 15, pages 399–423. Kluwer,
2004.

[23] Kees Goossens, Bart Vermeulen, and Ashkan Beyranvand Nejad. A
High-Level Debug Environment for Communication-Centric Debug. In
Proc. Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2009.

[24] Kees Goossens, Bart Vermeulen, Remco van Steeden, and Martijn Ben-
nebroek. Transaction-Based Communication-Centric Debug. In Proc.
Int’l Symposium on Networks on Chip (NOCS), pages 95–106, Washing-
ton, DC, USA, May 2007. IEEE Computer Society.

[25] Jim Gray. Why Do Computers Stop and What Can Be Done about It?
In Proc. Symposium on Reliablity in Distributed Software and Database
Systems, 1986.

[26] Andreas Hansson. A Composable and Predictable On-Chip Interconnect.
PhD thesis, Eindhoven University of Technology, June 2009.

Debugging Multi-Core Systems-on-Chip 197

[27] Andreas Hansson and Kees Goossens. Trade-offs in the Configuration of
a Network on Chip for Multiple Use-Cases. In Proc. Int’l Symposium on
Networks on Chip (NOCS), pages 233–242, Washington, DC, USA, May
2007. IEEE Computer Society.

[28] H. Hao and K. Bhabuthmal. Clock Controller Design in SuperSPARC II
Microprocessor. In Proc. Int’l Conference on Computer Design (ICCD),
pages 124–129, Austin, TX, USA, October 2–4, 1995.

[29] Timothy L. Harris. Dependable Software Needs Pervasive Debugging. In
Proc. Workshop on ACM SIGOPS, pages 38–43, New York, NY, USA,
2002. ACM.

[30] C.F. Hawkins, J.M. Soden, E.I. Cole Jr., and E.S. Snyder. The Use of
Light Emission in Failure Analysis of CMOS ICs. In Proc. Int’l Sympo-
sium for Testing and Failure Analysis (ISTFA), 1990.

[31] Matthew W. Heath, Wayne P. Burleson, and Ian G. Harris. Synchro-
tokens: A Deterministic GALS Methodology for Chip-level Debug and
Test. IEEE Transactions on Computers, 54(12):1532–1546, December
2005.

[32] Kalon Holdbrook, Sunil Joshi, Samir Mitra, Joe Petolino, Renu Raman,
and Michelle Wong. microSPARC: A Case Study of Scan-Based Debug.
In Proc. IEEE Int’l Test Conference (ITC), pages 70–75, 1994.

[33] Yu-Chin Hsu, Furshing Tsai, Wells Jong, and Ying-Tsai Chang. Visibility
Enhancement for Silicon Debug. In Proc. Design Automation Conference
(DAC), 2006.

[34] William Huott, Moyra McManus, Daniel Knebel, Steven Steen, Dennis
Manzer, Pia Sanda, Steven Wilson, Yuen Chan, Antonio Pelella, and
Stanislav Polonsky. The Attack of the ”Holey Shmoos”: A Case Study
of Advanced DFD and Picosecond Imaging Circuit Analysis (PICA). In
Proc. IEEE Int’l Test Conference (ITC), page 883, Washington, DC,
USA, 1999. IEEE Computer Society.

[35] IEEE. IEEE Standard Test Access Port and Boundary-Scan Architecture.
IEEE Computer Society, 2001.

[36] Axel Jantsch and Hannu Tenhunen, editors. Networks on Chip. Kluwer,
2003.

[37] D.D. Josephson, S. Poehhnan, and V. Govan. Debug Methodology for
the McKinley Processor. In Proc. IEEE Int’l Test Conference (ITC),
pages 665–670, Oct 2004.

[38] A.C.J. Kienhuis. Design Space Exploration of Stream-based Dataflow
Architectures: Methods and Tools. PhD thesis, Delft University of Tech-
nology, 1999.

198 Multi-Core Embedded Systems

[39] Herman Kopetz. The Fault Hypothesis for the Time-Triggered Archi-
tecture, In Building the Information Society, ed. René Jacquart, pages
221–234. Kluwer, 2004.

[40] Norbert Laengrich. Adapting Hardware-assisted Debug to Embedded
Linux and Other Modern OS Environments. PC/104 Embedded Solutions
Journal of Small Embedded Form Factors, 2006.

[41] Rick Leatherman and Neal Stollon. An Embedded Debugging Architec-
ture for SoCs. IEEE Potentials, 24(1):12–16, Feb-Mar 2005.

[42] Thomas J. Leblanc and John M. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE Transactions on Computers, C-
36(4):471–482, April 1987.

[43] Bill Lewis. Debugging Backwards in Time. In International Workshop
on Automated Debugging, October 2003.

[44] Michael R. Lyu, editor. Handbook of Software Reliability and System
Reliability. McGraw-Hill, Inc., Hightstown, NJ, USA, 1996.

[45] Thomas Frederick Melham. Formalising Abstraction Mechanisms for
Hardware Verification in Higher Order Logic. PhD thesis, University of
Cambridge, August 1990. Also available as Technical Report UCAM-CL-
TR-201.

[46] MIPS Technologies. PDTrace Interface Specification., 2002.

[47] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner. Practical
Design of Globally-Asynchronous Locally-Synchronous Systems. In Proc.
Int’l Symposium on Asynchronous Circuits and Systems (ASYNC), April
2000.

[48] N. Nataraj, T. Lundquist, and Ketan Shah. Fault Localization Using
Time Resolved Photon Emission and Still Waveforms. In Proc. IEEE
Int’l Test Conference (ITC), volume 1, pages 254–263, September 30–
October 2, 2003.

[49] André Nieuwland, Jeffrey Kang, Om Prakash Gangwal, Ramanathan
Sethuraman, Natalino Busá, Kees Goossens, Rafael Peset Llopis, and
Paul Lippens. C-HEAP: A Heterogeneous Multi-processor Architecture
Template and Scalable and Flexible Protocol for the Design of Embedded
Signal Processing Systems. ACM Tansactions on Design Automation for
Embedded Systems, 7(3):233–270, 2002.

[50] OCP International Partnership. Open Core Protocol Specification, 2001.

[51] M. Paniccia, T. Eiles, V. R. M. Rao, and Wai Mun Yee. Novel Op-
tical Probing Technique for Flip Chip Packaged Microprocessors. In
Proc. IEEE Int’l Test Conference (ITC), pages 740–747, Washington,
DC, USA, October 1998.

Debugging Multi-Core Systems-on-Chip 199

[52] Sudeep Pasricha and Nikil Dutt. On-Chip Communication Architectures.
Morgan Kaufmann, 2008.

[53] Stephen E. Paynter, Neil Henderson, and James M. Armstrong. Metasta-
bility in Asynchronous Wait-Free Protocols. IEEE Trans. Comput.,
55(3):292–303, 2006.

[54] Philips Semiconductors. Device Transaction Level (DTL) Protocol Spec-
ification. Version 2.2, July 2002.

[55] Bill Roberts. The Verities of Verification. Electronic Business, January
2003.

[56] Michiel Ronsse and Koen de Bosschere. RecPlay: A Fully Integrated
Practical Record/Replay System. In ACM Transactions on Compuer
Systems, volume 17, pages 133–152, May 1999.

[57] G.J. Rootselaar and B. Vermeulen. Silicon Debug: Scan Chains Alone Are
Not Enough. In Proc. IEEE Int’l Test Conference (ITC), pages 892–902,
Atlantic City, NJ, USA, September 1999.

[58] G.J. van Rootselaar, F. Bouwman, E.J. Marinissen, and M. Verstraelen.
Debugging of Systems on a Chip: Embedded Triggers. In Proc. Workshop
on High-Level Design Validation and Test (HLDVT), 1997.

[59] J. A. Rowlette and T. M. Eiles. Critical Timing Analysis in Microproces-
sors Using Near-IR Laser Assisted Device Alteration (LADA). In Proc.
IEEE Int’l Test Conference (ITC), volume 1, pages 264–273, September
30–October 2, 2003.

[60] Smruti R. Sarangi, Brian Greskamp, and Josep Torrellas. CADRE: Cycle-
Accurate Deterministic Replay for Hardware Debugging. In Proc. IEEE
Int’l Conference on Dependable Systems and Networks, pages 301–312,
Washington, DC, USA, 2006. IEEE Computer Society.

[61] B. Tabbara and K. Hashmi. Transaction-Level Modelling and Debug of
SoCs. In Proc. IP SOC Conference, 2004.

[62] Shan Tang and Qiang Xu. In-band Cross-trigger Event Transmission
for Transaction-based Debug. In Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE), pages 414–419, New York,
NY, USA, 2008. ACM.

[63] Radu Teodorescu and Josep Torrellas. Empowering Software Debugging
Through Architectural Support for Program Rollback. In Workshop on
the Evaluation of Software Defect Detection Tools, 2005.

[64] Stephen H. Unger. Hazards, Critical Races, and Metastability. IEEE
Trans. Comput., 44(6):754–768, 1995.

200 Multi-Core Embedded Systems

[65] H. J. M. Veendrick. The Behaviour of Flip-flops Used as Synchroniz-
ers and Prediction of Their Failure Rate. IEEE Journal of Solid-State
Circuits, 15(2):169–176, April 1980.

[66] Bart Vermeulen and Kees Goossens. A Network-on-Chip Monitoring
Infrastructure for Communication-centric Debug of Embedded Multi-
Processor SoCs. In Proc. Int’l Symposium on VLSI Design, Automation
and Test (VLSI-DAT), 2009.

[67] Bart Vermeulen, Kees Goossens, and Siddharth Umrani. Debugging
Distributed-Shared-Memory Communication at Multiple Granularities
in Networks on Chip. In Proc. Int’l Symposium on Networks on Chip
(NOCS), pages 3–12. IEEE Computer Society, April 2008.

[68] Bart Vermeulen, Yu-Chin Hsu, and Robert Ruiz. Silicon Debug. Test
and Measurement World, pages 41–45, October 2006.

[69] Bart Vermeulen and Gert Jan van Rootselaar. Silicon Debug of a Co-
processor Array for Video Applications. In Proc. Workshop on High-Level
Design Validation and Test (HLDVT), pages 47–52, Los Alamitos, CA,
USA, 2000. IEEE Computer Society.

[70] Bart Vermeulen, Mohammad Z. Urfianto, and Sandeep K. Goel. Auto-
matic Generation of Breakpoint Hardware for Silicon Debug. In Proc.
Design Automation Conference (DAC), pages 514–517, New York, NY,
USA, 2004. ACM.

[71] Bart Vermeulen, Tom Waayers, and Sandeep K. Goel. Core-based Scan
Architecture for Silicon Debug. In Proc. IEEE Int’l Test Conference
(ITC), pages 638–647, Baltimore, MD, USA, October 2002.

[72] Joon-Sung Yang and N.A. Touba. Enhancing Silicon Debug via Periodic
Monitoring. In Proc. Int’l Symposium on Defect and Fault Tolerance of
VLSI Systems, pages 125–133, October 2008.

[73] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas.
iWatcher: Efficient Architectural Support for Software Debugging. In
Proc. Int’l Symposium on Computer Architecture, 2004.

	5. Debugging Multi-Core Systems-on-Chip
	5.1 Introduction
	5.2 Why Debugging Is Difficult
	5.2.1 Limited Internal Observability
	5.2.2 Asynchronicity and Consistent Global States
	5.2.3 Non-Determinism and Multiple Traces

	5.3 Debugging an SoC
	5.3.1 Errors
	5.3.2 Example Erroneous System
	5.3.3 Debug Process

	5.4 Debug Methods
	5.4.1 Properties
	5.4.2 Comparing Existing Debug Methods

	5.5 CSAR Debug Approach
	5.5.1 Communication-Centric Debug
	5.5.2 Scan-Based Debug
	5.5.3 Run/Stop-Based Debug
	5.5.4 Abstraction-Based Debug

	5.6 On-Chip Debug Infrastructure
	5.6.1 Overview
	5.6.2 Monitors
	5.6.3 Computation-Specific Instrument
	5.6.4 Protocol-Specific Instrument
	5.6.5 Event Distribution Interconnect
	5.6.6 Debug Control Interconnect
	5.6.7 Debug Data Interconnect

	5.7 Off-Chip Debug Infrastructure
	5.7.1 Overview
	5.7.2 Abstractions Used by Debugger Software

	5.8 Debug Example
	5.9 Conclusions
	Review Questions
	Bibliography

