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Abstract. Processor virtualization divides a physical processor’s time
among a set of virtual machines, enabling efficient hardware utilization,
application security and allowing co-existence of different operating sys-
tems on the same processor. Though initially intended for the server do-
main, virtualization gains popularity also in embedded systems, where it
is mainly meant to isolate real-time from best effort applications, as they
require different types of schedulers and performance guarantees. More-
over, for design productivity and cost reasons, one would like to indepen-
dently design, test, and verify applications, then easily integrate them on
a shared hardware platform. For best effort, this requires composable ca-
pacity, i.e. an application’s number of processor cycles is independent of
other applications. In real-time, performance prediction and guarantees
preservation is crucial, thus the timing of an application’s cycles should
also be independent, i.e. composable performance/timing. Virtualization
is a good first step towards these, however existing approaches do not
ensure timing composability. In this paper we propose a processor vir-
tualization scheme with: (1) composable timing and capacity, and (2)
different task schedulers per application. This scheme is based on: (1)
a budget-based scheduler for composable capacity, plus (2) the ability
to program application switching at fixed points in time, for compos-
able timing. We implemented this scheme on an FPGA multiprocessor
running a synthetic application and experiments show composability.

1 Introduction

Virtualization is a generic technique that logically divides (in time or in space)
a physical resource in fractions, creating the illusion of multiple, virtual, re-
sources [1-3]. For a clean separation of concerns and high portability, this par-
titioning should be user transparent, i.e. each user application utilizes a virtual
resource, as if it would be a physical one. Virtualization can be applied at various
levels of abstraction and resources. Most servers employ Operating System (OS)
virtualization that allows running multiple OSes simultaneously on a computer
(or cluster of communicating computers). OS virtualization requires the parti-
tioning of all physical resources (e.g. processors, memories, interrupts) achieving:
efficient resource utilization, user transparent load balancing, security, flexibility.



In embedded systems the accent is on low cost, low overhead, low power, mak-
ing OS virtualization less common. However, embedded systems become more
complex, and comprise functionality with various timing constraints, i.e. firm-,
soft- real time (RT), and non real time (best effort, BE) applications run con-
comitantly on a platform. The tasks of these applications are scheduled using
various algorithms, depending on their timing constraints (e.g. TDM or priority
based for real-time, and Round Robin for best effort). Scheduling a real-time
application using Round Robin, for example, might lead to disastrous timing
violations, thus some incipient form of low cost OS virtualization is required to
be able to safely execute an application mix.

Composability [4—6] increases system reliability and decreases the cost in-
volved in platform integration and verification, enabling a divide-and-conquer
design approach. On a composable platform the functional and temporal be-
haviour of an application is independent of other applications, thus they can be
designed, tested and verified in isolation, and then easily integrated.

To verify and integrate best effort applications, the only requirement is that
their functionality is independent. However, if an application crashes or attempts
to monopolize resources, other applications’ functionality (both in case of BE
and RT) and timing (in case of RT) should be undisturbed (system reliability).
Thus a BE application should have a constant fraction of the total number of
cycles on a processor (capacity virtualization), irrespective of other applications,
i.e. composable capacity on each resource.

Real-time applications have strong timing (i.e. response time) constraints and
have to be predictable. In RT the maximum duration from the moment an input
stimuli is presented to the system (application enabled) till the system outputs
its response (application finish) should be bounded by design, and should never
be exceeded during execution. An application’s response time is given by the its
number of processor cycles, and their distribution in time [16,17] (i.e. the appli-
cation budget, and the precise moments in time when this budget is granted). If
one of these fluctuates due to the behavior, presence or absence of other applica-
tions, the response time varies unpredictably. Thus, in RT, the platform has to
ensure that not only an application’s number of processor cycles, but also their
timing is independent of other applications, i.e. composable timing (timing vir-
tualization). Timing virtualization requires capacity virtualization plus a fixed
distribution in time for the application’s allocated capacity. Note that compos-
ability (applications non-interference) is orthogonal to predictability (the ability
to estimate at design-time a bound of the worst case timing of an application).
Predicting application’s timing requires predictable hardware and a predictable
intra-application scheduler, and composable timing preserves the design-time
bounds during execution, by eliminating the interference at shared resources.

The contribution of this paper is a processor virtualization technique that
(1) offers composable timing among streaming applications consisting of commu-
nicating tasks, and (2) allows each application to have its own task scheduler.
To achieve composability at cycle resolution, virtualization is assumed for all
other shared platform resources, e.g. NoC [7,8], memory controllers [9], etc. We
ensure processor composable capacity by assigning fixed cycle budgets to appli-
cations, via a preemptable budget scheduler for applications (i.e. Time Division
Multiplex (TDM)). Furthermore, for composable timing we enforce that these



budgets are equidistantly scheduled via a mechanism able to delay an action
(the application swap-in moment) until a fixed, future point in time. We de-
note timing composability shortly, as composability. Last but not least, inside
an application we allow different task schedulers (e.g. real-time TDM, or best
effort Round Robin, etc.). The only requirement is that these schedulers have to
execute in a finite, known time.

We implement these mechanisms on a multiprocessor platform on FPGA. Ex-
periments suggest that application capacity and timing composability is achieved
at processor cycle resolution. In the following section we present related work,
the targeted architecture and applications, followed by the virtualization mech-
anism, and ending with experimental results and conclusions.

2 Related Work

The related work falls in two categories: hypervisors and composable scheduling.
Typically, a hypervisor is the lowest level firmware that runs on hardware and
implements scheduling of virtual machines (VM) on real machine(s), while on
a VM there might be a guest OS implementing the suitable intra-application
scheduling. Hypervisor allocates the hardware resources dynamically, and trans-
parently to VMs. Usually, it virtualizes memory accesses, file systems, interrupts,
I/0, etc. Common hypervisors are, among others, IBM’s AIX, VirtualLogix VLX
Hypervisor and the L4 micro-kernel. IBM’s AIX operating system implements
hypervisor functionality [2], with priority-based, or non-preemptive VM sched-
ulers. VMware’s with former Trango Virtual processors offers a scheduler in AIX
operating system [1] with dynamic priorities and on-line recalculation of CPU
time assigned to a VM. VirtualLogix VLX Hypervisor [3] has flavours for mobile
handsets and some other specialized embedded systems. Its separate VMs can
run an RTOS and a general OS (with rich functionalities, like Linux) simulta-
neously with their real-time virtualization technology. It mainly runs on single
ARM platforms with some hardware accelerators in difference of our scope. The
L4 p-kernel [13] uses hard priorities with round-robin scheduling per priority.
Many different flavours are added to the basic L4 implementation resulting in
big family of its derivatives. Open Kernel L4 [11] has an OS and virtualization
technology, however based on a global scheduling policy interleaving priorities of
threads from different subsystems/applications. In these approaches, the number
and timing of cycles an application can get depend on higher priority applica-
tions’, hence they are not composable.

In general, schedulers in a real-time OS (RTOS) can be of different types
(priority- and/or budget- based) providing guaranties that deadlines are met.
Here we discuss only the ones close to our work, namely budget schedulers.
Bekooij et al. [10] propose and motivate the utilization of TDM, laying the
foundations of (timing) composable multi-processors scheduling. However, [10]
makes no distinction between intra- and inter- application scheduling, and does
not discuss the details of processor sharing. Their work is continued in [14] with
a priority-based budget scheduler with composable capacity, but no composable
timing. Another interesting approach is the composable MPSoC in [6], where
all resources are virtualized, except for the processors that are not shared. We
assume a similar composable platform, and offer composable processor sharing.



3 Background

We consider the base architecture in [6], consisting of a set of computation tiles,
an external memory, all connected by a NoC, as visible in Figure 1, thus the
memory [9] and communication [7] resources are composable.

On this platform, we run a mix of real-time and best effort applications.
An application consists of a set of tasks that may communicate, while there is
no communication between different applications. The code and data of tasks
that run on a tile are assumed to fit in the local tile memory. In streaming
applications a task executes infinitely: consumes its input data produced by
other tasks, executes an iteration then produces its output (to be processed by
successor tasks). The inter-task data communication is implemented via uni-
directional, finite FIFO buffers located in a memory tile. A producer task sends
a token to the external memory (posted write). When the consumer task needs
it, it fetches it in its local memory. Inside a token data access can be performed in
any order. FIFOs are used through the C-HEAP protocol [12] with blocking read
and write routines. We choose this programming model because it perfectly fits
the streaming domain, it allows overlapping computation with communication,
and - crucial for real-time applications - allows modelling an application as a
dataflow graph. Moreover, the architecture, and the binding of applications to
the platform can be also modelled with it. Thus dataflow analysis [15-17] is
possible, allowing end-to-end guarantees. For the best effort applications the
programming model is theoretically not restricted to the one above. However,
for practical reasons, we assume an uniform programming model for the entire
platform, leaving the relaxation of this assumption for future research.

clocl
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Fig. 1. Composable and predictable platform

Unlike the hypervisors in server domain, we do not support any interrupts
except one timer interrupt required for scheduling applications. Virtualization
of interrupts is complex and costly; it would increase the OS overhead by the
worst-case of the interrupt service routine and its management. In the absence
of interrupts, I/O from/to outside of our platform can be memory mapped, and
it is supported as long as it does not prevent task preemption (see next section).

4 Composable processor virtualization

As presented in the introduction, composability demands allocating fized budgets
for each application, in a fized period of time. To achieve composable processor
timing, we basically use the same technique as for other resources [6, 10], i.e. Time



Division Multiplex scheduling. Though at the first glance composability might
seem easy to implement, i.e. preemptable TDM, the required cycle accurate
precision combined with the scheduling details make it non-trivial.

Figure 2 presents the view on time at different abstraction levels: application,
task, resource (i.e. processor). Each application (consisting of a task set) has a
constant time slice allocated each constant TDM period. In an application slice
(some of) its tasks execute (in sub-slices). Each application may have a different
task scheduler, and the task order inside a slice does not have to be the same
each TDM period. Ultimately, the processor time is divided in basic allocable
quanta called slots (approach common to many existing OSes). Potentially, in
whatever two consecutive slots, two tasks from two different applications can
execute. Thus, when having to schedule the next slot, the OS determines the
application owning it, and it calls its task scheduler. Hence, tasks execution is
interleaved with OS execution. In the following we refer to a slot as system slot,
composed by an OS slot, followed by a task slot, as detailed in Figure 3.
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Fig. 2. Time view, at application, task and processor level

Summarizing, composable timing requires: (1) a constant schedule repetition
period. This cannot be ensured unless all the system slots have a constant du-
ration (thus the task and OS slices are constant). (2) constant application slices
in a TDM period. This cannot be ensured unless the task slots have a constant
duration. And (3) application slices in the same order each TDM period. Note,
composable capacity only needs the first two requirements to be met.
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Fig. 3. System slot (OS and task slot)

We ’force’ the OS and task slots to have always the same duration, namely
their worst case duration, via a mechanism able to delay an action (the task
swap in) until a point in the future. This allows us to remove the variation in
time of what happened before, as detailed in the next subsection.

Note that composability removes inter-application interference, however an
application’s execution time might still be variable, due to the following:

— architecture variations
e undeterministic (though boundable) variations, originating in the con-
version from the analog to the digital domain (and vice versa), e.g. clock
domain crossing, analog-to-digital converters (ADC) at inputs. Besides



the direct impact in latency (e.g. of memory accesses), it causes arbiters
phase drifting, resulting in further variations.

e deterministic, but difficult to accurately bound; architecture optimiza-
tions: out-of-order execution, caches, speculation.

— environment variations: input data dependencies.

— initialization time variations. In embedded systems the workload is known
at design-time, thus we initialize the platform once (no dynamic reconfigu-
ration). The initialization time varies with the number of tasks, FIFOs, etc.,
and results in different application start times, hence in different arbiters
phasing from a run to the other (same as the undeterministic variations).

These variations are not dependent on other applications; they occur even when
an application executes in isolation.

Clock generation block. The clock generation block (CGB) is the hardware
that supports tasks switching at fixed points in time and ensures that system
slots have constant duration. We assume each tile is in a different clock do-
main. Internally, the clock generation block consists of a programmable timer
and clock gating functionality. As visible in Figure 1, CGB provides a (pro-
grammable) clock signal to the processor, can raise (timer) interrupts, and it
can be programmed via the ’emd’ interface. The following can be programmed:

1. clock immediate suspend and restart at a given, future, point in time (similar

with clock gating, followed by clock ungating at a programmed moment).

2. interrupt generation at a given point in the future.

Figure 3 details the task switching timing. Assume task 1 is executing on the
processor. When task 1’s slot ends, CGB raises an interrupt at 70. The processor
first finishes the in-flight instructions in the pipeline, then the interrupt can be
served. We denote the time to finish all in-flight instructions with ’interrupt
latency’ and its maximum length is typically few cycles. The OS slot starts with
the first instruction of the interrupt service routine (a jump to the OS code).
Then the OS finds a new task to schedule, as described. Then it programs the
next timer interrupt exactly after a (constant) system slot (next 70). Then it
programs the clock to immediately suspend for the rest of the OS slot, and
to restart exactly at 71 = T0 + OS_slot. The OS slot length is a parameter
calculated a priori, at design time, and it should be at least the sum of (1) the
longest interrupt latency, (2) the worst case number of cycles needed by the OS
(for management operations and task scheduling) and (3) the time needed to
program the clock gating/ungating and the interrupt for the next slot. By using
this mechanism we enforce fixed size tasks and OS slots. The timer mechanism
presented above works correctly only if (1) the OS execution time is bounded (we
assume so because we allow only application schedulers that finish in predictable
time, i.e. the application scheduler has to be analysed, and verified together with
our OS) (2) the interrupt latency is bounded (discussed in the following).

Direct Memory Access (DMA) block. A bounded interrupt latency re-
quires interruptible instructions in the processor’s pipeline (typically not the
case) or the bounded, preferably short, maximum time to finish a in-flight in-
struction. Thus in general, the maximum delay till serving an interrupt is the
maximum time it takes to execute an instruction, which is in the order of magni-
tude of cycles, except for synchronization operations and load/store operations
to remote memories (i.e. other tile’s memory or external memory).



We do not support conventional synchronization operations, to exclude the
possibility of an interrupt being raised during those. Blocking at FIFOs (if data
or space are not available) is implemented by OS checks for data and space in
its slot (not in the task slot). If no space or data, a task is simply not started in
its current slot (and the slot is idled). The resulted spare capacity can be used
to save energy [18], or increase QoS, however this is not the topic of this paper.

When having composable NoC and memory, we can assume that the worst
case load/store operation delay is bounded and it can be calculated at design
time. However, such a delay can be significantly large, depending on the allocated
QoS in the NoC and memory controller. Moreover, for a best effort task with
no latency guarantees from the NoC and/or the external memory, a remote
access may take an arbitrary time. In order to reduce and bound the interrupt
latency we use a DMA block. Hence, instead of a potentially long load/store
operation, the processor initiates a DMA transfer between the local and external
memories, and pools until the DMA finishes the transfer (operation equivalent
with reading a local memory location). The processor is interruptible after each
pool operation, thus the interrupt latency is kept short.

To utilize the DMA, the task accesses to remote memories have to be explicit
(i.e. FIFO library implemented using DMA, or the DMA requests inserted in the
code either by the programmer, or by the compiler). This is a realistic assumption
for embedded systems, as they mostly use scratch-pad memories which anyway
require explicit data placement and transport. We assume that the local task
data and code fits in the local memory (future work will relax on this assump-
tion), thus the remote accesses occur only at FIFO accesses. The DMA requests
are transparent to the application programmer, as they are implemented inside
FIFO read/write Application Programmer Interface (API).

Tile 0 Tile 1

A1
ONCIORO

Fig. 4. Experimental applications and mapping

5 Experimental results

We implemented the virtualization mechanism on an FPGA multiprocessor plat-
form. The FPGA platform has two tiles with MicroBlaze cores, local memories,
DMAs, and one memory tile (SRAM), connected by an Ethereal NoC [7]. The
memories and NoC are (timing) composable as in [6]. The entire platform is
predictable (e.g. no caches, no speculation, etc.) and placed in the same clock
domain; we have no undeterministic time variations, thus the only variability
source in the arbiters alignment/phasing is the variable initialization time.

We use three synthetic applications (Figure 4), with inter-task data depen-
dencies. Each task executes 100 iterations, an iteration being: read input, process,
write output, as described in Section 3. We run the experiments with multiple,
variable iteration execution times, leading to the same conclusions. For clarity
(to be able to visualize even small variations), we present here only the results
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Fig. 5. Virtual execution time - local tasks

for constant iteration execution time (i.e. iterations are not data dependent).
We employ different task schedulers inside an application, i.e. TDM for A1, and
Round Robin for A2 and A3. We focus on Al, that has both possible type of
tasks: (1) tasks that execute entirely inside a tile (T1 and T4) - ’local tasks’, and
(2) tasks that communicate data over the NoC (T2 and T3) - 'non-local tasks’.
Non-local tasks are subject to variations from one iterations to the other due to
arbiters alignment.

We define: virtual execution time as the number of cycles a task executes on
a processor, from an iteration’s start to end (the perceived execution time in the
application virtual time line), and physical execution time as the processor cycles
elapsed between an iteration’s starting and ending times (the perceived execution
time in the physical time line, i.e. the response time in RT terminology).
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Fig. 6. Virtual execution time - non-local tasks

In all experiments the applications have fixed budgets. We execute four runs:

— Al executing alone, with a fraction of the resources, fixed/constant OS slots
("Const OS slot, one app’).

— A1, A2, A3 together, constant OS slots (’Const OS slot, multi app’).

— A1l running alone, with a fraction of the resources, variable OS slots (’Var
OS slot, one app’).

— A1, A2, A3 running together, variable OS slots ("Var OS slot, multi app’).
We investigate: (1) composable capacity, i.e. if the virtual execution time (the

execution time ’perceived’ by the application in its virtual time-line) is the same



in different runs, the capacity is composable, and (2) composable timing, i.e. if
the physical execution time (the response time in RT terminology) is constant
the timing is composable.
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Fig. 7. Physical execution time difference - local tasks

As visible in Figure 5, local tasks exhibit composable capacity: they have
exactly the same virtual execution time in all four cases. Note some small vari-
ation between iterations are visible; due to FIFO access implementation: read-
ing/writing to the first and last FIFO position take different amount of cycles
than accessing a position in the middle of the FIFO. However, these variations
are identical for all runs. For non-local tasks (Figure 6), when comparing the four
cases, we observe differences in the virtual execution time within 40 cycles. These
variations occur due to different NoC and processor schedulers alignment, as ar-
gued in Section 4. Hence we can conclude that composable capacity is achieved
for both types of tasks.

T2 T3
+—+ Const OS slice
4000 B —— Var OS slice

3000

w
S
3
3

2000
2000

1000
1000

Physical execution time difference
Physical execution time difference

60 40 60
Iterations Iterations

Fig. 8. Physical execution time difference - non-local tasks

When looking at the differences in physical execution time between ’single
app’ and 'multi app’ (Figure 7 and 8), we notice that with constant OS slot
(’Const OS slot’), they are very small (0 for local tasks). For non-local tasks,
the variations in virtual execution time propagate to the physical execution time
(the difference between 'Const OS slot, single app’ and ’Const OS slot, multi app’



are within 40 cycles). These indicate that enforcing constant OS slots induces
timing composability. Not the same can be claimed by for variable OS slots.
There, adding more applications result in different physical execution time, thus
no timing composability. In absolute values, as expected, the physical execution
time in the ’Const OS slot’ cases is larger than the one in "Var OS slot’ cases, as
the OS always takes its worst execution time. However, the OS overhead relative
to the task slot size is 8%, and it can be decreased increasing by the task slot.

6 Conclusions

We presented a processor virtualization for embedded systems executing a mix
of real-time and non real-time applications. This virtualization technique ensures
composable timing and capacity, and allows applications to have their own task
scheduler. Here we focused on the processors, and we assumed that all other
shared platform resources are virtualized. Composable capacity is achieved by
assigning fixed cycle budgets to applications. For composable timing we schedule
these budgets equidistantly (preemptable budget scheduler, i.e. TDM using timer
interrupts), using a combined hardware software mechanism able to delay an
action (the application swap-in moment) until a fixed, future point in time.
The OS uses this mechanism to remove the variation in timer interrupt latency
and OS behaviour. To ensure a short and bounded interrupt latency, we do not
allow a task blocking (the input data and output space availability is checked
by the OS before starting a task) and we use DMA accesses instead of long
latency load/store operations to remote memories (many processors cannot be
interrupted during load/store). The proposed mechanisms are implemented on
a multi-processor in FPGA and experiments indicate that applications number
and timing of processor cycles are independent.
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