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Abstract—Resources in contemporary systems-on-chip (SoC)
are shared between applications to reduce cost. Access to shared
resources is provided by arbiters that require a small hardware
implementation and must run at high speed. To manage heavily
loaded resources, such as memory channels, it is also important
that the arbiter minimizes over allocation. A Credit-Controlled
Static-Priority (CCSP) arbiter comprised of a rate regulator
and a static-priority scheduler has been proposed for scheduling
access to SoC resources. The proposed rate regulator, however,
is not straight-forward to implement in hardware, and assumes
that service is allocated with infinite precision.

In this paper, we introduce a fast and small hardware
implementation of the CCSP rate regulator and formally prove
its correctness. We also show an efficient way of representing the
allocated service in hardware with finite precision. Based on this
representation, we define and evaluate two allocation strategies,
and derive tight bounds on their respective over allocations.
We show that increasing the precision of the implementation
results in an exponential reduction in maximum over allocation
at the cost of a linear increase in area. We demonstrate that the
allocation strategy has a large impact on the allocation success
rate for use cases with high load. Finally, we compare CCSP
to traditional frame-based approaches and conclude that having
a fine allocation granularity that is decoupled from latency is
essential to manage highly loaded resources in real-time systems.

Index Terms—real-time; arbitration; SoC; implementation;
CCSP; over allocation

I. INTRODUCTION

A contemporary system-on-chip (SoC) consists of a large

number of intellectual property components, such as hardware

accelerators and processors. These systems have many use

cases, comprised of concurrently executing applications with

real-time requirements [1]. We consider hard real-time appli-

cations, requiring a guaranteed minimum service rate and a

bounded maximum latency that can be analytically verified

at design time to guarantee the functional correctness of the

SoC [2], [3].

Resources, such as memory channels, are shared between

applications to reduce system cost. We refer to users of

these resources as requestors, corresponding to communica-

tion channels of an application mapped on the SoC. Some

resources, such as memory channels, are scarce and loaded

close to maximum capacity [3]. To manage such resources, it is

imperative that the arbiter provides the guaranteed service rate

to a requestor without reserving more capacity than required,

referred to as over allocation. The over allocation of an arbiter

depends on its allocation granularity, which is limited by the

precision of the service allocation mechanism in the hardware

implementation.

A Credit-Controlled Static-Priority (CCSP) arbiter com-

prised of a rate regulator and a static-priority scheduler has

been proposed in [4] for scheduling access to shared SoC

resources. This arbiter has two properties that are essential to

satisfy our requirements: 1) it belongs to the class of latency-

rate (LR) servers and guarantees an allocated service rate and

a bounded maximum latency to each requestor, and 2) the

static-priority scheduler decouples latency and rate, such that

low latency can be provided to any requestor, regardless of its

allocated rate. However, the work in [4] only presents a model

of the proposed rate regulator that assumes service allocation

with infinite precision, and does not explain how to implement

it in hardware.

The contribution of this paper is a fast and small hardware

implementation of the CCSP rate regulator that allows over

allocation to become negligible, making it useful for SoC

resources with very high loads. We furthermore explore how

to efficiently represent the service allocation in hardware,

explore the trade-off between over allocation and area of the

implementation, and investigate how over allocation affects the

provided service.

The rest of this paper is organized as follows. First, we

review related work in Section II and explain why existing

arbiters do not satisfy our requirements. We then introduce

a formal service model in Section III, before recapitulating

the CCSP arbiter in Section IV. In Section V, we present an

efficient way of representing the allocated service in hardware

using finite precision. Two allocation strategies based on

this representation are then evaluated and we derive tight

bounds on their respective over allocations. We then derive a

simple implementation of CCSP’s accounting mechanism that

is suitable for hardware implementation and formally prove

its correctness. We also present synthesis results and show

that increasing the precision of the rate regulator causes an

exponential reduction in maximum over allocation at the cost

of a linear increase in area. In Section VI, we experimen-

tally compare CCSP using the two allocation strategies to

traditional frame-based approaches and show that having a

fine allocation granularity that is decoupled from latency is

essential to manage resources with high loads in real-time

systems. Lastly, we present conclusions in Section VII.



II. RELATED WORK

Resource arbitration has been extensively researched in

different contexts during the past half century. Still, emerging

technologies like SoCs continues to change the requirements.

Existing arbiters are unsuitable for the SoC context for at

least one of the following three reasons: 1) they cannot run at

high clock speed with a small implementation, 2) allocation

granularity is coupled to latency, resulting in long latencies

or over allocation due to discretization, or 3) latency is

coupled to rate, preventing low latency from being provided to

requestors with low rate requirements without over allocating.

We proceed by discussing these problems in more detail.

Much work has been carried out in the real-time community

concerning server-based processor scheduling of aperiodic

and sporadic requestors [5]. These schedulers, however, are

designed to be implemented in software, and are often not

suitable for hardware implementation. The sporadic server [6],

for example, uses a complex accounting mechanism that is dif-

ficult to implement efficiently in hardware. Another example

is the Constant Bandwidth Server [2] that uses an earliest-

deadline-first (EDF) scheduler, which requires a sorted priority

queue. The hardware implementation of an EDF scheduler

in [7] uses a tree of multiple-bit comparators to compare

deadlines in the priority queue, which is a relatively slow

operation that may make it difficult to keep up with some

SoC resources.

Many arbiters have been proposed in the context of commu-

nication networks. Several of these are based on the Round-

Robin algorithm, because it is simple and starvation free.

Weighted Round-Robin [8] and Deficit Round-Robin [9] are

extensions that guarantee each requestor a minimum service,

proportional to an allocated rate, in a common periodically

repeating frame of fixed size. This type of frame-based rate

regulation is similar to the Deferrable Server [10], and suffers

from an inherent coupling between allocation granularity and

latency, where allocation granularity is inversely proportional

to the frame size [11]. Larger frame size results in finer

allocation granularity, reducing over allocation, but at the cost

of increased latencies for all requestors. Another common

example of frame-based scheduling disciplines is time-division

multiplexing that suffers from the additional disadvantage that

it requires a schedule to be stored for each configuration,

which is very costly if the frame size or the number of use

cases are large.

The granularity issue is addressed in [12]–[14] with hier-

archical framing strategies that accomplish exact allocation

over multiple frames. However, these algorithms, just as the

family of Fair Queuing algorithms [11], are unable to distin-

guish different latency requirements, as the rate is the only

parameter affecting scheduling. This results in an unwanted

coupling between latency and rate, where latency is inversely

proportional to the allocated rate. Requestors with low rate

requirements hence suffer from long latencies unless their rates

are increased, resulting in over allocation.

Four approaches using static-priority scheduling are pre-

sented in [15]–[18]. Static-priority schedulers have the benefit

of decoupling latency and rate and are cheap to implement

in hardware. However, the arbiters in [15], [17], [18] have

significant shortcomings, as the rate regulators are frame based

and couple allocation granularity and latency. In [16], service

is allocated in discrete chunks, the size of which depends on

the priority of the requestor and the total number of requestors

sharing the resource. This couples allocation granularity and

latency. Moreover, at most 84% of the resource capacity can

be allocated to the requestors as guaranteed service.

A priority-based arbiter is presented in [19] for resource

scheduling in SoCs. The rate regulator uses an accounting

mechanism based on integers that is easily implemented in

hardware, and inspired the implementation in this paper. The

arbiter, however, does not meet our requirements, as no results

are presented on latency, over allocation, or area.

In this paper, we present a fast and small hardware imple-

mentation of the CCSP rate regulator and derive its allocation

properties. Unlike any of the previously mentioned works, we

explore how to efficiently represent the service allocation in

hardware, present a trade-off between over allocation and area

of the implementation, and investigate how over allocation

affects the provided service. We furthermore show that our

implementation allows over allocation to become negligible,

which is essential for scarce SoC resources with very high

loads, such as memory channels.

III. FORMAL SERVICE MODEL

In this section, we introduce the formal service model used

in this paper. This is a compacted version of the model in [4]

that is sufficient to recapitulate the CCSP arbiter, and to derive

new results required by the hardware implementation of the

rate regulator. We use capital letters (A) to denote sets, hats to

denote upper bounds (â), and checks to denote lower bounds

(ǎ). We adopt an abstract resource view, where a service unit

corresponds to the access granularity of the resource. Time

is discrete and a time unit, referred to as a service cycle,

is defined as the time required to serve such a service unit.

Cumulative service curves are used to model the interaction

between the resource and the requestors. We let ξ(t) denote the
value of a service curve ξ at service cycle t. We furthermore

use ξ(τ, t) = ξ(t+1)−ξ(τ) to denote the difference in values

between the endpoints of the closed interval [τ, t].

A requestor generates requests of variable but bounded size,

as stated in Definition 1. Requests arrive in separate buffers

per requestor at the resource. This is captured by the requested

service curve, w, defined in Definition 2.

Definition 1 (Request): The k:th request (k ∈ N) from a

requestor r ∈ R is denoted ωk
r ∈ Ωr. The size of ωk

r in

service units is denoted s(ωk
r ) : Ωr → N+.

Definition 2 (Requested service curve): The requested ser-

vice curve of a requestor r ∈ R is denoted wr(t) : N → N,

where wr(0) = 0 and



wr(t + 1) =

{

wr(t) + s(ωk
r ) ωk

r arrived at t + 1

wr(t) no request arrived at t + 1

The provided service curve, w′, reflects the amount of

service units provided by the resource to a requestor. The

provided service curve is defined in Definition 3, where

γ(t) : N → R ∪ {∅} denotes the scheduled requestor at time

t. The backlog of a requestor corresponds to the amount of

requested service that has not yet been served at a particular

time, as defined in Definition 4. An illustration of a requested

service curve and a provided service curve along with their

corresponding bounds and related concepts is provided in

Figure 1.
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Fig. 1. A requested service curve and a provided service curve with

corresponding bounds and related concepts.

Definition 3 (Provided service curve): The provided ser-

vice curve of a requestor r ∈ R is denoted w′
r(t) : N → N,

where w′
r(0) = 0 and

w′
r(t + 1) =

{

w′
r(t) + 1 γ(t) = r

w′
r(t) γ(t) 6= r

Definition 4 (Backlog): The backlog of a requestor r ∈ R
at a time t is denoted qr(t) : N → N, and is defined as

qr(t) = wr(t) − w′
r(t).

We use the (σ, ρ) model [20] to characterize the requested

service curve. This model uses a linear function to express

a burstiness constraint. The bounding function is determined

by two parameters, σ and ρ, corresponding to burstiness and

average request rate, respectively. The graphical interpretation

of these parameters is shown in Figure 1. In this paper, we

assume that all requestors have been characterized according

to Definition 5. An example of how to perform this character-

ization is presented in [21].

Definition 5 (Requestor): A requestor r ∈ R is character-

ized by (σr, ρr) ∈ R+ ×R+, such that for any interval [τ, t] :
ŵr(τ, t) = σr + ρr · (t − τ + 1).

IV. RECAPITULATION OF CCSP ARBITRATION

The CCSP arbiter was originally proposed in [4]. In this

section, we recapitulate the most important aspects of the

arbiter, starting with an overview in Section IV-A. We proceed

in Section IV-B by explaining the model behind CCSP’s active

period rate regulation. This model is not straight-forward to

implement in hardware, and assumes that service is allocated

with infinite precision. In Section V, we introduce a fast and

small hardware implementation of the model that uses finite

precision, and formally prove the equivalence to the regulation

presented in this section.

A. Overview

A CCSP arbiter consists of a rate regulator and a scheduler.

The regulator provides accounting and enforcement and deter-

mines which requests are eligible for scheduling at a particular

time, considering their allocated service.

The service allocated to a requestor consists of two pa-

rameters, as defined in Definition 6. These are the allocated

burstiness, σ′, and allocated service rate, ρ′, respectively. The
definition states three constraints that must be satisfied in order

for a configuration to be valid: 1) the allocated service rate

must be at least equal to the average request rate, ρ, to satisfy

the service requirement of the requestor, and to maintain finite

buffers, 2) it is not possible to allocate more service to the

requestors than what is offered by the resource, and 3) the

allocated burstiness must be sufficiently large to accommodate

a service unit. The last condition is required for the latency

bound of the arbiter to be valid. Note that the allocated service

uses real values, possibly requiring infinite precision to be

accurately represented.

Definition 6 (Allocated service): The service allocation of

a requestor r ∈ R is defined as (σ′
r, ρ

′
r) ∈ R+ × R+. For a

valid allocation it holds that ∀r ∈ R : ρ′r ≥ ρr,
∑

∀r∈R ρ′r ≤ 1,
and ∀r ∈ R : σ′

r ≥ 1.

CCSP uses a static-priority scheduler, because it decouples

latency and rate and has a simple hardware implementation.

Each requestor is assigned a unique priority level, where

a lower level indicates higher priority. In this paper, we

consider a non-work-conserving static-priority scheduler that

is preemptive on the granularity of a single service unit. The

effects of work-conservation and non-preemptive scheduling

are discussed in [22].

It is shown in [4] that CCSP belongs to the class of LR
servers [23], which is a general framework for analyzing

scheduling algorithms. A LR server is defined by two pa-

rameters, Θ and ρ′, being service latency and allocated rate,

respectively. In essence, a LR server guarantees a requestor

service according to its allocated rate, after a waiting time

maximally equal to its service latency, as illustrated by the

lower bound on provided service, w̌′, in Figure 1. The service

latency hence intuitively corresponds to the maximum interfer-

ence from other requestors. It is proven in [4] that the service

latency of a requestor ri using CCSP is given by Equation (1),

where R+
ri

denotes the set of requestors with higher priority



than ri. Note in Equation (1) that service latency and rate of

a requestor are decoupled by the priorities through the set of

higher priority requestors. Low service latency can hence be

provided to any requestor, regardless of its allocated rate, by

assigning it a high priority.

Θri
=

∑

∀rj∈R
+
ri

σ′
rj

1 −
∑

∀rj∈R
+
ri

ρ′rj

(1)

B. Active period rate regulation

CCSP regulates provided service based on the notion of

active periods. Definition 7 states that a requestor is active

at t if it is either live at t (Definition 8), backlogged at t,
or both. Definition 8 states that a requestor must on average

have requested service according to its allocated rate since the

start of the active period to be considered live at a time t. We

denote the set of requestors that are active at t and live at t
with Ra

t and Rl
t, respectively.

Definition 7 (Active period): An active period of a re-

questor r ∈ R is defined as the maximum interval [τ1, τ2],
such that ∀t ∈ [τ1, τ2] : wr(τ1 − 1, t− 1) ≥ ρ′r · (t− τ1 +1) ∨
qr(t) > 0. Requestor r is active ∀t ∈ [τ1, τ2].

Definition 8 (Live requestor): A requestor r ∈ R is defined

as live at a time t during an active period [τ1, τ2] if wr(τ1 −
1, t − 1) ≥ ρ′r · (t − τ1 + 1).

Figure 2 illustrates the relation between being live, back-

logged and active. Note, however, that the lower bound on

provided service, w′, has been omitted for clarity. Three

requests arrive starting from τ1, keeping the requestor live

until τ3. The requestor is initially both live and backlogged,

but the provided service curve catches up with the requested

service curve at τ2. This puts the requestor in a live and not

backlogged state until τ3. The requestor is neither live nor

backlogged between τ3 and τ4, as no additional requests arrive

at the resource. The requestor becomes live and backlogged

again at τ4, since two additional requests arrive within a small

period of time. The requestor stays in this state until τ5, since

not enough service is provided to remove the backlog. The

requestor is hence backlogged, but not live at τ5, and remains

such until the end of the shown interval. The requestor in

Figure 2 is active between τ1 and τ3 and from τ4 and onwards,

according to Definition 7. Note from this example that a live

requestor is not necessarily backlogged, nor vice versa.

The enforced upper bound on provided service, ŵ′, is

defined according to Definition 9. The intuition behind the

definition is that the bound of an active requestor increases

according to the allocated rate every service cycle, as shown

in Figure 2. Conversely, for an inactive requestor, the bound

is limited to w′(t) + σ′, a value that depends on the allocated

burstiness. This prevents that a requestor that has been inactive

for an extended period of time increases its bound, possibly

resulting in starvation of other requestors once it becomes

active again.
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Fig. 2. Illustration of the relation between being live, backlogged, and active.

Definition 9 (Provided service bound): The enforced upper

bound on provided service of a requestor r ∈ R is denoted

ŵ′
r(t) : N → R+, where ŵ′

r(0) = σ′
r and

ŵ′
r(t + 1) =

{

ŵ′
r(t) + ρ′r r ∈ Ra

t

w′
r(t) + σ′

r r /∈ Ra
t

(2)

It is not possible to perform accounting and enforcement in

hardware based on ŵ′, since limt→∞ ŵ′(t) = ∞, which can-

not be represented in an implementation with finite precision.

Instead, the accounting is based on the potential of a requestor,

defined as πr(t) = ŵ′
r(t) − w′

r(t). The potential of a requestor
is bounded since the arbiter guarantees a lower bound on

provided service. We arrive at the potential-based accounting

mechanism in Definition 10 by subtracting w′
r(t + 1) from

both sides in Equation (2) and applying Definition 3, as shown

in [22]. The graphical interpretation of potential is shown in

Figure 2.

Definition 10 (Potential-based accounting): The accounted

potential of a requestor r ∈ R is denoted πr(t) : N → R,

where πr(0) = σ′
r and

πr(t + 1) =











πr(t) + ρ′r − 1 r ∈ Ra
t ∧ γ(t) = r

πr(t) + ρ′r r ∈ Ra
t ∧ γ(t) 6= r

σ′
r r /∈ Ra

t ∧ γ(t) 6= r

Enforcement in the rate regulator takes place before the

accounting is updated in a service cycle, and is performed

by determining if a request from a requestor is eligible for

scheduling. A request is defined as eligible if the following

three conditions are satisfied: 1) all previous requests from

the requestor are served, 2) the requestor is backlogged, and

3) the requestor has at least enough potential to serve one

service unit, including the service earned when the accounting

is updated, i.e. π(t) ≥ 1 − ρ′. The eligibility information is

used by the static-priority scheduler that schedules the highest

priority eligible requestor every service cycle.



V. REGULATOR IMPLEMENTATION

Having recapitulated the CCSP arbiter, we proceed in this

section by deriving the hardware implementation of the rate

regulator. While doing so, we also present the main theoretical

contributions of this paper. First in Section V-A, we discuss

how to represent the allocated service, (σ′, ρ′), in hardware

using finite precision and present two allocation strategies

that address different aspects of over allocation. We proceed

in Section V-B by providing tight bounds on over allocation

of the two strategies and comparing these results to those

of a frame-based arbiter. An implementation of the CCSP

rate regulator based on simple integer arithmetic is derived in

Section V-C, and we formally prove the equivalence between

this implementation and the model of active period rate

regulation from Section IV-B. Synthesis results are shown in

Section V-D, indicating that our implementation provides an

exponential reduction in maximum over allocation at the cost

of a linear increase in area.

A. Service representation

The hardware implementation of the rate regulator only

offers finite precision for representing the service allocation of

a requestor, potentially causing it to be discretized. We hence

associate each requestor with a discrete service allocation,

denoted (σ′′, ρ′′), that conservatively approximates the real-

valued allocation in Definition 6. The discrete allocated rate

is represented as a fraction of integers, as proposed in [19],

whose maximum size is limited by the number of bits used to

represent them in the implementation. This provides a design

time trade-off between precision and area, as we will see

in Section V-D. The discrete allocated rate and burstiness

are formally defined in Definition 11 and Definition 12,

respectively.

Definition 11 (Discrete allocated rate): The discrete allo-

cated rate of a requestor r ∈ R in an arbiter with a precision of

β bits is denoted ρ′′r ∈ Q+, and is represented as ρ′′r = nr/dr,

where nr, dr ∈ N+ and nr ≤ dr < 2β .

Definition 12 (Discrete allocated burstiness): The discrete

allocated burstiness of a requestor r ∈ R is denoted σ′′
r ∈ Q+,

and is defined as σ′′
r =

⌈σ′

r·dr⌉
dr

.

The conservative approximation of the allocated service

may cause the allocated rate and burstiness to be over al-

located. We define the over-allocated rate of a requestor

according to Definition 13. This definition shows us how much

of the resource capacity is lost when service is allocated

to a requestor. We are also interested in the over-allocated

burstiness, defined in Definition 14, since the service latency

of CCSP in Equation (1), depends on both the allocated rate

and the allocated burstiness. This allows us to study how over

allocation impacts the service latency of the arbiter. It follows

from these definitions that the total over-allocated rate and

burstiness are obtained by summing over the set of requestors

sharing the resource.

Definition 13 (Over-allocated rate): The over-

allocated rate of a requestor r ∈ R is denoted

oρ(ρ
′′
r , ρ′r) : Q+ × R+ → R, and is defined according

to oρ(ρ
′′
r , ρ′r) = ρ′′r − ρ′r.

Definition 14 (Over-allocated burstiness): The over-

allocated burstiness of a requestor r ∈ R is denoted

oσ(σ′′
r , σ′

r) : Q+ × R+ → R, and is defined according to

oσ(σ′′
r , σ′

r) = σ′′
r − σ′

r.

There are multiple strategies when selecting the n and d of a

requestor to allocate its service. It follows directly from Defi-

nition 12 and Definition 14 that oσ(σ′′, σ′) = ⌈σ′·d⌉
d

− σ′ < 1

d
,

and hence that a large d reduces the over-allocated burstiness.

This may, however, not provide the closest approximation

of the allocated rate, resulting in wasted resource capacity.

Considering this, we present two allocation strategies. The

first strategy, called Closest Rate Approximation (CRA), in-

volves approximating the allocated rate as closely as possible

to reduce wasted resource capacity, with a secondary objective

to reduce the over-allocated burstiness. Conversely, the sec-

ond strategy, referred to as Closest Burstiness Approximation

(CBA), attempts to reduce the service latency by closely

approximating the allocated burstiness, and reducing the over-

allocated rate as a secondary objective.

CRA chooses the n and d, such that ρ′′ is the minimum

rate that satisfies ρ′′ ≥ ρ′. If there are multiple n and d
pairs providing equal approximations of the allocated rate (e.g.
1

2
= 2

4
), the one with the largest d is preferred to improve

the approximation of the allocated burstiness. CBA, on the

other hand, picks the largest possible d to reduce the over-

allocated burstiness. To provide the best possible conservative

approximation of the allocated rate, given the selected d, this
implies n = ⌈ρ′ · d⌉. Next, we derive the allocation properties

of these strategies.

B. Allocation properties

In this section, we analytically examine the properties of

the CRA and CBA allocation strategies and compare them

to those of a frame-based arbiter. We start in Lemma 1 by

bounding the over-allocated rate of both strategies, revealing

that it reduces exponentially with the number of bits, β, used
to represent n and d.

Lemma 1: The over-allocated rate of a requestor in a CCSP

arbiter with a precision of β bits is upper bounded according

to occspρ (ρ′′, ρ′) < 1

2β−1
.

Proof: The over-allocated rate is defined as oρ(ρ
′′, ρ′) =

ρ′′ − ρ′, according to Definition 13. We know from Defini-

tion 11 that ρ′′ = n/d. For CBA, it holds that d = 2β − 1 and

n = ⌈d · ρ′⌉. CRA also falls back on this allocation, unless

there is another n, d pair that yields a tighter approximation.

By substituting these results into Lemma 1 and performing

basic algebraic manipulation, we arrive at occspρ (ρ′′, ρ′) <
⌈d·ρ′⌉

d
− d·ρ′

d
< 1/d. The proof is concluded by substituting

d = 2β − 1.



The derived bound on over-allocated rate is tight for CBA.

For CRA, however, it is only tight for requestors with ρ′ = ε,
where ε is close to zero. In this case, the closest approximation

for both strategies is given by choosing n = 1 and d = 2β−1,
which is the smallest rate that can be represented, given a

particular precision. This results in occspρ (ρ′′, ρ′) = 1

2β−1
−ε ≈

1

2β−1
, corresponding to the worst case. The worst-case reoc-

curs for CBA when ∀k ∈ N+, 1 < k < 2β−1 : ρ′ = k
2β−1

+ε,

as it results in a discrete allocation according to ρ′′ = k+1

2β−1
.

By now, CRA is guaranteed to find a solution that results in

a tighter approximation. CRA hence results in a smaller over-

allocated rate than suggested by the bound for larger allocated

rates, as we will show experimentally in Section VI. However,

no tighter bound exists for this strategy that supports arbitrary

allocations.

We proceed by bounding the over-allocated burstiness for a

requestor using the two allocation strategies. Since a requestor

always uses the largest possible d under the CBA strategy,

it follows directly that ocbaσ (σ′′, σ′) < 1

d
< 1

2β−1
. The over-

allocated burstiness of a requestor using the CRA strategy is

derived in Lemma 2.

Lemma 2: The over-allocated burstiness of a requestor us-

ing the CRA strategy in a CCSP arbiter with a precision of β
bits is upper bounded according to ocraσ (σ′′, σ′) < 2

2β−1
.

Proof: We know that the over-allocated burstiness for

CCSP is upper bounded by 1

d
. The CRA strategy uses the

n and d pair with the largest d that provides the tightest

approximation of ρ′. We note that for any d < 2
β−1

2
there

exists a k ∈ N+, k > 1 such that k·n
k·d is an equivalent allocation

of ρ′ with a larger d. We hence get that d ≥ 2
β−1

2
and that

ocraσ (σ′′, σ′) < 2

2β−1
.

The bounds computed in this section show that the over-

allocated rate and burstiness monotonically reduce with in-

creased precision for both strategies. Hence, increasing preci-

sion cannot result in more resource capacity being wasted or

increased service latency. This property is essential for effec-

tive design-space-exploration and optimization algorithms. We

compare this result to that of an arbiter with a typical frame-

based regulator, such as [8], [15], [18], together with a static-

priority scheduler. We refer to this combination as frame-based

static-priority (FBSP) in this paper.

FBSP allocates service to a requestor by assigning it a

number of slots, φ, proportional to the allocated rate, in a

frame of size f , which is the same for all requestors. The

arbiter only has a single allocation parameter and thus cannot

allocate rate and burstiness separately. Instead, the allocated

burstiness follows implicitly from the allocated rate and the

frame size. The number of slots allocated to a requestor is

assigned according to φ = ⌈ρ′ · f⌉. This implies that FBSP

allocates service in the same way as CBA if f = 2β − 1, and
hence that the over-allocated rate is ofbspρ (ρ′′, ρ′) < 1/f . We

observe that the maximum over-allocated rate of a requestor

is inversely proportional to the frame size, implying that a

large frame size is required to provide an efficient allocation.

However, the service latency of this arbiter equals Θfbsp
ri

=
2·

∑

∀rj∈R
+
ri

φrj
≥ 2·f ·

∑

∀rj∈R
+
ri

ρ′rj
, and is thus proportional

to the frame size. Increasing the frame size to reduce the

over-allocated rate increases the implicitly allocated burstiness,

and results in a trade-off between low service latency and

over allocation. The over-allocated rate and service latency do

hence not monotonically reduce with increased frame size for

FBSP, which is typical for frame-based arbiters.

C. Credit-based rate regulation

In this section, we derive a simple hardware implementation

of the rate regulator model in Section IV-B, based on the

discrete representation of the allocated service in Definition 11

and Definition 12. The main difficulty in efficiently imple-

menting the potential-based accounting in Definition 10 lies

in knowing if a requestor is active or not. To accomplish

this, Definition 7 states that we need to know if a requestor

is backlogged or live during a particular service cycle. It is

easy to determine if a requestor is backlogged in hardware

by checking if there are any requests waiting to be served.

Knowing how the requested service during an active period

relates to the allocated rate, on the other hand, is more

challenging, especially considering that CCSP enforces an

upper bound on provided service and is only aware of the

request at the head of the request buffer of each requestor.

Although this design has a number of benefits, as explained

in [4], it complicates the hardware implementation, since the

regulator cannot directly observe the requested service.

We proceed by showing a simple way of determining if a

requestor is live by only looking at its backlog and potential.

To do this, we require Lemma 3 and Lemma 4, of which

proofs can be found in [22]. The key idea is based on two

observations. The first observation is that the provided service

curve of a requestor satisfies w′(τ1−1, t−1) ≥ ρ′ ·(t−τ1+1),
the condition that has to be satisfied by the requested service

curve for a requestor to be live, if π(t) ≤ σ′−ρ′. This is shown
in Lemma 5. The second observation is that the requested

service equals the provided service for non-backlogged re-

questors, which follows from Definition 4. Combined with the

first observation, this implies that it is possible to determine

liveness of a non-backlogged requestor by looking at its

potential, as shown in Lemma 6. Similarly, that means that

there is a lower bound on the potential of an inactive requestor,

as shown in Lemma 7. We can now easily determine if a

requestor is active or not, solving the previously mentioned

problem. We know per definition that a backlogged requestor

is active, and we can determine if a non-backlogged requestor

is active by looking at the potential. Next, we use these results

to derive a simple hardware implementation of the CCSP rate

regulator.

Lemma 3: If τ1 is the start of an active period then

w(τ1) > w(τ1 − 1) = w′(τ1) = w′(τ1 − 1).

Lemma 4: During an active period [τ1, τ2], it holds that

∀t ∈ [τ1, τ2] : π(t) = ŵ′(τ1) − w′(τ1) + ŵ′(τ1, t − 1) −
w′(τ1, t − 1).



Lemma 5: During an active period [τ1, τ2], it holds that

∀t ∈ [τ1, τ2] : π(t) ≤ σ′ − ρ′ ⇐⇒ w′(τ1, t − 1) ≥
ρ′ · (t − τ1 + 1).

Proof: We know that the equation in Lemma 4 holds dur-

ing an active period [τ1, τ2]. Definition 9 and the fact that the

requestor is inactive at τ1−1 results in ŵ′(τ1) − w′(τ1) = σ′,

and ŵ′(τ1, t − 1) = (t − τ1) · ρ
′. Substituting these results

into the equation in Lemma 4 yields π(t) = σ′+(t−τ1) ·ρ
′−

w′(τ1, t−1) ≤ σ′−ρ′. The proof is concluded by solving for

w′(τ1, t − 1).

Lemma 6: For a requestor r ∈ R during an active period

[τ1, τ2], it holds that ∀t ∈ [τ1, τ2], qr(t) = 0 : πr(t) ≤ σ′
r −

ρ′r ⇐⇒ w(τ1 − 1, t − 1) ≥ ρ′ · (t − τ1 + 1).

Proof: According to Lemma 5, we know w′
r(t) −

w′
r(τ1) ≥ ρ′r · (t− τ1 +1) ⇐⇒ πr(t) ≤ σ′

r −ρ′r. Definition 4

states that w′
r(t) = wr(t), since qr(t) = 0. From Lemma 3,

we additionally know that w′
r(τ1) = wr(τ1 −1). We conclude

the proof by substituting these results into the result from

Lemma 5.

Lemma 7: For a requestor r /∈ Ra
t ⇒ πr(t) > σ′

r − ρ′r.

Proof: By negating Definition 7, we know that iff r /∈ Ra
t

then qr(t) = 0 and wr(τ1−1, t−1) < ρ′r ·(t−τ1+1), where τ1

is the start of the last active period. From Definition 4, we get

that qr(t) = 0 implies wr(t) = w′
r(t). Substituting this into

the expression results in w′
r(τ1 − 1, t− 1) < ρ′r · (t− τ1 + 1).

Lemma 3 states that w′
r(τ1−1, t−1) = w′

r(τ1, t−1), giving us

w′
r(τ1, t−1) < ρ′r · (t− τ1 +1), which according to Lemma 5

implies that πr(t) > σ′
r − ρ′r.

The hardware implementation of the rate regulator uses

a credit-based accounting mechanism. Credits are a discrete

representation of potential of a requestor, based on the ser-

vice representation in Section V-A. The proposed accounting

mechanism is presented in Definition 15, and the formal

proof of correctness is provided in Theorem 1. The proposed

accounting mechanism is simple and only needs the current

credit state of each requestor, if they are backlogged or

not, and which requestor was scheduled in the service cycle

when updating the state. It furthermore only uses integer

arithmetic, making it suitable for hardware implementation.

Note that the underlying ideas behind this mechanism, as well

as the efficient integer representation of the allocated rate

and the allocation strategies, are useful to implement other

rate regulators that use continuous replenishment and enforce

linear bounds, such as (σ, ρ) regulators [20].

Definition 15 (Credit-based accounting): The number of

credits of a requestor r ∈ R is denoted cr(t) : N → N, where

cr(0) = σ′′
r · dr and

cr(t + 1) =











cr(t) + nr − dr γ(t) = r

cr(t) + nr γ(t) 6= r ∧ qr(t) > 0

min(cr(t) + nr, cr(0)) γ(t) 6= r ∧ qr(t) = 0

Theorem 1: The credit-based accounting is an implementa-

tion of potential-based accounting, where the service allocation

of a requestor r ∈ R equals (σ′′
r , ρ′′r ), and it holds that

∀t : cr(t) = πr(t) · dr.

Proof: We rewrite the equation in Definition 10 by

splitting the second case, where r ∈ Ra
t , in two, according

to Definition 7. In the first case qr(t) > 0 and in the other

qr(t) = 0 and r ∈ Rl
t. According to Definition 8 and

Lemma 6, r ∈ Rl
t and q(t) = 0 implies that πr(t) ≤ σ′′

r − ρ′′r .
We use the results from Lemma 7 to rewrite the case where

r /∈ Ra
t , resulting in

πr(t+1) =







































πr(t) + ρ′′r − 1 γ(t) = r

πr(t) + ρ′′r γ(t) 6= r ∧ qr(t) > 0

πr(t) + ρ′′r (γ(t) 6= r ∧ qr(t) = 0 ∧

πr(t) ≤ σ′′
r − ρ′′r )

σ′′
r (γ(t) 6= r ∧ qr(t) = 0 ∧

πr(t) > σ′′
r − ρ′′r )

(3)

Multiplying both sides of Equation (3) with dr and substi-

tuting cr(t) = πr(t) · dr, nr = ρ′′r · dr and cr(0) = σ′′
r · dr,

according to Definitions 11, 12, and 15 yields

cr(t+1) =







































cr(t) + nr − dr γ(t) = r

cr(t) + nr γ(t) 6= r ∧ qr(t) > 0

cr(t) + nr (γ(t) 6= r ∧ qr(t) = 0 ∧

cr(t) ≤ cr(0) − nr)

cr(0) (γ(t) 6= r ∧ qr(t) = 0 ∧

cr(t) > cr(0) − nr)

(4)

To simplify the accounting, we merge the two last cases in

Equation (4) into cr(t + 1) = min(cr(t) + nr, cr(0)), where
the third case in Equation (4) is covered by the first operand

and the fourth case by the second operand. This concludes

the proof, as we have now arrived at the simple credit-based

accounting mechanism in Definition 15.

The introduction of the credit-based accounting mechanism

also affects the enforcement. Similarly to the proof of Theo-

rem 1, we multiply the eligibility criterion in Section IV-B with

d and use that c(t) = π(t) · d and n = ρ′′ · d, which results in

that a requestor requires c(t) ≥ d − n to be considered eligible

at t.

D. Synthesis results

The CCSP arbiter has been implemented in RTL VHDL

according to the architecture presented in [4]. Synthesis in

a 90 nm CMOS process with six ports using eight bits to

represent each of n, d, c(t) and c(0) results in a total cell area

of 0.0175 mm2 with a clock frequency of 200 MHz. In [4],

we illustrated the scalability of the arbiter by showing that

the area increases linearly with the number of requestors. In

this paper, we consider synthesis from a different perspective

by varying the number of bits used to represent the values in



the register bank to show how the bound on over-allocated

rate is traded for area. Figure 3 presents this trade-off for an

instance with six ports as the bit widths of n, d, c(t) and c(0)
are uniformly changed. The figure shows the bound on over-

allocated rate for six requestors and hence corresponds to the

bound in Lemma 1 multiplied by six. Note that the exponential

reduction in the bound on over-allocated rate comes at a linear

increase in area.
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VI. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the allocation

properties of CCSP. First, we present the experimental setup in

Section VI-A. Then, we proceed in Section VI-B by comparing

the CRA and CBA allocation strategies. We conclude in

Section VI-C by experimentally demonstrating that in contrast

to a frame-based static-priority arbiter (FBSP), the allocation

behavior of CCSP improves monotonically with increased

precision.

A. Experimental setup

The experimental setup consists of a SystemC simulation

model of a predictable multi-processor SoC. The processing

elements are represented by traffic generators that generate

requests that arrive at the resource according to a normal

distribution with a programmable average time and variance.

We have integrated the CCSP arbiter into the Predator DDR2

SDRAM controller [24], providing predictable access to a 16-

bit DDR2-400 SDRAM with a minimum guaranteed band-

width of 660.9 MB/s. The size of a service unit for this

resource is 64 byte and the length of a service cycle is

approximately 80 ns. The processing elements communicate

with the memory through guaranteed throughput channels

provided by the Æthereal [25] network-on-chip.

B. Comparison of allocation strategies

We start by comparing the closest rate approximation (CRA)

and closest burstiness approximation (CBA) strategies by

looking at how the average and maximum measured over-

allocated rates and burstinesses relate to each other and to

the analytical bounds computed in Section V-B. For each

number of requestors in 2, 4, 6, and 8, we randomly generate

1000 synthetic use cases with uniformly distributed loads in

the interval [0, 100]%. We are interested in the total over

allocation of all requestors and hence add their individual over-

allocated rates and burstinesses. Similarly, all derived bounds

are multiplied with the number of requestors in the use case.

Five bits of precision (β = 5) are used for both strategies,

and σ′
r are real numbers in the range [1, 5] service units. The

over-allocated rate is shown in Figure 4.
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We see in the figure that the CRA strategy indeed results

in lower average over-allocated rate than CBA. In fact, the

CRA strategy reduces the average over-allocated rate with a

factor three compared to CBA. The maximum measured over-

allocated rate is close to the analytical bound for both strate-

gies for use cases with two requestors, although the difference

increases with the number of requestors. This reflects that

the worst-case over allocation becomes increasingly unlikely

as the number of requestors increase. In particular, we note

that the difference between the maximum over allocation and

the bound becomes very large for CRA, as it is extremely

unlikely that a generated use case, much like a realistic one,

only contains requestors with allocated rates close to zero.

The over-allocated burstinesses of the two strategies are

shown in Figure 5. We see that the CBA representation

does reduce the average over-allocated burstiness, although

the difference between the two strategies is less significant

than for the over-allocated rate. We conclude that reducing

the average over-allocated rate by a factor three using CRA

comes at the cost of a 25% increase in the average over-

allocated burstiness. The maximum over-allocated burstiness

is close to the bound for CBA, but not for CRA, reflecting

the unlikeliness that d = 2
β−1

2
for all requestors, which is

required for its worst-case.

Next, we compare the behavior of the CRA and CBA

strategies for use cases with high load and hard service latency

requirements. The use cases all have six requestors and are

randomly generated with the total load divided in a number

of bins (91%, 93%, 95%, 97%, and 99%, respectively). In

this experiment, we generate 1000 use cases for each bin. The

service latency requirements of the requestors are uniformly

distributed in the interval [0, 10000] ns. This range is chosen

as it provides requirements that are feasible to satisfy with the

considered SDRAM controller and loads. The requirements

are then transformed from ns to service cycles using the
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inverse of the latency functions of the SDRAM controller,

presented in [24]. This results in requirements that vary in

the range [0, 120] service cycles. In addition to allocating

service for the use case, priorities are assigned in an attempt

to satisfy the service latency requirements of the requestors.

For this purpose, we use the optimal priority assignment

algorithm presented in [26]. We compare the two allocation

strategies by measuring the percentage of use cases in which

the rate requirements of all requestors are satisfied and the

total allocated rate is less than 100%, indicating successful

allocation. Additionally, we compare the percentage of use

cases where the service latency requirements of all requestors

are satisfied. Lastly, we study the total success rate, being

the percentage of use cases where both service allocation

and priority assignment are successful, indicating that both

rate and latency requirements are satisfied. The results of this

experiment are shown in Figure 6.
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We note that all use cases with up to 93% load, and 99.1%

of the use cases with 95% load, are successfully allocated

when using CRA. The success rate is reduced to 89.1% and

54.8% for use cases with 97% and 99% loads, respectively.

As expected, CBA performs worse, and only allocates 66.4%

of the use cases with 91% load successfully. The success

rate is significantly reduced for higher loads and reaches zero

for loads higher than 95%. We see that CRA also performs

better when priorities are assigned to satisfy the service latency

requirements. The latency requirements are satisfied for 95%

of the use cases with 91% load and drops towards 82.4%

for use cases with 99%. The trend is similar when using

CBA, although it starts at 84.7% for 91% load and ends

at 68.3% for loads of 99%. The answer to why CRA is

better at satisfying latency requirements, even though CBA

provides a closer approximation of the allocated burstiness,

is found in Equation (1). We note in the equation that over

allocating the burstiness results in a linear increase of the

service latency, while over allocating the rate causes a faster

increase, favoring the CRA strategy. The total success rate

shows that the CRA strategy performs better than CBA for

all tested loads, primarily because the smaller over-allocated

rate allows more use cases to be successfully allocated. On

average, CRA results in more than four times as many use

cases with high loads having both their service and latency

requirements satisfied. We conclude from this experiment that

having a close approximation of the allocated rate is essential

to manage heavily loaded resources.

C. Increasing precision

In the next experiment, we study the effects of increasing the

precision to achieve a finer allocation granularity. Use cases

are randomly generated according to the previous experiment,

but we now compare CCSP with five and six bits, respectively,

using the CRA strategy.
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As seen in Figure 7, increasing precision improves both

the number of successful allocations and priority assignments.

This is because both the over-allocated rate and burstiness

of CCSP are monotonically reduced with increased precision,

as explained in Section V-B. We experimentally compare this

behavior to that of FBSP in Figure 8, where the frame size,

f , is increased from 31 to 63. These particular frame sizes are

chosen, as they provide the same bounds on over-allocated

rate as for CCSP with five and six bits of precision, used

in Figure 7. We first note that the percentage of successful

allocations is much lower for FBSP than for CCSP using the

CRA strategy. Using a frame size of 31, only 63.7% of the use

cases with a load of 91% are successfully allocated and the
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success rate drops dramatically for higher loads, approaching

zero at loads of 97%. The percentage of successful priority

assignments, however, is stable at about 80% across all loads.

Doubling the frame size to increase precision results in a sig-

nificant improvement in the percentage of successful allocation

for loads up to 95%, all being above 80%. This, however,

causes the percentage of successful priority assignments to be

less than 20% for all loads. This is because both the allocation

granularity and the service latency depend on the frame size,

causing one to be traded for the other. This shows that the

coupling between allocation granularity and latency makes

FBSP unsuitable for highly loaded resources in the presence

of applications with real-time requirements.

VII. CONCLUSIONS

In this paper, we derive a fast and small hardware imple-

mentation of the rate regulator of a Credit-Controlled Static-

Priority (CCSP) arbiter, and formally prove its correctness.

The implementation is based on simple integer arithmetic with

finite precision, and we show that increasing the precision

results in an exponential reduction in maximum over allocation

at the cost of a linear increase in area. This allows over

allocation to become negligible, which is essential for system-

on-chip resources with very high loads, such as memory

channels.

We analytically and experimentally compare closest rate

approximation (CRA) and closest burstiness approximation

(CBA) allocation strategies. We experimentally demonstrate

that CRA reduces the average over-allocated rate with a factor

of three at the cost of a 25% increase in over-allocated

burstiness over CBA. This results in that more than four times

as many use cases with high loads have both their rate and

latency requirements satisfied. We furthermore show that the

allocation behavior of CCSP, unlike most traditional frame-

based arbiters, improves monotonically with increased preci-

sion, which is essential for effective design-space-exploration

and optimization algorithms. From our experiments, we con-

clude that having a fine allocation granularity that is decoupled

from latency is essential to manage resources with high loads

in real-time systems.
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