A Network-on-Chip Monitoring Infrastructure
for Communication-centric Debug
of Embedded Multi-Processor SoCs

Bart Vermeuleh, Kees Goossehg
INXP Semiconductors Research, Eindhoven, The Netherlg®ist.Vermeulen,Kees.Goosse@nxp.com
2Computer Engineering, Delft University of Technology, THetherlands

Abstract— Problems in a new System on Chip (SOC) consisting of between these processors and other system componentditiorad

hardware and embedded software often only show up when a gibn
prototype of the chip is placed in its intended target envirmment and
the application is executed. Traditionally, the debuggingof embedded
systems is difficult and time consuming because of the intrgic lack of
internal system observability and controlability in the target environment.
Design for Debug (DfD) is the act of adding debug support to th design
of a chip, in the realization that not every SOC is correct firg time. DfD

provides debug engineers with increased observability andontrolability

of the internal operation of an embedded system.

In this paper, we present a monitoring infrastructure for multi-
processor SOCs with a Network on Chip (NOC), and explain its
application to performance analysis and debug. We describéow our
monitors aid in the performance analysis and debug of the irgractions
of the embedded processors. We present a generic template fous and
router monitors, and show how they are instantiated at desig time in our
NOC design flow. We conclude this paper with details of their Ardware
cost.

I. INTRODUCTION

Modern process technologies enable the integration of glem

design teams are starting to adopt a Network on Chip (NOCheas t
on-chip communication backbone [3], possibly extendech vdcal
busses. Such a communication architecture presents a me®w of
debug challenges because its permits split, pipelinedcandurrent
transactions between IP blocks on connections with difféae
Quality of Service (QoS).

Therefore a debug solution that covers the entire embeddstens
also has to include DfD to make the interactions between Ehe |
blocks via the communication architecture observable amtro-
lable. For this reason, we proposed to complement convaitio
computation-centric debug with communication-centribudg[8]. In
this paper we focus on the debug monitoring of the commuioicat
Debug control is discussed in [7], [18].

The remainder of this paper is organized as follows. We discu
the background of on-chip communication monitoring forduonal
debug and performance analysis in Section Il. In Sectionwil
identify possible monitoring locations in a SOC and its iota-

system on a single silicon die. Problems in a new design dfl suc nect architecture and we define a generic monitor design latenp
System on Chip (SOC) often only show up when a silicon impleSection 1V describes the monitor instrumentation as partthef

mentation of the chip is placed in its intended target emvivent
and its embedded software is executed. These problems ot@mw
the functional coverage of its pre-silicon verification waiher
unknowingly or necessarily incomplete [14].

The functional coverage of pre-silicon verification can beom-
plete because a trade-off is made between the level of detaitlude

overall NOC design flow. Section V presents a break-down ef th
monitor hardware cost in its functional subcomponents. Welide
in Section VI.

Il. BACKGROUND

Debugging is a temporal and spatial refinement process. dtite r

in a design model and the amount of compute time it subselyuentause of erroneous behaviour needs to be located both ie spac

takes to use this model in the verification of all relevant oases.
Detailed models are significantly slower to use for verifaatthan

time. Traditionally only the design of the processors watemated
with debug support, to observe and control the executionhef t

more abstract models. As the market pressure restricts ithe tembedded software running on the processor. With the lolisioin

available to design and test a SOC, this necessarily alddctss

of the computation across a SOC, and the resulting shift ef th

the number of use cases that can be validated in exhaustigé. deinteraction (and potential interference) of processingdbs to the
As a result, human errors or bugs in tools or libraries malf stcommunication architecture, debug support needs to bepligee

slip through to prototype silicon and cause it to malfunttido
debug these errors using prototype silicon is difficult aidet
consuming because of the intrinsic lack of internal obdaliga and
controlability in the target environment. Design for Del@fD) [9]
is the act of adding debug support to the design of a chip tease
its internal observability and controlability in a targetveonment.
Improving these two abilities greatly facilitates findirtgetroot cause
of erroneous behaviour, both in time (i.e. when a deviatiomfthe
correct behaviour first occurs) and in space (i.e. which aorept(s),
hardware and/or software, is (are) faulty).

embedded in the communication architecture as well. [2] b2
present monitoring solutions based on bus-centric athites. With
the introduction of NOCs in SOCs, the scope of on-chip masito
has to be extended to include the NOC, as is e.g. done in [4]
and [15]. Bus and network monitors become part of the on-dalpg
hardware infrastructure, to observe the communicatiorthetedge
of or internal to the interconnect.

With these embedded monitors, the system can be viewed at the
level of transactions. Inspecting transactions and detpatither
missing transactions or transactions with incorrectlaites, enables

Traditionally, debug methods and tools tend to focus on the quick identification of a suspect master and suspect slave(

computational part of a system, in particular, on the pnognable
Central Processing Unit (CPU) and its interaction with nragmory.
However many SOCs contain multiple control and digital aigsro-
cessors, and a large part of the complexity resides in tleedations

Extending the debug scope further to include the commubitat
infrastructure allows not only the identification of the gest masters
and slave(s), but also of a suspect path through the comatioric
infrastructure. This identification allows for a large séba-chip IP

blocks to be quickly discarded as the potential source optbblem,
thereby greatly speeding up the debug process.

debug and performance analysis support with the resultidgianal
hardware cost. Figure 2 shows a generalized monitor desigplate,

Debugging performance issues requires the embedded monitehich includes the following components.

to measure key system parameters in real-time. The perfa@na

metrics obtained from these monitors are subsequent atetelvith
the performance numbers estimated using simulation modsisg
bus and network monitors to analyze a system’s actual pedoce is
important, because system communication resources aendianed

1) Protocol-Specific Front End

at design time based on their estimated use in the systemnWhe

the (momentary) actual resource utilization is higher tbapected,
due to some unforeseen circumstances, this might lead toeous
behaviour in the system. If the actual resource utilizati®rcon-
sistently lower than estimated, it indicates that the resesiwere
overdimensioned, resulting in a higher Bill of Material (BKpthan
strictly necessary. Being able to dimension the resourngssright
prevents over-design while providing the required QoSlleve

I11. M ONITOR INFRASTRUCTURE

Figure 1 shows the possible monitor locations in a SOC with a

NOC.

IEEE 1149.1
TAP

MaSter Bus

a F 3 »

qerrenen D D D

Network Network Network
Interface Interface Interface

A A A

v L4 L 4

Router < » Router

. -

L4 L4
Network Network
Interface Interface

NOC

A 4 \ 4 A 4

Slave 2

|:| bus monitor
- router monitor

=P functional data

Shared Slave Bus

- debug data

Fig. 1. Network-on-Chip with Monitors.

2

~

Upon instantiation, the monitor is connected to a specifib-co
munication link. The sender and receiver on this commuitinat
link agree on a communication protocol to communicate data,
e.g. the Advanced eXtensible Interface (AXI) [1] protocoltioe
Open Core Protocol (OCP) [13]. A Protocol-Specific Front End
(PSFE) is used to decouple the other components of the monito
from the specifics of this communication protocol.

The PSFE includes optional transaction filters to restiiet t
collection of debug and performance metrics to a subsetef th
overall data communicated via the link. When required thEPS
can be instantiated with multiple transaction filters to ldaa
filtering on different characteristics in parallel. Tracsan filter

may however also be implemented in the other monitor blocks.
For a bus protocol, these filter criteria include: a) an asklre
range, b) a reference data value, c) an associated mask value
and d) optionally a transaction ID identifying the source.

A router monitor observes the packetised data stream on a
link between two routers or between a router and a network
interface. Using knowledge of the NOC communication
protocol, the PSFE can provide the raw data, and information
on the End of Message (EOM) flag, the QoS of the data (Best
Effort (BE) or Guaranteed Throughput (GT)), the word number
in a NOC flit, and whether the data on the link belongs to a
packet header, a packet body, or the end of a packet. The PSFE
can be configured to use each of these characteristics to filte
the transactions seen on the link.

Bandwidth Utilization Measurements

Bandwidth utilization is defined as the actual number of bus
cycles used to transport data over a monitored link, nozedli

to the total number of bus cycles in a particular time interva
This metric is measured for all or a subset of traffic on thk,lin
as determined by the programming of the optional transactio
filter. An accumulator counts the number of bus cycles in
which the link is actually used to transport data. A second
accumulator counts the total number of bus cycles of thel loca
communication link. Both metrics are reset and queried via
the debug interface. The bandwidth utilization of the obsér
link is computed off-line by dividing the number of bus cyxle
actually used by the total number of bus cycles.

3) Transaction Latency Measurements

Figure 1 shows that monitors can be inserted 1) on the master

interfaces, 2) on the network interfaces, 3) inside the akwon
router interfaces, and 4) on the slave interfaces. Theyragrgmmed
and queried either from a functional interface, or from aickted
debug interface, such as the IEEE Std 1149.1-2001 Test Advexdt
(TAP) [11]. Figure 1 shows the latter option.

A monitor can provide a range of performance analysis and

debugging functions. By using a generic monitor design tatap
each monitor in the system is optimized at design time to ordide
the necessary subset of components, thereby balancingedte far

Latency measurements are useful for bus protocols, where a
handshake is used to transfer each data element of a triamsact

In a NOC data is typically transported across a link in a fixed
amount of time, i.e. with no variation in latency. In thosses,

it is not needed to include a transaction latency measuremen
component in the monitor.

A latency measurement block can store the most-recently
measured transaction latency, the maximum latency, and
the average latency. The average latency is obtained by first
accumulating all latency samples and the number of traiusesct

in a certain time interval separately. Dividing the former b
the latter metric yields the average latency. An interruph c

be generated when a latency sample is greater than a certain,
preprogrammed maximum.

4)

5)

) —

Trigger Generation

; X i architecture communication instruments
A trigger block is used to generate a debug trigger after a pre ! :
defined number of specific transactions have occurred on the R : 3
monitored link. Filtering, as described above, can also sedu | i Top;logy |
here to specify the required traffic characteristics.
A counter is incremented for each match that occurs. Maltipl .
trigger logic blocks are used to allow this to occur in pagall | Connection Dimensions |
e.g. for transactions in opposite directions. Commuricati v
links that allow overlapping bursts are supported up to the S { Instrumentation |<
maximum number of pending transactions. This parameter has | }
to be specified during the monitor’s instantiation, as ituiezs | RTL and SW Generation .
additional buffering inside the monitor. The trigger outpéithe 1 e case
monitor is asserted when the counter reaches a preprogmme | | Synthesis | configuration
trigger value. The monitor signals the trigger via its debug 3 software
request and acknowledge ports to either the on-chip interru v
controller, or e.g. an on-chip cross-trigger architeci2je -‘{ Scan If}sem"n |

design.dcd
Checksum Calculation Ei

Checksums are useful to calculate compact signatures for Scan-inserted netlist

either the raw data on the communication link or abstracted

protocol values. The same transaction filtering functiwyal Fig. 3. Monitors in the /thereal Design Flow.

is applied here. Whenever there is a relevant transactfan, t

Cyclic Redundancy Check (CRC) value is updated with the

transaction’s attributes. Cross-talk or other signal gritg Given an architecture specification containing a desconiptf the
issues may cause a CRC value to differ from one locatidR blocks to be connected to the NOC, their interface portth wi
on a communication path to another location or from a cRiheir associated communication protocol, and a set of camzation
value calculated off-line using an abstract system modefe cases (i.e. sets of concurrent applications), an applespecific
(e.g. in SystemC). The comparison of CRC values calculat@gtwork topology is created and its resources are dimeedisuch
at multiple locations on a communication path enables tiBat they can handle the communication requirements forusd

isolation of a suspect section of this path, thereby spgedn Cases.

the debug process. The resulting network is then instrumented based on the'suser
instrumentation specification. For the monitors the user specify
6) Control and Status Registers at which locations in the communication architecture thenitoos

The monitor control and status registers are accessible frére added (refer to Figure 1. For each monitor, the user csm al
the debug interface. Through these registers an engineer &Recify which debug and performance analysis functioninateded.

program and query the performance metrics to measure, dagpending on the communication protocol that is associatétthe
define trigger points to stop the system at. link that each monitor is connected to, the flow will instati an

appropriate PSFE. The outputs of this step in the flow are 1) an
application-specific NOC with fully-specified connectiohstween
masters, local buses, network interfaces, routers, msniand slaves,

lateny_interrpt and 2) a database for the debugger software with detailseadi¢bug
— . support added to the SOC.
1L _ le] Afterwards the Register Transfer Level (RTL) files of the NOC
L A instance are generated. In addition, embedded confignratifiware
Ly LF e 6 is generated to configure the NOC at run time for each use case.
2) Bandwidth Measurement C;";;“‘ lelpm Debug Commercial tools are subsequently used to synthesize the RTL
b L] leof s Interfuce and insert scan chalns [8]., [17]. .The.scan insertion toolpudu
Monitored | Specific | | 5) Checksum Generation o scan chain listing information, which is used to complemtra
Interface Front R information in the proprietary Debug Chain Database (DCD, fi
™ ‘;’)’T’;iggercmcumm] which permits debugger software to associate the bits inddirig
|

\ i scan chains with the bits in the RTL registers of the IPs andCNO
dbg_trigger_req dbg_trigger_ack F sact

components [7]. This data abstraction step offers a key fltetoe
))) design engineers by allowing the behaviour of the systemeo b
Fig. 2. Monitor Design Template. analyzed using design views they are familiar with [10],][16

V. EXPERIMENTAL RESULTS

IV. DEsIGNFLOW To evaluate the hardware area cost of the monitors and their

The NOC hardware is generated and instrumented with debogin contributors, we synthesised a small set of our bus antér
support hardware using an automated design flow [5], [6]€R&f monitors using a commercial synthesis tool and an indusytiality
Figure 3). 65nm CMOS standard cell library, and obtained detailed &vgsa.

The monitor area cost numbers presented below are expréssedneasurement functionality, as was explained in Sectign2)lIThe
NAND2 equivalent gates, to decouple them from the specificgss functional blocks reuse the same filter, which permits aiziog its
technology used. area cost over all blocks, reducing the total area cost ofémenta-

Table | shows the break-down of the area cost of a 64-bit AXion, at the cost of imposing a restriction on the end used, @rthe
bus monitor that can handle up to 8 pending transactions, amatocol on a router link is simpler, and does not require peyding
transaction IDs up to 4 bits. Each function has its own tretiga transactions or slave-side addresses to be tracked, atimgrthe cost

filter implementation (Filter A, Filter B, Filter C). of a storage FIFO and an address calculation unit.
[Function [G.E. [Fraction | VI. CONCLUSION AND FUTURE WORK
Trigger, CRC & Filter A 17,618 48.29% In this paper, we presented a monitoring infrastructurenfioiti-
PSFE, Control and Status registefs 8,440 | 23.13% processor SOCs with a NOC, and explained its application to
Latency & Filter B 7,744 | 21.22% performance analysis and debug. We presented a generidatemp
Bandwidth & Filter 2,684 7.36% for bus and router monitors, and show how they are instautiat
[Total || 36,486 | 100.00% | design time by our NOC design flow. Experimental results stiat
TABLE | the required area cost for each monitor is relatively smathjgared
64-81T AX] MONITOR AREA DISTRIBUTION PER FUNCTION to a million-gate SOC design, enabling their liberal usetedtsgic

places throughout a SOC communication architecture to fietp

functional errors and assist in real-time performance el
Table | indicates that the largest part of the monitor is usedhe
transaction trigger calculation. For the AXI protocol, R#ter logic
has to keep track of up to 8 pending transactions, and supfze-
side address calculation to match each data element. As suds

REFERENCES

[1] ARM. AMBA AXI Protocol Specificatior2003.
[2] ARM Limited. CoreSight System Design Guide. http://wwawm.com.
[3] L. Benini and G. De Micheli. Networks on chips: a new socguigm.

an internal First-In First-Out (FIFO) that scales with thember of Computer 35(1):70-78, 2002.
pending transactions, and the width of the transaction i PSFE, [4] Calin Ciordas, Twan Basten, Andrei Radulescu, Keess3ens, and Jef
Control and Status registers also consume a large part ofotak van Meerbergen. An event-based monitoring service for owdsvon

. . - chip. ACM Transactions on Design Automation of Electronic System
area, to store all configuration data for the monitor. 10(4):702—723, 2005.

Table Il shows the break-down of the area cost of a 32-bit Add b [5] Calin Ciordas, Andreas Hansson, Kees Goossens, armh Basten. A

monitor that can handle up to 8 pending transactions, amdartion monitoring-aware network-on-chip design flow. Syst. Archit. 54(3-
IDs up to 4 bits. Each function again has its own transactitber fi 4):397-410, 2008. o _
implementation (Filter A, Filter B, Filter C). [6] Kees Goossens, John Dielissen, Om Prakash Gangwal,ia§ant

Gonzalez Pestana, Andrei Radulescu, and Edwin Rijpkefn®esign
Flow for Application-Specific Networks on Chip with Guaraat Per-

[_Function | G.E. [Fraction | formance to Accelerate SOC Design and Verification.Phoc. DATE
Trigger, CRC & Filter A 9,773 | 37.34% pages 1182-1187. IEEE Computer Society, 2005.
PSFE, Control and Status registefs 7,130 27.23% [7] Kees Goossens, Bart Vermeulen, and Ashkan BeyranvarjddNeA
Latency & Filter B 7,062 26.98% High-Level Debug Environment for Communication-Centrielidg. In
Bandwidth & Filter C 2,211 8.45% Proc. DATE 2009.
[Total [26,175] 100.00% | [8] Kees Goossens, Bart yermeulen, Remco van Steedep, amtjnMa
Bennebroek. Transaction-Based Communication-CentribuBe In
TABLE Il Proc. Int'l Symposium on Networks on Chip (NOCBxges 95-106.
32-BIT AX| MONITOR AREA DISTRIBUTION PER FUNCTION IEEE Computer Society, 2007.

[9] A.B.T. Hopkins and K.D. McDonald-Maier. Debug suppaot Complex
Systems on-Chip: A reviewlEE Proceedings Computers and Digital
Techniques153(4):197-207, 2006.
The 32-bit AXI monitor obviously requires less logic to irepient, [10] Y. Hsu, B. Tabbara, Y. Chen, and F. Tsai. Advanced tephes for rtl

; : ; ; [y debugging. InProc. DAG pages 362-367, 2003.

Idn partIICUIar be(.:allzllse the buffering requ"emeﬂts a_:_e bi Iitlheh?]us [11] IEEE JTAG 1149.1-2001 Std.I[EEE Standard Test Access Port and
ata elements it has to operate on are smal _er' able 1l shiey Boundary-Scan ArchitecturdEEE Computer Society, 2001.

break-down of the area cost of a router monitor that can leandl [12] Rick Leatherman and Neal Stollon. An Embedded Debugginchi-

link width up to 32 bits, and flit sizes up to 3 words. All furmtis tecture for SOCsIEEE Potentials 24(1):12-16, 2005.

utilize the same transaction filter implementation (F)ltéocated in [13] OCP International PartnershipOpen Core Protocol Specification. 2.0
Release Candidate2003.

the PSFE. [14] Bill Roberts. The verities of verificationElectronics Design, Strategy,
- - News (EDN) 2003.
[Function - - [GE. | Fraction | [15] S. Tang and Qiang Xu. A multi-core debug platform for +imsed
PSFE, Control and Status Registers & Filtgr 9,508 72.12% systems. InProc. DATE pages 1-6, 2007.
Bandwidth 1,437 10.90% [16] B. Vermeulen, Y-C. Hsu, and R. Ruiz. Silicon debugTest and
CRC 1,202 9.12% Measurement Wor|dpages 41-45, 2006.
Trigger 1,035 7.86% [17] Bart Vermeulen, Kees Goossens, and Siddharth Umrarebufging
[Total [[13,182 [100.00% | Distributed-Share_d-Memory Communicatio_n at Multiple @urharities in '
Networks on Chip. InProc. Intl Symposium on Networks on Chip
TABLE 1l (NOCS) pages 3-12, 2008.
ROUTER MONITOR AREA DISTRIBUTION PER FUNCTION [18] Bart Vermeulen, Kees Goossens, Remco van Steeden, antijriv

Bennebroek. Communication-centric SOC debug using tciioss. In
Proc. European Test Symposium (ETRges 69-76. IEEE Computer
Society, 2007.

The router monitor requires far less area to implement dukrte
main factors: 1) The router monitor does not implement theniey

