
A Network-on-Chip Monitoring Infrastructure
for Communication-centric Debug

of Embedded Multi-Processor SoCs

Bart Vermeulen1, Kees Goossens1,2

1NXP Semiconductors Research, Eindhoven, The Netherlands,{Bart.Vermeulen,Kees.Goossens}@nxp.com
2Computer Engineering, Delft University of Technology, TheNetherlands

Abstract— Problems in a new System on Chip (SOC) consisting of
hardware and embedded software often only show up when a silicon
prototype of the chip is placed in its intended target environment and
the application is executed. Traditionally, the debuggingof embedded
systems is difficult and time consuming because of the intrinsic lack of
internal system observability and controlability in the target environment.
Design for Debug (DfD) is the act of adding debug support to the design
of a chip, in the realization that not every SOC is correct first time. DfD
provides debug engineers with increased observability andcontrolability
of the internal operation of an embedded system.

In this paper, we present a monitoring infrastructure for mu lti-
processor SOCs with a Network on Chip (NOC), and explain its
application to performance analysis and debug. We describehow our
monitors aid in the performance analysis and debug of the interactions
of the embedded processors. We present a generic template for bus and
router monitors, and show how they are instantiated at design time in our
NOC design flow. We conclude this paper with details of their hardware
cost.

I. I NTRODUCTION

Modern process technologies enable the integration of a complex
system on a single silicon die. Problems in a new design of such a
System on Chip (SOC) often only show up when a silicon imple-
mentation of the chip is placed in its intended target environment
and its embedded software is executed. These problems occurwhen
the functional coverage of its pre-silicon verification waseither
unknowingly or necessarily incomplete [14].

The functional coverage of pre-silicon verification can be incom-
plete because a trade-off is made between the level of detailto include
in a design model and the amount of compute time it subsequently
takes to use this model in the verification of all relevant usecases.
Detailed models are significantly slower to use for verification than
more abstract models. As the market pressure restricts the time
available to design and test a SOC, this necessarily also restricts
the number of use cases that can be validated in exhaustive detail.
As a result, human errors or bugs in tools or libraries may still
slip through to prototype silicon and cause it to malfunction. To
debug these errors using prototype silicon is difficult and time
consuming because of the intrinsic lack of internal observability and
controlability in the target environment. Design for Debug(DfD) [9]
is the act of adding debug support to the design of a chip to increase
its internal observability and controlability in a target environment.
Improving these two abilities greatly facilitates finding the root cause
of erroneous behaviour, both in time (i.e. when a deviation from the
correct behaviour first occurs) and in space (i.e. which component(s),
hardware and/or software, is (are) faulty).

Traditionally, debug methods and tools tend to focus on the
computational part of a system, in particular, on the programmable
Central Processing Unit (CPU) and its interaction with mainmemory.
However many SOCs contain multiple control and digital signal pro-
cessors, and a large part of the complexity resides in the interactions

between these processors and other system components. In addition,
design teams are starting to adopt a Network on Chip (NOC) as the
on-chip communication backbone [3], possibly extended with local
busses. Such a communication architecture presents a new range of
debug challenges because its permits split, pipelined, andconcurrent
transactions between IP blocks on connections with differential
Quality of Service (QoS).

Therefore a debug solution that covers the entire embedded system
also has to include DfD to make the interactions between the IP
blocks via the communication architecture observable and contro-
lable. For this reason, we proposed to complement conventional
computation-centric debug with communication-centric debug [8]. In
this paper we focus on the debug monitoring of the communication.
Debug control is discussed in [7], [18].

The remainder of this paper is organized as follows. We discuss
the background of on-chip communication monitoring for functional
debug and performance analysis in Section II. In Section IIIwe
identify possible monitoring locations in a SOC and its intercon-
nect architecture and we define a generic monitor design template.
Section IV describes the monitor instrumentation as part ofthe
overall NOC design flow. Section V presents a break-down of the
monitor hardware cost in its functional subcomponents. We conclude
in Section VI.

II. BACKGROUND

Debugging is a temporal and spatial refinement process. The root
cause of erroneous behaviour needs to be located both in space and
time. Traditionally only the design of the processors was extended
with debug support, to observe and control the execution of the
embedded software running on the processor. With the distribution
of the computation across a SOC, and the resulting shift of the
interaction (and potential interference) of processing threads to the
communication architecture, debug support needs to be (deeply)
embedded in the communication architecture as well. [2] and[12]
present monitoring solutions based on bus-centric architectures. With
the introduction of NOCs in SOCs, the scope of on-chip monitors
has to be extended to include the NOC, as is e.g. done in [4]
and [15]. Bus and network monitors become part of the on-chipdebug
hardware infrastructure, to observe the communications atthe edge
of or internal to the interconnect.

With these embedded monitors, the system can be viewed at the
level of transactions. Inspecting transactions and detecting either
missing transactions or transactions with incorrect attributes, enables
a quick identification of a suspect master and suspect slave(s).
Extending the debug scope further to include the communication
infrastructure allows not only the identification of the suspect masters
and slave(s), but also of a suspect path through the communication
infrastructure. This identification allows for a large set of on-chip IP



blocks to be quickly discarded as the potential source of theproblem,
thereby greatly speeding up the debug process.

Debugging performance issues requires the embedded monitors
to measure key system parameters in real-time. The performance
metrics obtained from these monitors are subsequent correlated with
the performance numbers estimated using simulation models. Using
bus and network monitors to analyze a system’s actual performance is
important, because system communication resources are dimensioned
at design time based on their estimated use in the system. When
the (momentary) actual resource utilization is higher thanexpected,
due to some unforeseen circumstances, this might lead to erroneous
behaviour in the system. If the actual resource utilizationis con-
sistently lower than estimated, it indicates that the resources were
overdimensioned, resulting in a higher Bill of Material (BOM) than
strictly necessary. Being able to dimension the resources just right
prevents over-design while providing the required QoS level.

III. M ONITOR INFRASTRUCTURE

Figure 1 shows the possible monitor locations in a SOC with a
NOC.

Fig. 1. Network-on-Chip with Monitors.

Figure 1 shows that monitors can be inserted 1) on the master
interfaces, 2) on the network interfaces, 3) inside the network on
router interfaces, and 4) on the slave interfaces. They are programmed
and queried either from a functional interface, or from a dedicated
debug interface, such as the IEEE Std 1149.1-2001 Test Access Port
(TAP) [11]. Figure 1 shows the latter option.

A monitor can provide a range of performance analysis and
debugging functions. By using a generic monitor design template,
each monitor in the system is optimized at design time to onlyinclude
the necessary subset of components, thereby balancing the need for

debug and performance analysis support with the resulting additional
hardware cost. Figure 2 shows a generalized monitor design template,
which includes the following components.

1) Protocol-Specific Front End
Upon instantiation, the monitor is connected to a specific com-
munication link. The sender and receiver on this communication
link agree on a communication protocol to communicate data,
e.g. the Advanced eXtensible Interface (AXI) [1] protocol or the
Open Core Protocol (OCP) [13]. A Protocol-Specific Front End
(PSFE) is used to decouple the other components of the monitor
from the specifics of this communication protocol.
The PSFE includes optional transaction filters to restrict the
collection of debug and performance metrics to a subset of the
overall data communicated via the link. When required the PSFE
can be instantiated with multiple transaction filters to enable
filtering on different characteristics in parallel. Transaction filter
may however also be implemented in the other monitor blocks.
For a bus protocol, these filter criteria include: a) an address
range, b) a reference data value, c) an associated mask value,
and d) optionally a transaction ID identifying the source.
A router monitor observes the packetised data stream on a
link between two routers or between a router and a network
interface. Using knowledge of the NOC communication
protocol, the PSFE can provide the raw data, and information
on the End of Message (EOM) flag, the QoS of the data (Best
Effort (BE) or Guaranteed Throughput (GT)), the word number
in a NOC flit, and whether the data on the link belongs to a
packet header, a packet body, or the end of a packet. The PSFE
can be configured to use each of these characteristics to filter
the transactions seen on the link.

2) Bandwidth Utilization Measurements
Bandwidth utilization is defined as the actual number of bus
cycles used to transport data over a monitored link, normalized
to the total number of bus cycles in a particular time interval.
This metric is measured for all or a subset of traffic on the link,
as determined by the programming of the optional transaction
filter. An accumulator counts the number of bus cycles in
which the link is actually used to transport data. A second
accumulator counts the total number of bus cycles of the local
communication link. Both metrics are reset and queried via
the debug interface. The bandwidth utilization of the observed
link is computed off-line by dividing the number of bus cycles
actually used by the total number of bus cycles.

3) Transaction Latency Measurements
Latency measurements are useful for bus protocols, where a
handshake is used to transfer each data element of a transaction.
In a NOC data is typically transported across a link in a fixed
amount of time, i.e. with no variation in latency. In those cases,
it is not needed to include a transaction latency measurement
component in the monitor.
A latency measurement block can store the most-recently
measured transaction latency, the maximum latency, and
the average latency. The average latency is obtained by first
accumulating all latency samples and the number of transactions
in a certain time interval separately. Dividing the former by
the latter metric yields the average latency. An interrupt can
be generated when a latency sample is greater than a certain,
preprogrammed maximum.



4) Trigger Generation
A trigger block is used to generate a debug trigger after a pre-
defined number of specific transactions have occurred on the
monitored link. Filtering, as described above, can also be used
here to specify the required traffic characteristics.
A counter is incremented for each match that occurs. Multiple
trigger logic blocks are used to allow this to occur in parallel,
e.g. for transactions in opposite directions. Communication
links that allow overlapping bursts are supported up to the
maximum number of pending transactions. This parameter has
to be specified during the monitor’s instantiation, as it requires
additional buffering inside the monitor. The trigger output of the
monitor is asserted when the counter reaches a preprogrammed
trigger value. The monitor signals the trigger via its debug
request and acknowledge ports to either the on-chip interrupt
controller, or e.g. an on-chip cross-trigger architecture[2].

5) Checksum Calculation
Checksums are useful to calculate compact signatures for
either the raw data on the communication link or abstracted
protocol values. The same transaction filtering functionality
is applied here. Whenever there is a relevant transaction, the
Cyclic Redundancy Check (CRC) value is updated with the
transaction’s attributes. Cross-talk or other signal integrity
issues may cause a CRC value to differ from one location
on a communication path to another location or from a CRC
value calculated off-line using an abstract system model
(e.g. in SystemC). The comparison of CRC values calculated
at multiple locations on a communication path enables the
isolation of a suspect section of this path, thereby speeding up
the debug process.

6) Control and Status Registers
The monitor control and status registers are accessible from
the debug interface. Through these registers an engineer can
program and query the performance metrics to measure, and
define trigger points to stop the system at.

Fig. 2. Monitor Design Template.

IV. D ESIGN FLOW

The NOC hardware is generated and instrumented with debug
support hardware using an automated design flow [5], [6] (Refer to
Figure 3).

Fig. 3. Monitors in the Æthereal Design Flow.

Given an architecture specification containing a description of the
IP blocks to be connected to the NOC, their interface ports with
their associated communication protocol, and a set of communication
use cases (i.e. sets of concurrent applications), an application-specific
network topology is created and its resources are dimensioned such
that they can handle the communication requirements for alluse
cases.

The resulting network is then instrumented based on the user’s
instrumentation specification. For the monitors the user can specify
at which locations in the communication architecture the monitors
are added (refer to Figure 1. For each monitor, the user can also
specify which debug and performance analysis functions areincluded.
Depending on the communication protocol that is associatedwith the
link that each monitor is connected to, the flow will instantiate an
appropriate PSFE. The outputs of this step in the flow are 1) an
application-specific NOC with fully-specified connectionsbetween
masters, local buses, network interfaces, routers, monitors, and slaves,
and 2) a database for the debugger software with details of the debug
support added to the SOC.

Afterwards the Register Transfer Level (RTL) files of the NOC
instance are generated. In addition, embedded configuration software
is generated to configure the NOC at run time for each use case.
Commercial tools are subsequently used to synthesize the NOC RTL
and insert scan chains [8], [17]. The scan insertion tools output
scan chain listing information, which is used to complementthe
information in the proprietary Debug Chain Database (DCD) file,
which permits debugger software to associate the bits in thedebug
scan chains with the bits in the RTL registers of the IPs and NOC
components [7]. This data abstraction step offers a key benefit to
design engineers by allowing the behaviour of the system to be
analyzed using design views they are familiar with [10], [16].

V. EXPERIMENTAL RESULTS

To evaluate the hardware area cost of the monitors and their
main contributors, we synthesised a small set of our bus and router
monitors using a commercial synthesis tool and an industrial-quality
65nm CMOS standard cell library, and obtained detailed arealogs.



The monitor area cost numbers presented below are expressedin
NAND2 equivalent gates, to decouple them from the specific process
technology used.

Table I shows the break-down of the area cost of a 64-bit AXI
bus monitor that can handle up to 8 pending transactions, and
transaction IDs up to 4 bits. Each function has its own transaction
filter implementation (Filter A, Filter B, Filter C).

Function G.E. Fraction

Trigger, CRC & Filter A 17,618 48.29%
PSFE, Control and Status registers 8,440 23.13%
Latency & Filter B 7,744 21.22%
Bandwidth & Filter C 2,684 7.36%

Total 36,486 100.00%

TABLE I
64-BIT AXI MONITOR AREA DISTRIBUTION PER FUNCTION.

Table I indicates that the largest part of the monitor is usedfor the
transaction trigger calculation. For the AXI protocol, itsFilter logic
has to keep track of up to 8 pending transactions, and supportslave-
side address calculation to match each data element. As such, it has
an internal First-In First-Out (FIFO) that scales with the number of
pending transactions, and the width of the transaction ID. The PSFE,
Control and Status registers also consume a large part of thetotal
area, to store all configuration data for the monitor.

Table II shows the break-down of the area cost of a 32-bit AXI bus
monitor that can handle up to 8 pending transactions, and transaction
IDs up to 4 bits. Each function again has its own transaction filter
implementation (Filter A, Filter B, Filter C).

Function G.E. Fraction

Trigger, CRC & Filter A 9,773 37.34%
PSFE, Control and Status registers 7,130 27.23%
Latency & Filter B 7,062 26.98%
Bandwidth & Filter C 2,211 8.45%

Total 26,175 100.00%

TABLE II
32-BIT AXI MONITOR AREA DISTRIBUTION PER FUNCTION.

The 32-bit AXI monitor obviously requires less logic to implement,
in particular because the buffering requirements are less,and the bus
data elements it has to operate on are smaller. Table III shows the
break-down of the area cost of a router monitor that can handle a
link width up to 32 bits, and flit sizes up to 3 words. All functions
utilize the same transaction filter implementation (Filter), located in
the PSFE.

Function G.E. Fraction

PSFE, Control and Status Registers & Filter 9,508 72.12%
Bandwidth 1,437 10.90%
CRC 1,202 9.12%
Trigger 1,035 7.86%

Total 13,182 100.00%

TABLE III
ROUTER MONITOR AREA DISTRIBUTION PER FUNCTION.

The router monitor requires far less area to implement due tothree
main factors: 1) The router monitor does not implement the latency

measurement functionality, as was explained in Section III, 2) The
functional blocks reuse the same filter, which permits amortizing its
area cost over all blocks, reducing the total area cost of implementa-
tion, at the cost of imposing a restriction on the end user, and 3) the
protocol on a router link is simpler, and does not require anypending
transactions or slave-side addresses to be tracked, eliminating the cost
of a storage FIFO and an address calculation unit.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a monitoring infrastructure formulti-
processor SOCs with a NOC, and explained its application to
performance analysis and debug. We presented a generic template
for bus and router monitors, and show how they are instantiated at
design time by our NOC design flow. Experimental results showthat
the required area cost for each monitor is relatively small compared
to a million-gate SOC design, enabling their liberal use at strategic
places throughout a SOC communication architecture to helpfind
functional errors and assist in real-time performance analysis.

REFERENCES

[1] ARM. AMBA AXI Protocol Specification, 2003.
[2] ARM Limited. CoreSight System Design Guide. http://www.arm.com.
[3] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm.

Computer, 35(1):70–78, 2002.
[4] Călin Ciordaş, Twan Basten, Andrei Rădulescu, Kees Goossens, and Jef

van Meerbergen. An event-based monitoring service for networks on
chip. ACM Transactions on Design Automation of Electronic Systems,
10(4):702–723, 2005.

[5] Călin Ciordaş, Andreas Hansson, Kees Goossens, and Twan Basten. A
monitoring-aware network-on-chip design flow.J. Syst. Archit., 54(3-
4):397–410, 2008.

[6] Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago
González Pestana, Andrei Rădulescu, and Edwin Rijpkema.A Design
Flow for Application-Specific Networks on Chip with Guaranteed Per-
formance to Accelerate SOC Design and Verification. InProc. DATE,
pages 1182–1187. IEEE Computer Society, 2005.

[7] Kees Goossens, Bart Vermeulen, and Ashkan Beyranvand Nejad. A
High-Level Debug Environment for Communication-Centric Debug. In
Proc. DATE, 2009.

[8] Kees Goossens, Bart Vermeulen, Remco van Steeden, and Martijn
Bennebroek. Transaction-Based Communication-Centric Debug. In
Proc. Int’l Symposium on Networks on Chip (NOCS), pages 95–106.
IEEE Computer Society, 2007.

[9] A.B.T. Hopkins and K.D. McDonald-Maier. Debug support for Complex
Systems on-Chip: A review.IEE Proceedings Computers and Digital
Techniques, 153(4):197–207, 2006.

[10] Y. Hsu, B. Tabbara, Y. Chen, and F. Tsai. Advanced techniques for rtl
debugging. InProc. DAC, pages 362–367, 2003.

[11] IEEE JTAG 1149.1-2001 Std.IEEE Standard Test Access Port and
Boundary-Scan Architecture. IEEE Computer Society, 2001.

[12] Rick Leatherman and Neal Stollon. An Embedded Debugging Archi-
tecture for SoCs.IEEE Potentials, 24(1):12–16, 2005.

[13] OCP International Partnership.Open Core Protocol Specification. 2.0
Release Candidate, 2003.

[14] Bill Roberts. The verities of verification.Electronics Design, Strategy,
News (EDN), 2003.

[15] S. Tang and Qiang Xu. A multi-core debug platform for noc-based
systems. InProc. DATE, pages 1–6, 2007.

[16] B. Vermeulen, Y-C. Hsu, and R. Ruiz. Silicon debug.Test and
Measurement World, pages 41–45, 2006.

[17] Bart Vermeulen, Kees Goossens, and Siddharth Umrani. Debugging
Distributed-Shared-Memory Communication at Multiple Granularities in
Networks on Chip. InProc. Int’l Symposium on Networks on Chip
(NOCS), pages 3–12, 2008.

[18] Bart Vermeulen, Kees Goossens, Remco van Steeden, and Martijn
Bennebroek. Communication-centric SOC debug using transactions. In
Proc. European Test Symposium (ETS), pages 69–76. IEEE Computer
Society, 2007.


