
CoMPSoC: A Template for Composable and

Predictable Multi-Processor System on Chips

ANDREAS HANSSON

Eindhoven University of Technology, Eindhoven, The Netherlands

KEES GOOSSENS

NXP Semiconductors, Eindhoven, The Netherlands

Delft University of Technology, Delft, The Netherlands

MARCO BEKOOIJ

NXP Semiconductors, Eindhoven, The Netherlands

and

JOS HUISKEN1

Silicon Hive, Eindhoven, The Netherlands

A growing number of applications, often with firm or soft real-time requirements, are integrated
on the same System on Chip, in the form of either hardware or software intellectual property. The
applications are started and stopped at run time, creating different use-cases. Resources, such as
interconnects and memories, are shared between different applications, both within and between

use-cases, to reduce silicon cost and power consumption.
The functional and temporal behaviour of the applications is verified by simulation and formal

methods. Traditionally, designers resort to monolithic verification of the system as whole, as

the applications interfere in shared resources, and thus affect each other’s behaviour. Due to
interference between applications, the integration and verification complexity grows exponentially
in the number of applications, and the task to verify correct behaviour of concurrent applications
is on the system designer rather than the application designers.

In this work, we propose a Composable and Predictable Multi-Processor System on Chip
(CoMPSoC) platform template. This scalable hardware and software template removes all in-
terference between applications through resource reservations. We demonstrate how this enables
a divide-and-conquer design strategy, where all applications, potentially using different program-

ming models and communication paradigms, are developed and verified independently of one
another. Performance is analysed per application, using state-of-the-art dataflow techniques or
simulation, depending on the requirements of the application. These results still apply when the

applications are integrated onto the platform, thus separating system-level design and application
design.

Categories and Subject Descriptors: B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

1Jos Huisken is currently affiliated with IMEC-NL, Eindhoven, The Netherlands

Address: A. Hansson, Eindhoven University of Technology, Postbus 118, 5600 MB Eindhoven
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 1084-4309/2008/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008, Pages 1–23.

2 · Andreas Hansson et al.

task

task

task

task

input stream
output stream
to speakers

application

input stream to display

output stream

audio post-processing

MPEG-2 application

use-case

MPEG-1 application

task task

Fig. 1. Application model.

General Terms: Design, Performance, Verification

Additional Key Words and Phrases: Composable, Predictable, Model of Computation, System on
Chip, Network on Chip.

1. INTRODUCTION

Systems on Chip (SoC) grow in complexity with an increasing number of indepen-
dent applications integrated on a single chip [Dutta et al. 2001; Rutten et al. 2005].
The applications are realised by hardware and software Intellectual Property (IP),
e.g. processors and application code, that is reused across platform generations
and instances [Keutzer et al. 2000]. As exemplified in Figure 1, applications are
often split into multiple tasks running concurrently, either to improve the power
dissipation [Rowen and Leibson 2004] or to meet Real-Time (RT) requirements that
supersede what can be provided by a single processor [Sasaki 1996].

The individual applications have different RT requirements [Buttazo 1977]. For
Firm Real-Time (FRT) applications, e.g. a Software-Defined Radio [Moreira et al.
2007] or the audio post-processing filter in Figure 1, deadline misses are highly
undesirable due to standardisation, e.g. upper bounds on the response latency in
wireless standards, or steep quality reduction in the case of misses. Note that FRT
only differs from hard RT, a term widely used in the automotive and aerospace do-
main, in that it does not involve safety aspects. Soft Real-Time (SRT) applications,
e.g. the MPEG-2 decoder in our example, can tolerate occasional deadline misses
with only a modest quality degradation. In addition, some applications have No
Real-Time (NRT) requirements, e.g. a user interface, and must only be functionally
correct.

To verify the functional and temporal behaviour of an application, the platform,
i.e. the architecture, the low-level drivers and the middleware, together with the
mapping, has to be modelled [Jantsch 2006; Bekooij et al. 2004] or simulated [Mar-
tin 2006; Jerraya et al. 2006]. The verification methodology is strongly coupled to
the type of application. For FRT applications, the worst-case analysis must cover

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 3

all input streams, under all behaviours of the hardware and software components
(arbiters, memories, processors, etc) used by the application. SRT applications, on
the other hand, require a probabilistic analysis of the temporal behaviour, e.g. to
reach a specific deadline miss rate or average-case performance. For NRT applica-
tions, it suffices to verify a correct functional behaviour. The system designer has
to integrate all applications, usually developed by different suppliers, and verify the
combined behaviour [Rumpler 2006].

Traditionally, the analysis cannot be done on applications in isolation, due to
interference in shared resources, e.g. interconnect and memories. The interference
couples the temporal, and potentially also functional, behaviours of the applica-
tions, thus making the burden of verifying external application IP the responsibil-
ity of the system designer. The task is further complicated by applications with
input-dependent behaviour and applications that are started and stopped at run
time, creating many different use-cases. The complexity of monolithic system anal-
ysis and verification is the main challenge [Jantsch 2006; Rumpler 2006], and is
together with cost pressures far outgrowing the capacity of semiconductor scaling
and incremental design productivity improvement [Rowen and Leibson 2004].

To cope with the complexity of system design, there exist two alternatives: ab-
straction and partitioning [Rumpler 2006]. With abstraction, complexity is reduced
by moving to a higher abstraction level [Jerraya et al. 2006], which typically trades
speed for accuracy, or by abstracting the system through a Model of Computation
(MoC) [Jantsch 2006]. Unfortunately, it is often difficult if not impossible to find
one abstraction that captures the whole system (applications, platform and map-
ping) and allows reasoning about relevant metrics. Often a mix of applications,
using different programming models and communication paradigms, and having
varying RT requirements, are mapped to the platform [Martin 2006]. For FRT
applications, it suffices to have a MoC that is monotonic [Poplavko et al. 2003],
i.e. free of scheduling anomalies [Graham 1969], and a predictable platform that
bounds the interference between applications. Upper bounds on interference are,
however, not sufficient to analyse SRT and NRT applications in isolation. The
observed behaviour, e.g. deadline miss rate, depends on the other applications in
the system. Therefore, in addition to abstraction, we need partitioning, i.e. the
means to split the large system into a number of independent parts, each of which
is easier to understand than the whole system [Rumpler 2006].

The key characteristic that we believe is necessary to mitigate integration com-
plexity is partitioning by means of composability [Kopetz 1997]. We define a system
as composable if the functional and temporal behaviour of an application is the
same, irrespective of the presence or absence of other applications in the system.
Composability is essential to the ability to effectively design systems [Ivimey-Cook
1999; Jantsch 2006; Kopetz 1997; Bekooij et al. 2004] as it does not only bound,
but completely eliminates interference between applications and enables incremen-
tal design, integration and verification. Composability is a well-known concept in
the automotive and aerospace industry [Avionics Application Software Standard In-
terface 1997], where systems are traditionally designed using federated architectures,
with one function per Electronic Control Unit (ECU) [Rumpler 2006]. Compos-
ability is thus achieved by not sharing any resources between applications. This

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

4 · Andreas Hansson et al.

filter

reconfigurable virtual platform

video use-case telecom use-case

GSM
filter

MPEG-1

MPEG-2

Fig. 2. Reconfigurable composability.

approach is often too costly for the consumer-electronics domain, and also the au-
tomotive industry is moving in the direction of integrated architectures [Rumpler
2006], where ECUs are shared between applications. This requires architectural
building blocks that enable composability and tools that provide it to the applica-
tions by assigning resources.

As the main contribution of this work, we introduce a template for Composable
and Predictable Multi-Processor System on Chips (CoMPSoC), where each applica-
tion is given its own reconfigurable virtual platform, as shown in Figure 2. We show
how the building blocks in the shared SoC infrastructure implement composability
and predictability by employing admission control and budget enforcement [Rajku-
mar et al. 1998; Mercer et al. 1994]. Thereby, interference is eliminated, making
even the cycle-level behaviour of an application independent of all other appli-
cations, within and across use-cases [Hansson et al. 2007b], without placing any
requirements on the applications. On a platform instance, mapped to FPGA, we
integrate two applications, an image decoder and an audio post-processing filter,
and we show: 1) the importance of having both predictability and composability,
2) how the applications can be analysed and verified independently of one another,
using e.g. simulation-based techniques [Jerraya et al. 2006] for SRT applications
and dataflow analysis techniques [Sriram and Bhattacharyya 2000] for FRT appli-
cations, and 3) how the results still apply when the applications are integrated onto
the platform.

The remainder of the paper is structured as follows. We start by introducing
related work in Section 2. Next, the problem domain is described in Section 3.
Section 4 gives an overview of the CoMPSoC platform and the concepts behind it.
Thereafter, the architectural elements of the hardware platform are presented in
Section 5, followed by a description of the software platform in Section 6. We show
how these building blocks come together in our SoC design flow in Section 7. In
Section 8, we demonstrate the benefits of CoMPSoC by mapping two applications
to a platform instance. Finally, conclusions are drawn in Section 9.

2. RELATED WORK

We review related work in a bottom-up fashion, starting from the NoC architecture,
and moving towards the system-level architecture and design flow.

Much work focus on generating, exploring, evaluating, and comparing NoC ar-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 5

chitectures and instantiations [Benini 2006; Genko et al. 2005; Bartic et al. 2004;
Moraes et al. 2004; Goossens et al. 2005; Jantsch 2006; Liang et al. 2000], a few
of which have been demonstrated on FPGA [Genko et al. 2005; Bartic et al. 2004;
Moraes et al. 2004; Kumar et al. 2007]. Most networks do not offer composability,
as they implement only NRT services [Genko et al. 2005; Moraes et al. 2004] or
employ arbitration schemes that bound but do not eliminate interference between
applications [Bartic et al. 2004; Benini 2006]. Composable NoC architectures are
introduced in [Jantsch 2006; Goossens et al. 2005; Liang et al. 2000]. The works,
however, focus only on the NoC internals.

A large body of research presents application-specific [Vercauteren et al. 1996;
Baghdadi et al. 2001] and domain-specific [Leijten et al. 2000; Nieuwland et al.
2002; Kopetz et al. 2007; Bekooij et al. 2004] multi-processor architecture tem-
plates. Of these works, a majority focus on the signal-processing domain [Ver-
cauteren et al. 1996; Leijten et al. 2000; Nieuwland et al. 2002; Bekooij et al. 2004],
while [Kopetz et al. 2007] is tailored for safety-critical applications in the auto-
motive and aerospace domain. A specific communication model and protocol is
used in [Vercauteren et al. 1996; Leijten et al. 2000; Nieuwland et al. 2002; Bekooij
et al. 2004], whereas [Baghdadi et al. 2001] leaves this choice open. In addition
to the hardware architecture, [Nieuwland et al. 2002] and [Baghdadi et al. 2001]
present libraries for synchronisation and communication between tasks. The archi-
tecture templates in [Vercauteren et al. 1996; Leijten et al. 2000; Baghdadi et al.
2001; Nieuwland et al. 2002] are not composable, and hence introduce resource
dependencies between the applications in the system.

Composable MPSoC architecture templates are presented in [Bekooij et al. 2004;
Kopetz et al. 2007]. The time-triggered platform proposed in [Kopetz et al. 2007]
includes error correction and redundancy, which requires logical synchronicity and
a global notion of time. Moreover, the RT guarantees and composability requires
a priori-known worst-case execution times for the tasks, and communication that
is taking place at a priori-determined instants [Kopetz and Bauer 2003]. Addition-
ally, the work uses an idiosyncratic communication protocol, and does not specify
a memory consistency model. Similar to [Bekooij et al. 2004], we consider event-
triggered systems, optimised for streaming communication, but with support for
a range of communication paradigms and programming models, where back pres-
sure [Wiggers et al. 2007], as a result of full buffers, is taken into account, and
where we can deliver conservative performance guarantees based on dataflow anal-
ysis techniques. Extending both [Bekooij et al. 2004] and [Kopetz et al. 2007],
we demonstrate an actual composable and predictable MPSoC implementation, re-
alised on FPGA, with applications mapped to it, and show how to implement a
composable architecture, without a global notion of time, and without placing any
restrictions on the applications.

In this work, we introduce the CoMPSoC template and demonstrate the divide-
and-conquer design methodology it enables. The work builds on an existing design
flow [Kumar et al. 2007] that uses a composable NoC [Goossens et al. 2005] and a
customisable processor core [Silicon Hive 2007]. In contrast to [Kumar et al. 2007]
that focuses only on architecture generation, we combine the NoC and processor
cores with: 1) a composable memory controller, thus forming a complete tile-based

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

6 · Andreas Hansson et al.

MPSoC architecture, with 2) platform support libraries [Hansson and Goossens
2007], 3) libraries for synchronisation and communication [Nieuwland et al. 2002],
and 4) tools for formal verification [Wiggers et al. 2007]. We demonstrate how
the resulting CoMPSoC platform simplifies system-level design by mapping actual
applications to a platform instance.

3. PROBLEM DESCRIPTION

Our aim is to provide a hardware and software platform that:

(1) enables performance guarantees for RT applications,

(2) allows independent analysis and verification of all applications,

(3) supports multiple application domains, and

(4) offers run-time reconfigurability for many use-cases.

To enable RT analysis (Item 1), we use a predictable architecture where it is
possible to guarantee lower bounds on performance, further discussed in Section 4.1,
and formal analysis using a MoC that is monotonic [Poplavko et al. 2003] and
captures the applications, the platform and the mapping decisions with a good
accuracy, i.e. with a tight worst case [Moonen et al. 2007].

Independent application analysis and verification (Item 2) is accomplished by
a composable architecture that eliminates all interference between applications, as
discussed in Section 4.2. Composability has stringent implications for the man-
agement of all resources that are shared by multiple applications, in our case: 1)
the interconnect, and 2) shared on-chip and off-chip memories. Note that the pro-
cessor tiles are not shared between applications in this work, a limitation that is
elaborated on in Section 5.3.

The application support (Item 3) is addressed by: 1) not basing the RT guar-
antees and isolation on the concepts of a time-triggered architecture, but instead
use an event-triggered architecture with budget enforcement that does not place any
restrictions on the applications, 2) using industry-standard interfaces and program-
ming languages, 3) offering a range of communication paradigms, i.e. Distributed
Shared Memory, Message Passing and stream-based communication, 4) adhering
to a well-known memory consistency model, and 5) supplying platform middleware
for inter-processor communication. The aforementioned properties are returned to
in Sections 5 and 6, where we present the building blocks of the hardware and
software platform, respectively.

Run-time reconfigurability (Item 4) is offered by: 1) basing the platform on
software-programmable hardware components, i.e. the processors and the SoC in-
frastructure, and 2) by allocating resources such that an application can be added
and removed without affecting the other applications running concurrently. We
return to these topics in Section 7.

4. PLATFORM OVERVIEW

In this section we introduce the concepts of predictability and composability and
highlight the differences between these orthogonal system properties. We end this
section with a discussion of the current limitations of our proposed platform.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 7

4.1 Predictability

Predictability is needed to be able to guarantee that RT requirements are met for
FRT applications, thus delivering a desired user-perceived quality or living up to,
e.g. latency requirements in wireless standards. To provide predictable sharing of
resources, the platform uses hardware resource budget enforcement [Mercer et al.
1994] to give a lower bound on resource availability, e.g. by providing a minimum
bandwidth and maximum latency in a NoC [Goossens et al. 2005; Jantsch 2006].
The architecture thereby bounds the interference between applications. In our plat-
form the enforcement is implemented using preemptive arbitration in all shared
resources [Bekooij et al. 2004]. With a preemptive scheduler, applications are in-
terrupted when their resource allotment is depleted. Note that using preemptive
schedulers is not a necessary requirement for budget enforcement. It does, however,
ease application integration as it removes the need for finding conservative worst
cases, which is difficult and even undesirable for SRT and NRT applications [Abeni
and Buttazzo 2004], and makes it impossible for a misbehaving or ill-characterised
application to invalidate another application’s bounds. To enable preemption, the
application designers must avoid shared slave locking [ARM Limited 2003] (depre-
ciated in the AXI standard), or only lock slaves for finite known times.

To determine bounds on the temporal behaviour of an application, not only the
architecture, but also the tasks themselves must fit in a MoC that allows ana-
lytical reasoning about relevant metrics. Predictability thus places limitations on
the application. In addition, the MoC must be monotonic, i.e. a reduced task
execution time cannot result in a reduction of the throughput or latency of the
application [Poplavko et al. 2003]. Without monotonicity, a decrease of the execu-
tion time on the task level may cause an increase on the application level [Graham
1969]. To benefit from the bounds provided by a predictable platform, the MoC
must be free of these types of scheduling anomalies. Dataflow analysis [Sriram and
Bhattacharyya 2000], used in this paper, is an example of a monotonic MoC.

4.2 Composability

In a predictable platform, an application can be: 1) given more resources, and 2)
allocated resources at an earlier point in time, both as the result of another applica-
tion’s behaviour. This is, for example, the case when using traditional round-robin
arbitration, common in contemporary SoC infrastructures. While the additional
resources or earlier service might seem positive at first, for a general application,
earlier service for an individual task may lead to reduced performance on the ap-
plication level, as already discussed. Additionally, the extra budget an application
might get (at many possible points in time) depends on the other applications in
the system. As illustrated next, this has negative implications, both on the design
of the application, and its behaviour when integrated in the system.

Consider an Independent Software Vendor (ISV) that is asked to develop a SRT
video decoder for a platform with a predictable (but not composable) infrastructure.
To simplify the application design process, a processor is dedicated to the applica-
tion in question, but the SoC infrastructure, i.e. the NoC and memories, are shared
with other applications. As a result of the sharing, the ISV must integrate also these
applications to verify that the desired deadline miss rate of the video decoder is not

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

8 · Andreas Hansson et al.

violated for a chosen set of input sequences. If the video decoder is analysed in
isolation, the quality perceived during development and the quality perceived by
the end user, when the application is integrated on the platform, could differ signif-
icantly. Furthermore, the analysis must cover multiple use-cases and variations due
to input-dependent behaviour of other applications. The monolithic analysis both
leads to an explosion of the behaviours to cover, and requires the entire platform to
be included in the analysis, which negatively impacts simulation speed [Rowen and
Leibson 2004]. Hence, the dependency on other applications, and their behaviours,
complicates the protection and concurrent engineering of IP.

In addition to complicating the design of SRT and NRT applications, predictabil-
ity alone also leads to problems after integration, as additional resources may im-
prove the miss rate. While this might seem positive at first, a fluctuating miss rate
is not necessarily good. The accelerated display of images can appear unnatural
and unpleasant [Abeni and Buttazzo 2004], and rapidly changing quality levels are
perceived as non-quality [Bril et al. 2001; Wüst et al. 2005].

To enable independent analysis and verification for all applications, RT or not,
we eliminate the interference between applications completely. We refer to a sys-
tem where applications do not influence each other as composable. Composabil-
ity is a well-established concept in systems used in the automotive and aerospace
domains [Avionics Application Software Standard Interface 1997; Rumpler 2006].
There, however, it is traditionally achieved by not sharing any resources between
applications. For a system with shared resources to be composable, all those re-
sources must guarantee that every application enjoys the same service independent
of whether other applications are present and how they behave. In time-triggered
architectures [Kopetz 1997], this is established by placing restrictions on the appli-
cations, i.e. only allowing applications for which a static schedule can be derived
at design time, and the interfaces of the components are fully specified in the value
domain and in the temporal domain [Kopetz and Bauer 2003]. This is an unrea-
sonable assumption for many applications in the consumer-electronics domain, and
instead, we completely remove the uncertainty in resource supply by using hard
resource reservations [Rajkumar et al. 1998], where the amount of service and the
time at which an application receives its service is independent of other applications.
One illustrative example of composable resource sharing is the Time Division Mul-
tiplexing (TDM) arbitration used in several NoCs [Liang et al. 2000; Goossens et al.
2005; Jantsch 2006].

In the resulting platform: 1) It is impossible to create cyclic resource depen-
dencies between applications that would lead to deadlocks, as shared resources are
always made available after a known and finite time that is independent of other
applications. 2) There is no potential for denial-of-service attacks between appli-
cations, as one application can never negatively (or positively) affect the service
given to other applications. This also makes it impossible to observe changes in
behaviour caused by other applications. 3) Probabilistic analysis, e.g. average-case
performance or deadline miss rate, during the application design gives a good in-
dication of the performance that is to be expected after integration, as the virtual
platform, i.e. the resources available, are the same during both applications design
and integration. 4) Design and debugging of applications can be done in isolation,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 9

with higher simulation speed and reduced debugging scope. This is possible as only
the virtual platform assigned to the application in question has to be included in
the simulation. Everything that is not part of the application can be excluded.
5) IP of different ISVs does not have to be shared, nor the input stimuli. This also
follows from the fact that the applications sharing the system cannot affect each
other.

Note that predictability and composability are orthogonal properties. For an
illustrative example, consider a system with two processors and a bus that connects
them both to a shared memory, with two different applications mapped to the
processors. If the memory port is shared using composable arbitration, as later
described in Section 5.2, but the processors are running a non-RT Operating System
(OS), then the platform is composable and not predictable, because the applications
do not influence each other, but the OS makes it difficult, if not impossible, to
derive useful bounds on the worst-case behaviour. In contrast, if the two processors
are both predictable VLIW cores without any caches and operating systems, as
exemplified in Section 5.3, but the memory port is shared using round-robin, then
the platform is predictable and not composable, because the applications influence
each other in the shared resource, but useful bounds on the interference can be
computed.

Composability, unlike predictability, places no requirements on the applications,
and there is no need to characterise the application behaviours. Once resources are
reserved, the CoMPSoC platform guarantees isolation, placing no restrictions on
how the various applications use their share of the resources. As a consequence of
the isolation, the capacity unused by one application cannot be given to another
one. The allocation of resources to applications is, however, configurable, and al-
lows adaptation to requirements at the moment an application is started or enters
a new mode of operation. Additionally, slack can be distributed within one applica-
tion, thus distinguishing inter-application and intra-application arbitration [Hans-
son et al. 2007a]. It remains a problem to determine an appropriate amount of
resources to reserve, especially in the presence of varying requirements. We elabo-
rate further on this in Section 8.1, when discussing the mapping of applications to
a platform instance.

4.3 Limitations

In contrast to [Jantsch 2006; Kopetz 1997], that limit rather than remove interfer-
ence, our definition of composability does not allow any interference at all. The
reason for our strict definition is that, in the general case, it is not possible to say
what effects a small perturbation on the task level would have on the complete ap-
plication. In our future work we aim to relax the current restrictions and investigate
composability on higher levels of abstraction.

In our current platform, the processing elements are not shared between applica-
tions. Note, however, that this is due to the architecture of the VLIW cores that
are used, and not a fundamental limitation.

The platform, as demonstrated in this paper, does not contain caches. This is also
a result of the choice of processor architecture. Caches introduce two problems that
must be addressed, namely composable sharing between applications, and cache
coherency. The platform currently supports software-based cache coherency [Brand,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

10 · Andreas Hansson et al.

Private data

SW tasks

Streaming API

Scheduler

HW Abstraction Layer

Circular buffers

Buffer administration

VLIW

NoC

Peripheral SRAM

Host CPU

Streaming I/O

memory

Bus I/O

Data
memory

VLIW core

Program

Fig. 3. Architecture template.

van den and Bekooij 2007], and we envision that future generations of our platform
will include processors with both instruction and data caches. As long as a cache
is not shared by applications, it can be used without further considerations in the
current platform. Sharing of caches, however, offers more challenges. In conclusion,
the inclusion of caches and sharing of caches and processors are outside the scope
of this work, and will be addressed in future work.

Our current CoMPSoC instance uses TDM arbiters to achieve predictability and
composability. This is, however, not a requirement. As long as all arbiters can be
characterised as Latency-Rate servers [Stiliadis and Varma 1998] it is possible to
eliminate the influence of other applications, i.e. make the arbitration composable,
by delaying the notification that an action is complete. Thus, it is possible to use
e.g. rate-controlled priority-based arbiters [Akesson et al. 2007], where unlike TDM
it is possible to distinguish between the allocated latency and rate. We consider
the inclusion of such arbiters and delay mechanisms future work.

5. HARDWARE PLATFORM

Our platform template, depicted in Figure 3, is built around processor and memory
tiles [Culler et al. 1999], interconnected by a NoC. The SoC infrastructure, i.e. the
NoC and the memory tiles, are covered in Sections 5.1 and 5.2, where we also show
how these building blocks enable application composability and predictability. The
processor tiles, are further detailed in Section 5.3, where we describe how they
enable predictability. In addition to the aforementioned blocks, the system also
comprises peripheral I/O functionality and a host tile. The functionality of the
latter is further covered in Section 6.2 where we discuss the host software.

5.1 Network

The NoC interconnects all the tiles in the system and is thus shared by multiple
applications. Sharing takes place in the network interfaces (NI), in the routers,
their buffers and the network links. In the Æthereal NoC, predictability and com-
posability is provided on the level of connections that realise the communication
channels between two IP ports2. The IPs present transactions to the NIs, that are
serialised and packetised before they are sent over the router network. The arbiters
in the NoC are preemptive on the level of flow control units (flits), thus enabling

2The fine grain of composability and predictability is sufficient, but not necessary. It is possible to
distinguish composable inter-application and predictable intra-application arbitration to reduce

the average-case latency within applications [Hansson et al. 2007a].

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 11

1,3

2

2,0

3
cA

cA

RR

IPB

NIB

1

0,2

IPA NIA

3

2

1

0

cB
3

2

1

0

Fig. 4. Contention-free routing.

guarantees independent of other connections. The injection of flits is regulated by a
TDM table in the NI such that no flits contend [Goossens et al. 2005], as illustrated
in Figure 4. In the figure, there are two IP cores, IPA and IPB , that communicate
over the network of routers (R), using the communication channels cA and cB , in-
dicated by a solid and an open-headed arrow, respectively. Channel cA has slots 0
and 2 reserved in the table, and channel cB has slot 1 reserved in the table. The
TDM table has the same period throughout the NoC, in this case 4, and works on
a fixed slot size. End-to-end flow control is used to avoid buffer overflows in the
NIs.

The Æthereal NoC has three important properties that makes it suitable for
CoMPSoC. First, and foremost, it enables composability and predictability by em-
ploying a flit-based TDM scheduling mechanism [Goossens et al. 2005]. Second,
the architecture is run-time re-programmable, and allows different partitioning of
the resources for the different use-cases [Hansson and Goossens 2007]. Resources
are reserved such that applications can be added and removed without affecting the
other applications running concurrently [Hansson et al. 2007b]. Third, to enable
programmers to reason about ordering when using multiple memories, the NoC im-
plements release consistency [Gharachorloo et al. 1990], using responses to assert
that (barrier) operations are complete. That is, a master is notified when an oper-
ation has been executed by the receiving slave and can wait for these responses to
realise a specific consistency model. This enables both Distributed Shared Memory
and Message Passing.

5.2 Memory tiles

Like the network, the memory tiles are shared by multiple applications. Sharing
takes place in the slave port of the memory controller, as illustrated in Figure 5.
Each shell in the figure is the end point for a connection to the memory tile,
originating from a remote master port, i.e. of a processor tile or the host tile. In
the memory tiles, predictable and composable sharing is thus provided between
master ports by the bus that connects the shells to the controller.

To achieve composable and predictable sharing of the memory port, the bus ar-
biter employs a TDM-based arbitration scheme, with time slots assigned to the
different masters (shells). Note, however, that the arbitration in a memory tile
is completely decoupled from the arbitration in the NoC (and any other memory
tiles). Furthermore, in contrast to the NoC, where the unit of preemption is always

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

12 · Andreas Hansson et al.

accept

valid

data

accept

addr

rw n

data in

data out

valid

accept

addr

rw n

addr

rw n

data in

data out

valid

accept

data

valid

accept

valid

data

accept

addr

rw n

data in

data out

valid

accept

data

data

valid

master port slave port

M
u
lt
i-
m

as
te

r
b
u
s

w
it
h

T
D

M
sc

h
ed

u
le

r

S
R
A
M

co
n
tr

ol
le

r
w

it
h

sh
ar

ed
sl
av

e
p
or

tNI

re
q
u
es

t

S
h
el

l
w

it
h

sp
lit

te
r

re
sp

on
se

re
q
u
es

t
re

sp
on

se

O
n
-b

oa
rd

S
R
A
M

S
h
el

l
w

it
h

sp
lit

te
r

d
a
ta

2

a
d
d
re

ss

cm
d
/
fl
a
g
s

a
d
d
re

ss

d
a
ta

1

d
a
ta

2

d
a
ta

3
d
a
ta

1

cm
d
/
fl
a
g
s

Fig. 5. Memory tile architecture.

a fixed-size flit, the masters connected to the memory issue transactions ranging
from pure Memory Mapped I/O (MMIO), with a granularity of one word, to Mem-
ory Mapped Block Data (MMBD), with a block size limited only by the number
of bits used in the physical interface. Sizing the time slots for the worst-case burst
size leads to long latencies, large buffering requirements [Coenen et al. 2006], and
under-utilisation of the memory port if that burst size is not used by all the mas-
ters that share the memory. To overcome these issues, the shells break multi-word
MMBD transactions into multiple one-word MMIO accesses, thus splitting and re-
assembling MMBD bursts transparent to the masters using the memory. The shells
also determine when requests can be executed in a non-blocking fashion. That is,
when data and space is available in the NI, for a write and read respectively. This
way, it is guaranteed that a transaction finishes in a known and finite time once it
is presented to the bus arbiter.

The proposed scheme has three limitations. First, each master need a dedicated
shell at the slave side. The area overhead is only around 2500 µm2 per shell in
a 90 nm CMOS technology, but the maximum amount of masters simultaneously
accessing the memory is fixed at design time. This limitation is further discussed
in Section 7 when describing the design flow. Second, while minimising the amount
of buffering and the service latency, interleaving transactions potentially violates
the atomicity of the protocol used by the IPs. In multi-threaded protocols, e.g.
AXI [ARM Limited 2003] and OCP [OCP International Partnership 2007], the
parallelism between connections can be made explicit via connection and thread
identifiers in the interface. For DTL [Philips Semiconductors 2002], however, that
offers no such functionality, we assume that ordering and atomicity of transactions
is assured by higher-level protocols, such as the C-HEAP API discussed in Sec-
tion 6.1. Third, the proposed architecture is tailored to slaves that enable word-level
interfaces with fixed access times. This fits nicely with the Zero-Bus Turnaround
(ZBT) SRAM, available in our experimental platform. SDRAM controllers, how-
ever, typically require larger bursts and more sophisticated arbitration schemes to

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 13

achieve predictability with a reasonable memory efficiency [Akesson et al. 2007].
We consider it future work to add shared SDRAM to the CoMPSoC template.

5.3 Processor Tiles

The processor tiles are based on Silicon Hive [Silicon Hive 2007] Very Large In-
struction Word (VLIW) processing cores. The cores are customisable, making it
possible to adapt the costs and the performances of the various computation nodes
to a given application, as advocated in [Jerraya et al. 2006; Rowen and Leibson
2004]. The core architecture has a number of characteristics that make it appropri-
ate for the CoMPSoC template. First, the processor core has no caches. Second,
unlike a super-scalar processor, the VLIW has no complicated bypassing or hazard
detection mechanisms. As we will see in Section 8.2, the aforementioned properties
enable us to easily determine the execution time of tasks by analysis of the instruc-
tion schedule of the VLIW. Third, instructions are executed from a local memory
thus removing the latency-critical reads from external memories. Fourth, the core
does not only offer traditional bus-based interfaces, but also FIFO streaming ports.
These two characteristics enables a more efficient mapping to our NoC-based SoC
infrastructure. A more in-depth discussion on these properties follows.

The Silicon Hive cores use a memory-mapped architecture, with support for mul-
tiple Load Store Units (LSU). The master interface on the processor enables reads
and writes to memories external to the processor. As shown in Figure 3, every
processor also has its own private program and data memory. Having memory
distributed over the different processing devices provides higher bandwidth with
lower latency, which results in a higher performance at a lower power consump-
tion [Soudris et al. 2000]. Moreover, the memories are accessible through a slave
port on the processors bus interfaces, forming a distributed memory together with
the dedicated memory tiles. Arbitration between multiple external master ports is
implemented similar to the memory tiles, as described in Section 5.2.

In addition to the traditional LSUs, the processor template also has Send-Receive
Units (SRU), that act as instruction-mapped First-In First-Out (FIFO) streaming
interfaces [Vercauteren et al. 1996; Leijten et al. 2000]. For applications that use
FIFO-based communication, e.g. an audio subsystem that works on streams of
samples, it is thus possible to match the architecture to the application, as advo-
cated in [Jerraya et al. 2006]. The address-less communication has two additional
benefits. First, only data is communicated across the NoC and no commands, flags
or addresses [Radulescu et al. 2005]. This removes the need for protocol shells and
uses the NoC more efficiently. Second, it becomes impossible to corrupt memory
contents of another tile.

The major limitation of the Silicon Hive core is that the processor does not
support preemptive multi-tasking. It is hence not possible to enforce budgets in
either a predictable, nor composable way. As a result, in this work, we do not
allow multiplexing of task belonging to different applications on the same processor.
Note, however, that we allow processor sharing between tasks belonging to the same
application, e.g. by a static-order scheduling strategy, where the order in which
the tasks execute are determined before the application is started [Bekooij et al.
2004]. An additional limitation, albeit with important positive consequences, is the
absence of caches, as already discussed in Section 4.3.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

14 · Andreas Hansson et al.

6. SOFTWARE PLATFORM

While the hardware components play an important role, the platform also contains
software. First, application middleware, i.e. libraries that facilitate inter-processor
communication, further discussed in Section 6.1. Second, host software that enables
a system designer to orchestrate the applications running on the platform and the
resources allocated to them. The latter is discussed in Section 6.2. Third, and
most importantly, the design flow that helps in defining, realising and verifying the
system. This software component is discussed in Section 7.

6.1 Application Middleware

To facilitate synchronisation and communication between tasks running on the
processors, an implementation of the C-HEAP [Nieuwland et al. 2002] protocol3

is offered as a part of the CoMPSoC platform. The protocol specifies an API for
token-based communication, built around shared memory. Synchronisation is done
using pointers in a memory-mapped FIFO-administration structure.

C-HEAP fits well with CoMPSoC for several reasons. First, it does not use inter-
rupts or slave locking for synchronisation. With interrupt-based synchronisation, it
is difficult or even impossible to bound the frequency of interrupts and the execu-
tion time incurred by them [Kopetz and Bauer 2003]. Second, the local memories of
the cores are suitable for mapping communication buffers to, enabling low-latency
access to data, random access in acquired data and space, and changes in element
size and FIFO length even after final silicon realisation. Third, by keeping two
copies of the FIFO administration, both at the producer and consumer side, all
read operations are local and only posted write operations traverse the NoC (also
known as the information push paradigm [Kopetz and Bauer 2003]). The advantage
of only writing and never reading remotely is the reduced impact of the interconnect
latency. We exemplify the use of the C-HEAP implementation in Section 8.2.

6.2 Host software

In our platform, all administration of the processor tiles and the control registers of
the communication infrastructure is done by a central host tile, as shown in Figure 3.
The host functionality is implemented in portable C libraries [Silicon Hive 2007;
Hansson and Goossens 2007], to be executed on e.g. an embedded ARM processor.
On the instance exemplified in Section 8 this software runs on a PC, interfacing
with the SoC through an on-board USB interface. The key characteristics of the
administration hardware and software that are important for CoMPSoC are: 1)
Only the host has the ability to configure the NIs and the memory arbiters. Hence,
a design fault or a hardware fault in the IP cannot affect the service given to
any of the applications in the system. Thus, the host in our system corresponds
to the trusted network authority in the terminology of [Kopetz et al. 2007]. 2)
The configuration data itself is carried by the network, enjoying the same isolation
as the normal application traffic [Hansson and Goossens 2007]. The configuration
connections are efficiently implemented using the concept of channel trees [Hansson
et al. 2007a].

3C-HEAP in its entirety, is not only a protocol for cooperation and communication between tasks,

but also a top-down design methodology and an architectural template [Nieuwland et al. 2002].

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 15

90
 m

in
1

m
in

30
 m

in

Core RTL

Peripheral description

System BIT

Network RTL

System description

foundation

Peripheral RTL

Cores and NoC EDF

make vhdl fpga

DK Design Suitesynplify

Core description(s)

Peripheral EDF

make vhdl

(a) Hardware flow

1
m

in
1

m
in

NoC config code

make c-configmake install

Application code

System descriptionCore description(s)

Core microcode

Compiler and linker

Host binary

make fpga

(b) Software flow

Fig. 6. Overall design flow.

7. DESIGN FLOW

In this section, we describe how the hardware and software building blocks are
instantiated from high-level platform descriptions and how they come together in
a CoMPSoC instance. In CoMPSoC, in contrast to best-effort architectures, the
design flow has a particularly prominent role, as the hardware platform, i.e. the
VLIW cores, the NoC and the bus arbiters, move the complexity of resource allo-
cation from run time to design and compile time. Using the tool flow, depicted in
Figure 6, complete MPSoC designs are generated in a matter of hours.

The following properties of the design flow are particularly important for CoMP-
SoC’s design methodology: 1) the RT requirements are described per application,
2) and on a level that is understood by the application designer, e.g. through con-
straints on the periodicity of sources and sinks rather than what TDM slots to use
in an arbiter or what link to use in the NoC, and 3) it is the responsibility of the
design flow to find a resource allocation with seamless transitions between all valid
use-cases. A brief description of the individual parts of the flow follows, with more
details to be found in e.g. [Goossens et al. 2005; Hansson et al. 2007b; Kumar et al.
2007; Silicon Hive 2007].

The hardware flow, depicted in Figure 6(a), takes its starting point in a System
description file. This file is used to generate the appropriate protocol-conversion
shells for the NIs [Radulescu et al. 2005], generate the HDL for the memory tile(s)
and peripherals (Peripheral description), and instantiate the Silicon Hive cores
used in the design according to their individual descriptions (Core description(s)).
Additionally, the flow constructs a NoC instance, with NIs and routers, and sizes
the TDM wheels of the NoC and the bus arbiters [Hansson et al. 2007b]. For the last
step, the maximum number of concurrent connections to and from all the IP ports
in the system is assumed to be known at design time. The number of hardware
resources is thus fixed, but the actual assignment to applications is reconfigurable.
The entire HDL description is generated from a high-level specification in a few
minutes, together with a transaction-level simulation model for each component,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

16 · Andreas Hansson et al.

making an accurate system model available early in the design schedule, so detailed
Very Large Scale Integration (VLSI) and software implementations can proceed in
parallel, as advocated in [Rowen and Leibson 2004].

The starting point of the software flow, depicted in Figure 6(b), is the same
description of the cores, from which the corresponding assembler and linker are
generated. These are then used to compile the source code that is to be run on the
processors.

In parallel with the core microcode, the code needed to configure the cores and
the network is produced and linked together with the Hive Run-Time (HRT) and
Æthereal Run-Time (ART) APIs [Hansson and Goossens 2007]. The NoC configu-
ration software is derived based on a description of the communication requirements
of the various applications and the valid application combinations [Hansson et al.
2007b]. The requirements are given per connection, specifying communication be-
tween a master port and a slave port, the required (minimum) bandwidth and the
(maximum) allowed latency. In this work, the various configurations are determined
at design-time, based on the concept of partial dynamic (re)configuration [Hansson
and Goossens 2007], with seamless transitions between use-cases [Nieuwland et al.
2002; Hansson et al. 2007b]. Note that it is possible to change the NoC configu-
ration after the hardware is fixed (at compile time rather than design time), and
thus accommodate new or modified applications, assuming that the requirements
do not exceed the resources that are available.

8. EXPERIMENTAL RESULTS

In this section, we demonstrate how two applications, a JPEG decoder and an audio
post-processing filter, are developed and integrated on an instance of the CoMPSoC
platform. The JPEG decoder has a data-dependent behaviour, which is typical for
compression and decompression functions [Leijten et al. 2000]. Thus, the amount
of data produced or consumed, and the processing delay varies over time. The
decoder has no RT requirements but should produce output as fast as possible given
its allocated resources. The audio filter, on the other hand, has FRT requirements,
as failure to consume and produce samples at 48 kHz causes noticeable clicks in the
audio output.

The platform instance to which we map the two applications is depicted in Fig-
ure 7(a) and contains:

—Three VLIW cores, each with 32 kB program memory and 32 kB data memory.

—An instance of the Æthereal NoC, with guaranteed services only.

—A Cirrus Logic audio codec, connected via hardware FIFOs.

—A single SRAM memory controller.

—An LCD display controller.

—A host interface.

The platform instance has only one shared memory. While this is common, either
for cost reasons or due to a limited number of pins [Leijten et al. 2000], a single
shared memory is inherently non-scalable, as the performance is directly affected
by the amount of applications sharing it [Jantsch 2006]. It should be noted that our

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 17

Host

Video I/OAudio I/O SRAM

VLIW1 VLIW2 VLIW3

Æthereal

slave

mem

FIFO master

sl
a
ve

slave

master

masterslave

mem

FIFOmaster

FIFO

slave

master

FIFO

FIFO

slave

FIFO

slave slave

slave

mem

FIFO master

masterFIFO

master

(a) Architecture

VLIW3, Video I/O

Task Tile(s)
admin Host, SRAM

ADC
filter
DAC Audio I/O

Audio I/O

VLD
RLD
IZZ
IQ
IDCT
CC

VLIW2
VLIW2
VLIW2
VLIW3

VLIW1, SRAM

VLIW2, SRAM

(b) Task mapping

Fig. 7. Experimental platform instance.

template does not constrain the amount of memories, but currently only supports
SRAMs, as already discussed in Section 5.2.

8.1 Application mapping

The starting point for the JPEG decoder is sequential C code that we split into
multiple tasks: Variable-Length Decoding (VLD), Run-Length Decoding (RLD),
Inverse Zig-Zag (IZZ), Inverse Quantisation (IQ), Inverse Discrete Cosine Trans-
form (IDCT), and Colour Conversion (CC). Communication between the tasks is
implemented using the C-HEAP API, with FIFO data mapped to circular buffers
in the local memories of the processor tiles. The original code is easily ported to
the platform, requiring only an explicit mapping of variables and communication
buffers to memories. The VLD, RLD, IZZ and IQ are mapped to one processor, as
shown in Figure 7(b), occupying 24.3 kB program memory and 6.7 kB data memory
(not counting the C-HEAP FIFOs). A second processor executes the IDCT and
CC, requiring 13.4 kB of program memory. The encoded input image is read from
background memory by the first core, and written to the frame buffer by the second
core, both using shared memory communication. The JPEG decoder relies solely
on the bus interfaces of the processor, with four network connections realising the
communication: one each for accesses to the SRAM and Video I/O, and two for
the inter-processor communication.

The audio post-processing application, shown in Figure 8(a), comprises three
tasks. First, the source Analog to Digital Conversion (ADC), periodically produc-
ing signed 16-bit Pulse Code Modulated (PCM) stereo samples. Second, the actual
filter task, executed on one of the cores. Third, the Digital to Analog Conversion
(DAC), which acts as a periodic sink. The filter task receives input samples from
the ADC via the NoC and adds a two-tap reverberation effect by mixing in past
samples. The output is then sent both to the DAC and stored in the background
memory for future mixing with the input. The processor uses FIFO streaming for
the communication with the ADC and DAC, and shared memory communication
for reading and writing reference samples in the background memory. The filter ap-
plication thus requires three connections, and has one slot allocated in the memory
tile.

Network resources are allocated to the two different applications using the UMARS
tool [Hansson et al. 2007b]. The amount of resource needed for the filter applica-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

18 · Andreas Hansson et al.

tion is determined based on its FRT requirements and strictly periodic behaviour
(as described in Section 8.2). For the JPEG decoder, the amount of resources re-
quested are based on rough estimates of how much data needs to be communicated
on average between the different tasks. The performance of the decoder can thus
be improved by asking for additional resources, a trade-off left for the application
designer. Additional resources are allocated to enable the host to load the program
memories of the cores, configure the NoC and memory controller, and load encoded
JPEG images into the background memory.

The complete architecture is mapped to a Xilinx Virtex4 LX-160 FPGA, using
Synplify 8.8 and Foundation 9.1. The resulting design occupies 96 (33%) block
RAMs, 25 (26%) DSPs, 18397 (13%) flip flops, and 57682 (42%) LUTs. The ob-
tained maximum clock frequency is 48 MHz, and the tools estimate a total equiv-
alent gate count of roughly 7.8 Mgates. In addition to logic on the FPGA, two
on-board 8 MB SRAM modules are used, one for the shared background memory,
and one for the frame buffer. The memories, the audio codec, the USB µcontroller
and the display driver are all integrated on the board level, with only wrappers
integrated on the actual FPGA.

8.2 Performance analysis and verification

With the mapping given, we proceed to analyse the performance of two applica-
tions. The analysis is done independently for the two applications, first looking
at the JPEG decoder, and then the filter application. This is made possible by
the composability of CoMPSoC, and is a major qualitative difference with existing
MPSoC platforms.

The average-case performance of the JPEG decoder is analysed by instrumenta-
tion on the actual FPGA implementation. For various 1 Mpixel images, we experi-
ence execution times ranging from 1.4 s, for a monochrome image, up to 2.8 s. The
mapping to processors is such that the execution time is largely determined by the
number of (stalling) read accesses to background memory and hence the size of the
encoded image. Increasing the size of the FIFOs between the tasks therefore only
has a negligible impact on the execution time, saturating at 10% improvement.

Next, we formally verify the RT performance of the audio filter application. The
worst-case analysis of the complete application is made possible by the predictabil-
ity of CoMPSoC. We choose to model the filter applications and its mapping to
the architecture as a Homogeneous Synchronous Dataflow (HSDF) [Sriram and
Bhattacharyya 2000] graph. The choice of a MoC is up to the designer, but many
signal-processing applications can be represented by dataflow graphs and the ex-
pressivity of HSDF is sufficient for the filter application.

The first step in constructing the model is to transform the task graph, in Fig-
ure 8(a) to a dataflow graph. In our case this is a one-to-one transformation, and
the resulting graph has exactly the same topology as the aforementioned task graph.
In the dataflow graph, the nodes, called actors, correspond to the tasks, and edges
show data dependencies between them. Every edge can carry an infinite number
of tokens between two actors, and can contain initial tokens (present on the edges
at start time). Actors are started after sufficient input data and output space is
available, such that they can finish their execution without having to wait for ad-
ditional input data or output space. A self-edge with one initial token is used to

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 19

ADC filter DAC

(a) Task graph

ADC NoC filter NoC DAC

32

ET = 35
48MHz ET = 35

48MHz ET = 1
48kHzET = 317

48MHzET = 1
48kHz

32

1 1

32

1 1 1

32

(b) HSDF model

Fig. 8. Task graph and dataflow model of the audio post-processing filter.

model that the previous execution must be finished before the next execution can
start. In Figure 8(b), the original dataflow graph is extended with actors and edges
that model: 1) the network connections between the tasks, here modelled by two
additional actors, and 2) the finite buffers that connect the different actors, seen
as 32 initial tokens on the backward edges. For simplicity, the NoC is modelled
as a constant forward latency communication channel. A more detailed (and less
conservative) dataflow model of the Æthereal NoC is presented in [Hansson et al.
2008].

The next step, with the topology of the dataflow graph in place, is to determine
the Execution Time (ET), i.e. the maximum time between start and finish of one
execution, of the actors. The ET of an actor does not include the time a task has
to wait for input data and output space. As an example, the ET of the ADC and
DAC actors is determined by the sampling rate, which in our case is 48 kHz. The
ET of the NoC actors is determined by: 1) the size of the sample which in our case
is a single word, 2) the latency of the NI, which for streaming data is 1 cycle, in
both the sending and receiving end 3) the worst-case waiting time for a TDM slot,
here 8 slots, each of size 3 (the flit size), and 4) the latency of the router network,
in our case 3 hops, with a flit size of 3. This accumulates to 1 + 8 × 3 + 3 × 3 +
1 = 35 cycles, at 48 MHz, for every sample sent. To conservatively model the NoC,
we also take the effects of end-to-end flow control into account. In this case, the
35 cycles are sufficient to guarantee that all flow control credits are returned before
the succeeding sample arrives.

The ET of the filter task is determined by: 1) the processor on which the task
code executes, 2) the NoC, transporting reference samples to and from background
memory, and 3) the memory tile itself, and the time required to read and write
the required samples. Hence, all three must enable the derivation of conservative
execution times, as discussed in Section 5. The time spent executing instructions
on the processor is determined by analysis of the program flow [Chen et al. 2001].
For every iteration, 83 processor cycles are spent performing arithmetic operations
and accessing local memory. For every execution, two stereo samples (since the
filter relies on a two-tap delay line) are read, and one output sample is written to
the background memory. To determine the execution time of the task we also need
to include the time required to read and write those samples.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

20 · Andreas Hansson et al.

In the memory tile, an eligible request, as discussed in Section 5.2, can potentially
wait for the requests from two other connections to be served (from the host and
the JPEG decoder). Hence, after a setup time of 1 cycle and a complete TDM
revolution of 3 × 3 cycles, an eligible request of one word (one stereo sample) is
guaranteed to be served. The two read requests and the write request also traverse
the NoC. A read request is serialised into 2 words (command/flags and address)
by the NI, and hence requires 1 flit to be sent across the network. With request
serialisation of 2 cycles, one TDM slot reserved, and a 3-hop path this amounts to
2 + 8 × 3 + 3 × 3 + 1 = 36 cycles per request. Read responses carry only one word
of data and also have a latency of 36 cycles. Similarly, a write request occupies
3 words and therefore requires 2 flits, once the packet header is included. With a
serialisation latency of 3 cycles, this conduces to a total time of 3 + 2 × (8 × 3 +
3 × 3) + 1 = 70 cycles. The aforementioned latency is sufficient to guarantee that
all flow control credits are returned before succeeding memory operations start. In
total a conservative ET of the filter is 83 + 2 ×(36 + 10 + 36) + 70 = 317 cycles.

Using the constructed HSDF graph, the algorithm presented in [Wiggers et al.
2007] constructs a conservative periodic schedule. The existence of such a schedule
confirms that the sink and source tasks of the filter application can indeed execute
strictly periodically. Due to monotonicity, a decrease in execution time or start
time can only lead to earlier token production times, and therefore only to an
earlier actor enabling. Indeed, observations of the FPGA implementation confirm
that the ADC and DAC do not suffer from overflow or underflow. We observe this
behaviour irrespective of the presence and input of the JPEG decoder. Moreover, in
HDL simulations, the cycle-level behaviour of the audio filter is identical irrespective
of the images applied to the input-dependent JPEG decoder. Albeit not a formal
proof, this shows that the results of the analysis still apply when the applications
are integrated onto the platform.

In conclusions, the two applications are independently analysed, looking at dif-
ferent metrics, and using different methodologies. Should additional applications
be added to the platform, they are assigned virtual platforms that do not interfere
with the JPEG decoder and the filter applications. Thus, the conclusions we have
drawn, about the average-case behaviour of the JPEG decoder, and the worst-case
behaviour of the filter, are still valid.

9. CONCLUSIONS AND FUTURE WORK

The complexity of system verification and integration is exploding due to the many
applications integrated on a single chip, and their interactions in shared resources.
With a growing part of the functionality implemented in software, real-time require-
ments, and increasing run-time dynamism, it is crucial to offer an architecture that
enables independent analysis of all applications, and reuse of the analysis across
use-cases. We propose a Composable and Predictable Multi-Processor System on
Chip (CoMPSoC) platform template that eliminates interference between applica-
tions through resource reservations. The architectural components are constructed
to offer composability and run-time reconfiguration. On an instance of this hard-
ware and software platform, we demonstrate how composability allows applications
to be analysed and verified independently of one another. Although CoMPSoC is

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 21

aimed at a specific application domain, the presented template supports a wide
range of programming models, and the lessons learnt from its development serve as
a first step towards a system-level design method.

It still remains to include caches and off-chip SDRAM in the template, further
extending the application domain.

REFERENCES

Abeni, L. and Buttazzo, G. 2004. Resource reservation in dynamic real-time systems. Real-Time
Systems 27, 2, 123–167.

Akesson, B., Goossens, K., and Ringhofer, M. 2007. Predator: A predictable SDRAM memory con-
troller. In Proc. CODES+ISSS.

ARM Limited 2003. AMBA AXI Protocol Specification. ARM Limited.

Avionics Application Software Standard Interface 1997. ARINC Specification 653. Avionics Application
Software Standard Interface.

Baghdadi, A., Lyonnard, D., Zergainoh, N., and Jerraya, A. 2001. An efficient architecture model for
systematic design of application-specific multiprocessor SoC. Proc. DATE , 55–63.

Bartic, T., Desmet, D., Mignolet, J.-Y., Marescaux, T., Verkest, D., Vernalde, S., Lauwereins, R.,
Miller, J., and Robert, F. 2004. Network-on-chip for reconfigurable systems: From high-level design
down to implementation. In Proc. FPL. Springer Berlin / Heidelberg.

Bekooij, M., Moreira, O., Poplavko, P., Mesman, B., Pastrnak, M., and van Meerbergen, J. 2004.
Predictable embedded multiprocessor system design. Lecture notes in computer science, 77–91.

Benini, L. 2006. Application specific NoC design. In Proc. DATE.

Brand, van den, J. and Bekooij, M. 2007. Streaming consistency: a model for efficient MPSoC design.
In Proc. DSD.

Bril, R. J., Hentschel, C., Steffens, E. F., Gabrani, M., van Loo, G., and Gelissen, J. H. 2001.
Multimedia QoS in consumer terminals. IEEE Workshop on Signal Processing Systems, 332–343.

Buttazo, G. C. 1977. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications. Kluwer Publishers.

Chen, K., Malik, S., and August, D. 2001. Retargetable static timing analysis for embedded software.
Proc. ISSS , 39–44.

Coenen, M., Murali, S., Rădulescu, A., Goossens, K., and De Micheli, G. 2006. A buffer-sizing
algorithm for networks on chip using TDMA and credit-based end-to-end flow control. In Proc.
CODES+ISSS.

Culler, D. J., Singh, J. P., and Gupta, A. 1999. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann Publishers.

Dutta et al., S. 2001. Viper: A multiprocessor SOC for advanced set-top box and digital TV systems.
IEEE Design and Test of Computers.

Genko, N., Atienza, D., Micheli, G. D., Mendias, J., Hermida, R., and Catthoor, F. 2005. A complete
network-on-chip emulation framework. In Proc. DATE.

Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., and Hennessy, J. 1990. Memory
consistency and event ordering in scalable shared-memory multiprocessors. In Proc. of the Int’l
Symposium on Computer Architecture.

Goossens, K., Dielissen, J., Gangwal, O. P., González Pestana, S., Rădulescu, A., and Rijpkema,

E. 2005. A design flow for application-specific networks on chip with guaranteed performance to
accelerate SOC design and verification. In Proc. DATE.

Goossens, K., Dielissen, J., and Rădulescu, A. 2005. The Æthereal network on chip: Concepts, archi-
tectures, and implementations. IEEE Design and Test of Computers.

Graham, R. 1969. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathemat-
ics 17, 2.

Hansson, A., Coenen, M., and Goossens, K. 2007a. Channel trees: Reducing latency by sharing time
slots in time-multiplexed networks on chip. In Proc. CODES+ISSS.

Hansson, A., Coenen, M., and Goossens, K. 2007b. Undisrupted quality-of-service during reconfigura-
tion of multiple applications in networks on chip. In Proc. DATE.

Hansson, A. and Goossens, K. 2007. Trade-offs in the configuration of a network on chip for multiple
use-cases. In Proc. NOCS.

Hansson, A., Wiggers, M., Moonen, A., Goossens, K., and Bekooij, M. 2008. Applying dataflow analysis
to dimension buffers for guaranteed performance in networks on chip. In Proc. NOCS.

Ivimey-Cook, R. 1999. Legacy of the transputer. In Architectures, Languages and Techniques, B. M.
Cook, Ed. IOS Press.

Jantsch, A. 2006. Models of computation for networks on chip. In Proc. ACSD.

Jerraya, A., Bouchhima, A., and Pétrot, F. 2006. Programming models and HW-SW interfaces ab-
straction for multi-processor SoC. Proc. DAC .

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

22 · Andreas Hansson et al.

Keutzer, K., Malik, S., Newton, A. R., Rabaey, J. M., and Sangiovanni-Vincentelli, A. 2000. System-
level design: Orthogonalization of concerns and platform-based design. IEEE Trans. on CAD of
Integrated Circuits and Systems 19, 12.

Kopetz, H. 1997. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers.

Kopetz, H. and Bauer, G. 2003. The time-triggered architecture. Proceedings of the IEEE 91, 1.

Kopetz, H., Obermaisser, R., Salloum, C. E., and Huber, B. 2007. Automotive software development
for a multi-core system-on-a-chip. Int’l Workshop on Software Engineering for Automotive Systems
(SEAS).

Kumar, A., Hansson, A., Huisken, J., and Corporaal, H. 2007. An FPGA design flow for reconfigurable
network-based multi-processor systems on chip. In Proc. DATE.

Leijten, J., van Meerbergen, J., Timmer, A., and Jess, J. 2000. Prophid: a platform-based design
method. Journal of Design Automation for Embedded Systems 6, 1, 5–37.

Liang, J., Swaminathan, S., and Tessier, R. 2000. aSOC: A scalable, single-chip communications ar-
chitecture. Proc. Int’l Conference on Parallel Architectures and Compilation Techniques (PACT),
37–46.

Martin, G. 2006. Overview of the MPSoC design challenge. In Proc. DAC.

Mercer, C. W., Savage, S., and Tokuda, H. 1994. Processor capacity reserves: Operating system support
for multimedia systems. In Proc. IEEE International Conference of Multimedia Computing and
Systems. IEEE Computer Society Press, 90–99.

Moonen, A., Bekooij, M., van den Berg, R., and van Meerbergen, J. 2007. Practical and accurate
throughput analysis with the cyclo static data flow model. In Proc. MASCOTS.

Moraes, F., Calazans, N., Mello, A., Möller, L., and Ost, L. 2004. HERMES: an infrastructure for
low area overhead packet-switching networks on chip. Integration VLSI J. 38, 1.

Moreira, O., Valente, F., and Bekooij, M. 2007. Scheduling multiple independent hard-real-time jobs
on a heterogeneous multiprocessor. In Proc. EMSOFT.

Nieuwland, A., Kang, J., Gangwal, O., Sethuraman, R., Busá, N., Goossens, K., Peset Llopis, R.,
and Lippens, P. 2002. C-HEAP: A heterogeneous multi-processor architecture template and scalable
and flexible protocol for the design of embedded signal processing systems. Design Automation for
Embedded Systems 7, 3.

OCP International Partnership 2007. OCP Specification 2.2. OCP International Partnership.

Philips Semiconductors 2002. Device Transaction Level (DTL) Protocol Specification. Version 2.2.
Philips Semiconductors.

Poplavko et al., P. 2003. Task-level timing models for guaranteed performance in multiprocessor
networks-on-chip. In Proc. CASES.

Radulescu, A., Dielissen, J., Goossens, K., Rijpkema, E., and Wielage, P. 2005. An efficient on-
chip network interface offering guaranteed services, shared-memory abstraction, and flexible network
programming. IEEE Trans. on CAD of Int. Circ. and Syst..

Rajkumar, R., Juvva, K., Molano, A., and Oikawa, S. 1998. Resource kernels: A resource-centric
approach to real-time systems. Proc. SPIE/ACM Conference on Multimedia Computing and Net-
working, 150–164.

Rowen, C. and Leibson, S. 2004. Engineering the Complex SOC: Fast, Flexible Design with Config-
urable Processors. Prentice Hall PTR.

Rumpler, B. 2006. Complexity management for composable real-time systems. In Proc. Int’l Sympo-
sium on Object and Component-Oriented Real-Time Distributed Computing (ISORC).

Rutten, M., Pol, E.-J., van Eijndhoven, J., Walters, K., and Essink, G. 2005. Dynamic reconfigu-
ration of streaming graphs on a heterogeneous multiprocessor architecture. IS&T/SPIE Electron.
Imag. 5683.

Sasaki, H. 1996. Multimedia complex on a chip. Proc. Int’l Solid-State Circuits Conference (ISSCC),
16–19.

Silicon Hive 2007. Silicon hive. Available from: http://www.siliconhive.com.

Soudris, D., Zervas, N. D., Argyriou, A., Dasygenis, M., Tatas, K., Goutis, C., and Thanailakis, A.

2000. Data-reuse and parallel embedded architectures for low-power, real-time multimedia applica-
tions. IEEE International Workshop on Power and Timing Modeling, Optimization and Simula-
tion (PATMOS), 243–254.

Sriram, S. and Bhattacharyya, S. 2000. Embedded Multiprocessors: Scheduling and Synchronization.
CRC Press.

Stiliadis, D. and Varma, A. 1998. Latency-rate servers: a general model for analysis of traffic scheduling
algorithms. IEEE/ACM Transactions on Networking 6, 5.

Vercauteren, S., Lin, B., and De Man, H. 1996. Constructing application-specific heterogeneous em-
bedded architectures from custom HW/SW applications. Proc. DAC , 521–526.

Wiggers, M., Bekooij, M., Jansen, P., and Smit, G. 2007. Efficient computation of buffer capacities for
cyclo-static real-time systems with back-pressure. In Proc. RTAS.

Wüst, C., Steffens, L., Verhaegh, W., Bril, R., and Hentschel, C. 2005. QoS control strategies for
high-quality video processing. Real-Time Systems 30, 1, 7–29.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

CoMPSoC: A Template for Composable and Predictable Multi-Processor System on Chips · 23

Received September 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, September 2008.

