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Abstract—We envision that future FPGA will use a hardwired
network on chip (HWNoC) [13] as a unified interconnect for
functional communications (data and control) as well as con-
figuration (bitstream for soft IPs). In this paper we present a
reconfiguration methodology which makes use of such a plat-
form to realize composable inter-application communication and
persistent-state intra-application when run-time partial reconfig-
uration is performed. The proposed methodology also ensures
that the required performance constraints of the dynamically
swapped in application are fulfilled. We describe the approach
and steps required to achieve the above objectives. We model
the application dynamic swapping behavior in cycle-accurate
transaction-level SystemC which includes bitstream loading,
HWNoC programming, clocking, reset, computation.

I. INTRODUCTION

Advancements in chip-making technology during the last
two decades have fueled the field programmable gate arrays
(FPGAs) transformation from a simple PLD to multi-million
gate chips [1]. These platform-based FPGAs have gained
popularity for realizing systems as complex as multi-processor
system on chips (MPSoCs) due to their fast time-to-market,
low NRE costs and in-field product upgrade benefits. These
FPGA [1] based systems, can embody concurrent execution
of multiple applications and in different configurations called
use-cases.

Before proceeding further we define terminology. A soft
IP is mapped on FPGA reconfigurable computational blocks
(LUTs) whereas an IP is hardwired or hard when it is
directly implemented in silicon e.g. power pc. We define
(re)configuration as the installation of new functionality (of
soft IPs) in the FPGA by sending a bitstream to a reconfig-
uration region. An IP is programmed after it is configured,
if necessary, which entails changing the state of its registers
when it is in functional mode. A use-case is defined as the
number of applications that can execute in parallel.

However, inter-application dynamic reconfiguration be-
comes inevitable when not all the applications in a use-case
can co-exist on the FPGA. Also, intra-application reconfigura-
tion is required when an application does not fit in completely
due to area constraints. It incorporates facing critical and non
trivial issues during reconfiguration which include:

1) realizing composablity i.e. the dynamically inserted

(sub)application does not effect other (sub)applications,
as long as their allocation remains unchanged. Also
there must not be any interference among the executing
applications and their occupied system resources,

2) implementing persistent-state i.e. the state-information
(spread at multiple places in the system) of the sub-
application (SubApp) must be saved, when it is swapped
out. It is essential to avoid unpredictable behavior of the
system,

3) ensuring throughput and latency demands for the dy-
namically inserted (sub)applications on an FPGA.

Several dynamic reconfiguration studies provide run-time

swapping of functionalities without disturbing the existing
ones [3], [4], [6], [9] as well as mechanisms [10], [12]
to implement safe-state transitions. However, a system level
approach is missing that could concurrently address them
with guaranteed performance constraints on an FPGA.
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Fig. 1. 3-Tier Infrastructure

We provide an integrated system level methodology which
uses a modular and 3-tier infrastructure [15] as shown
in Figure 1 to achieve the above objectives. It makes use
of the the System Manager (SM) as the foundation layer
and an Application Manager (AM) per application to ensure
composablity across the applications. Services which are
related to application loading and resource allocation (i.e.
NOC programming) are always provided by the SM to
ensure that one application can never affect another. On the
other hand an AM provides intra-applications services which
include I/0 and storage to the clients and enforcement of data
integrity between the sub-applications that are dynamically
swapped in/out.

The remainder of this paper is structured as follows. Sec-
tion II positions our methodology with respect to the related



work. Section III elaborates the architectural details of the
target platform. It is followed by Section IV which describes
our methodology by using the 3-tier infrastructure for realizing
dynamic composable application swapping. Section V shows
a worked example and we conclude in Section VI.

II. RELATED WORK

We discuss run-time reconfiguration researches with respec-
tive to (w.r.t.) the features which are provided by our method-
ology i.e. composability and persistent-state swapping of the
modules/applications in parallel with the QoS requirement
assurance.

A. Composable Swapping

The authors in [2], [3], [4] place the dynamically inserted
module in vertical slots which allows the modules to be
attached at any location whereas [5] provides a way to place
hardware modules of predetermined size and positions, above
each other. To connect the modules [2] uses a reconfigurable
multiple bus (RMB), [3] uses an NOC, [4] uses lookup tables
and [5] uses bus macros. [6] achieves dynamic on-demand
reconfiguration by making use of a run-time system software
on MicroBlaze for controlling reconfiguration and message
handling. [7] at run time allocates FPGA resources by using a
centralized resource manager. [8] uses a reconfigurable system
based on square-shaped and arbitrary-sized swappable logic
units (SLUs) which are arranged in mesh and communicate
with each other through a small communication buffer. A dy-
namic instruction set architecture based approach is used in [9]
where authors make use of dynamically rotating instructions
for runtime swapping of reconfigurable modules.

In contrast to our application level composability, the above-
mentioned approaches [6], [9] take into account single ap-
plication and realize task level composable behavior of the
system. With these approaches guaranteeing that an applica-
tion’s requirements are met is difficult due to possible resource
fragmentation over time. [7] takes into account concurrent
execution of multiple applications but the mechanism to im-
plement persistent-state and QoS guarantees is missing. The
remaining approaches [3], [4] don’t explicitly state the level
of compsability. Importantly, the above methods e.g. [3], [4],
[5] are more concerned about providing the communication
among the dynamically placed modules rather than handling
the important issues of stability of prior services, mechanism
to assure safe-state transition and QoS guaranteed resource
allocation with the addition/removal of modules.

B. Persistent-State Swapping

Works in [10], [11], [12] assume that tasks can only migrate
at pre-defined execution points. Safe-state task level transition
in [10], [11] is achieved by making use of special input queue
to collect all unprocessed data whereas in [12] all configuration
data is read back and state extraction is performed after reading
the configuration data.

With above-mentioned approaches [10], [11], [12] the state
information of a task is distributed: a) within the tasks and b)

in between the tasks. The state preservation within the task/IP
causes complex issues w.r.t. the register states and clock phase
to preserve data and timings. In contrast, the IPs in our system
are stateless and an AM is the one who triggers the recon-
figuration request after the SubApp IP achieve the required
execution granularity. However, the inter-IP state exists which
is preserved by an AM by providing the persistent storage in
between the SubApp swapping. We don’t allow cycles during
SubApp swapping therefore the existing SubApp’s pipeline is
completely flushed and preserved in an AM before starting the
next SubApp.

We first explain the target platform first presented in [13]
and which is extended in this paper. It is used by our reconfig-
uration methodology to realize structural and communication
mapping of the use-case (sub)applications with the objectives
of composability and persistency.

III. TARGET PLATFORM

This section describes how a hardwired NoC is embedded
in an FPGA [13]. It expounds the architectural details of the
constituting components which include: configuration func-
tional regions (CFR), communication infrastructure consisting
of routers and network interfaces (NI) and boot processor
(BPro). It concludes by mentioning limitations of the current
architecture.

In our HWNoC architecture the FPGA chip comprises
number of configuration functional regions (CFRs) [14] whose
architecture is illustrated with CF R1 in Figure 2. Each CFR
has local configuration infrastructure to handle the incoming
bitstream. However, the CFRs are not isolated at functional
level and therefore do not restrict the placement of an IP
spanning fully or partially in multiple regions. The CFR’s
configuration infrastructure constitutes a newly introduced port
and logic e.g. address decoder and dedicated registers to write
incoming bitstream onto the desired location. At the moment
the CFRs are equal sized and entail multiple 16 CLB columns.
Each CLB column is called minimum configuration region
(MCR) which is the the least (re)configuration unit in our
design. Additionally no single MCR is shared between the
two IP cores. Each CFR has a local Clock generator which is
memory-mapped, i.e. programmable clock frequency for the
required MCR can be generated by writing to registers that are
accessible over the NoC. Similarly a memory-mapped Reset
generator is present which as per required enables or disables
IP cores from processing input data.

The boot processor is a programmable hardwired IP that
bootstraps the system. It contains number of registers to
hold bitstream and application related information required to
instantiate soft IPs by loading bitstream from the bitstream
memory to the appropriate CFRs. The underlying infrastruc-
ture which transports IP traffic consists of routers and network
interfaces (NIs). The former is hardwired whereas the later is
further split into NI kernels and NI shells. NI kernel is hard
and its architecture is explained in [16].

Our architecture supports multiple IPs in a single CFR and
inter-IP communication only through NoC because then the
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application manager can observe the state of communication
channels which is necessary for safe reconfiguration. However
the architecture limits by having: no MCR sharing between
the IPs, no read-back port from the CFRs, no relocatable or
displaced bit-streams and no IP span in the multiple CFRs.

The next section expounds the proposed methodology which
uses the above-mentioned architecture as the target platform
to realize the composable and stable-state application recon-
figuration.

IV. DYNAMIC RECONFIGURATION METHODOLOGY

The dynamic reconfiguration methodology first enforces
composability across the applications before loading an appli-
cation and at the end of its execution ensures persistent-state
transition particulary among the SubApps of an application. To
achieve these objectives it carries out a systematic and close
interaction across all the 3-tiers of the HWNOC reconfigura-
tion model as explained below.

A. Composable Inter-Application Enforcement

In a real scenario the individual (sub)applications are com-
bined into use-cases where an application can span in multiple
use-cases, Figure 3 (A). Since, each use-case represent differ-
ent combinations of application(s) therefore could have its own
QoS requirements e.g. bandwidth and latency constraints that
the communication infrastructure must efficiently accommo-
date for the required performance constraints.

Composable swapping of an application requires: no impact
and conflict with the logic (FPGA) and communication (NOC)
plane resources of the existing application(s). The logic plane
resources include: CFR(s) locations, in/out memory locations
whereas communication plane resources include: data connec-
tions and resources associated with each data connection e.g.
time division multiplex (TDM) slots and flow control credits.
Composable swapping faces another critical challenge when
the incoming application triggers the use-case transition i.e.

the incoming application posses different use-case from some
or all of the already executing application(s). In that situation
it becomes essential to avoid use-case conflict among the
applications and to preserve glitch less execution for those
application(s) which span in both the use-cases.

To cope with above challenges the proposed methodology
allocates a virtually isolated platform for each application. It
ensures to avoid interference with respect to existing applica-
tions and thus allows at-any-time dynamic addition/removal of
the functionalities without taking care of system status.

To realize such a platform the reconfiguration methodology
first calculates the communication plane resources for each
application according to its QoS requirements. It is achieved
at compile time by following the principle of [17]. It implies
to consider all the use-cases in which the application spans
and to allocate the required resources such that not only its
QoS requirements are fulfilled but also the use-case transition
does not impact its execution. Our methodology reserves NoC
resources by 1) choosing the most critical application flow
across the use-cases that is not yet assigned. The most critical
flow is selected on the basis of its use-case span and the
aggregation of throughput and latency demands. Figure 3 (B)
and (C) illustrate this concept where Ap2 and ApI are chosen
in prior to Ap3 because of their execution span in larger
number of use-cases. Since, Ap2 throughput requirements are
higher than that of Ap/ therefore its flow will be chosen in
prior to Apl. 2) After selecting the required application flow,
the available resources in all the use-cases which are spanned
by that particular flow are derived. 3) It is followed by resource
reservation according to the Quality of Service demands
for that particular application flow and then distributing the
reservation across the data structures of the affected use-cases.

The reconfiguration methodology at run time, enforces com-
posability among the applications by making use of the system
manager for application-specific actions which include: stream
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bitstream for the application cores and their initialization,
stoppage, allocation and deallocation of the NoC resources.
The SM keeps record of each application information which
include its: use-cases, Ids, corresponding managers, target
CFR(s), IP(s) with corresponding frequencies, configuration
and functional memory addresses. In prior to load a recently
invoked application the system manager first makes a check
to avoid a possible use-case and FPGA resource conflict of
that incoming application to the existing ones. On finding no
such conflict the SM loads the application IV-B and allocates
the respective NoC resources after ensuring no TDM slot con-
tention. Currently, the SM waits for the conflicting applications
to execute completely before loading the invoked application
by using the procedure as explained in section IV-B.

B. Load And Program Application

Loading of an application is illustrated through Figure 4. It
initiates by using the SM configuration services which after
extracting the bitstream from the configuration memory send
it to the destination CFR over a fixed-latency connection. At
the destination CFR, circuitry (address decoder and registers)
to handle incoming bitstream headers and frames is present
which places the incoming bitstream at the correct locations
as elaborated in [14]. This way an IP is configured and the
bitstream loading process iterates for all the IPs that can be
placed in that CFR. Afterwards Initialization is carried out
per IP basis which incorporates sending clock and reset in-
formation to memory-mapped clock and reset generators. The
above phases end up by closing the appropriate connections
over the network to release the resources. This way a soft-IP
is physically mapped onto the reconfigurable fabric.

Once all the application cores are structurally mapped, TDM
based data connections among the candidate IPs are estab-
lished through the system manager. It accounts for reserving
across the network: the path to communicate with peer, time
slots to send/receive data at required rate and credit counters to
avoid dropping of data with IPs of different clock frequencies
and pipeline depths.

The appropriate AM is afterwards programmed with its
client application’s input/output base addresses, strides, data
ranges and number of executions to perform. In case of single
application comprising multiple SubApps, the I/O addresses
are supplied to an AM after the first SubApp is initialized.

On receiving the application parameters an AM by using
its local address generation unit (AGU) calculates the required
input/output addresses, fetches the data from input locations

and forwards it to the required core on a appropriate data con-
nection. An AM interacts with the executing application both
in forward (supplying input) and backward direction (receiving
application output). The later also keeps traces of number of
executions and dynamically chosen storage location for the
intermediate SubApps of the complete application. At the end
of the application execution an AM triggers reconfiguration for
the next SubApp by sending a notification to the SM which
in turn concludes the loading of an application. Once required
amount of data is received, the procedure to ensure persistent-
state transition is called which is explained below.

1 Receive
i Generate
i il
In Regs
'Setup App
~ Stream IP Data Conns
3 Bitstream(s) Fetch Data Forward Data
5 l From Mem [ —On Respective
5 App Conns
Close Bitstream Program
5 g i
Manager i
Using MMIO
Setup Initializati

Connection

Next CFR

|Get_ i }‘._
L

Ensure
Persistent-

State
T e

Initialize The IP
Core(s)

Receive Data
From App

!

Store Data
In Memory

Close Initialization
Connection

NO YES
Last CFR
Of App

System Manager

|| Notify System
Manager

Application Manager

Application

Fig. 4. Loading An Application

C. Persistent-State Intra-Application Assurance

Since, in our methodology the application that is dynami-
cally swapped in and out is split into sub-applications Figure 1,
as the data flows through the system. It incorporates that
the state between the sub-applications is not lost during
reconfiguration.

It is achieved first by tearing-down the application data
connections by using a systematic procedure, proposed in [18].
It accounts for blocking the source shell from emitting new
transactions, emptying input/output queues, and clearing the
slot table entries associate with to-be-shutdown connections.
Disabling the application computational resources comes next
which starts with opening a reset connection to NI(s) associ-
ated with application IPs and afterwards sending a 32-bit reset
signal to disable IPs from processing further.

Notably all the soft IP of the application are reconfigured,
except the application manager. The reason as explained before
an AM sees consistent view over multiple sub-applications
through persistent storage in its local memory. The next sub-
application that is scheduled then operates on this data. Our
current implementation is rather limited: we allow no cycles
in the application, and completely empty the sub-application’s
pipeline before starting the next sub-application. Thus soft IP
may be pipelined, but must be able to empty their pipeline
when no new data arrives. We evaluate the above discussion
in the next section.
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V. EXPERIMENTS AND RESULTS

We exercised the dynamic reconfiguration methodology in
SystemC using the design flow of [19]. We used a simplified
H.264 application with behavioral models of the three IPs as
shown in Figure 5 to encode Quarter Common Intermediate
Format (QCIF) resolution video frames. Synthesis of the
VHDL implementations of the Residue and DCT IPs on a
Virtex-4 XC4VLX200 chip using Xilinx ISE 8.2 provided their
M H z frequencies which were used in SystemC, table I. The
size of their bitstreams was estimated from their KLUT areas
using the equation (IP LUTs * frames per column) / (LUTs
per CLB * CLB per column). For Virtex-4 [20] a single CLB
contains 8 LUTSs, and a column contains 22 frames and 16
CLBs. The Quantizer area and frequency were estimated to
be between the DCT and the Residue respective values.

TABLE I
APPLICATION IP SYNTHESIZED AREA, FREQUENCY AND
RECONFIGURATION TIME

1P Area Frequency | Bitstream | (Re)config Time
(kLUTs) (MHz) (Frames) (us)
RESIDUE 1.68 100 285 273.6
DCT 2.36 66 396 380.16
Quantizer 2.21 75 370 355.2

We assume that the application] (DCT only) and applica-
tion2 (Residue +DCT + Quant) both run in parallel but with
the difference that application2 does not meet the required
area constraints and therefore is sub-divided into two Sub-
Apps (SA1 and SA2) which are configured and executed in
separate use-cases. In addition each use-case comprises the
system manager and an application manager per application.
The NoC contains 4 routers and NI kernels with respective
FIFO sizes of 24 and 41 words. Optimistic average data
delay between the two IPs which communicate over the
network can be calculated as: Total Iterations (FlitTime
(Flits Per Iteration + Hops + 1) + FlitTime(Total Slots
Allocated Slots) ). Here, Flits Size = 3words, FlitTime
0.006s, Flits Per Iteration = AllocatedSlots, Total Iterations

TIME

Application Temporal Analysis With % System Resource Reservation At Different Stages

= Ceil(TotalFlitsToSend/ FlitsPerIteration).

Results provide the evidence and analysis of the application
mapping onto the HWNOC platform, persistent-state intra-
application swapping and composablity of the system during
inter-application reconfiguration, in the next section.

A. Temporal Analysis Of Applications Mapping

Figure 5 expounds the FPGA and NoC resource reservation
details for both the applications during the load, program, start
and stop phases. In the discussions to follow we will discuss
the timing details for the application 2 which comprises two
sub-applications (SA1 and SA2).

Each phase is preceded by programming the NoC, as
illustrated in [18], in 0.18us to 0.24us, so that the data can
reach the required location. This time has been included in
the preceding discussions while mentioning individual phase
delay. Notably, the source and the destination in our network
at the maximum can be three nodes apart and with each extra
router an additional delay of 0.006us is encountered.

Bitstream loading for the 681 frames of SAI is carried-out
by the SM on a fixed and low latency connection and takes
653us, Figure 5 step(3). It accounts for the 41-word bitstream
frame to be transported the rate of 0.96us. Afterwards the SM
initializes its IPs in 0.63us by programming memory mapped
reset and clock generator in the destination CFR, Figure 5
step(4). It is followed by setting-up of three data connections
for those IPs in approximately 2.9us, Figure 5 step(5). As
the last step before the SA1 execution the respective AM is
programmed by the SM in 0.97us with 48-words application
parameters which comprise full application’s I/O addresses
and ranges, Figure 5 step(6). Afterwards the SA1 execution
is carried out where the single execution of the its IPs process
one 4x4 pixel-block, and 16 such pixel blocks constitute
single Macro Block (MB). It takes 460.3us to process 1QCIF
(99MBs) video frame in peer to peer streaming communication
fashion, Figure 5 step(7).

Sub-application2 goes through the same phases as shown
in Figure 5 steps(10-14) but after achieving a persistent-state
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intra-application swapping which is explained in next-section.

B. Persistent-State Intra-Application Swapping

The persistent-state transition initiates with an AM notifica-
tion to the SM in 0.244s on an already established connection,
Figure 5 step(8). In prior to load SA2 the transitional delay
incorporates various factors for achieving the safe state, as
explained with the following equation:

(T_AMNotify + T_SMResponse +
(T_Connsnutdown) + #CFRs(T_CF Rshutdown)

In our case the SM response time is negligible because
it is sitting idle and ready to serve at the time of an AM
notification. Achieving persistent-state is afterwards triggered
by tearing down all the three SA1 connections in 2.9us
followed by disabling the SA1 IPs in 2.7us. Figure 6(A)
illustrates the resources reserved during safe-switch from SA1
to SA2 with a transitional delay of 5.84s.

#Conns

C. Inter-Application Composability

This section explains the composable nature of our dy-
namic reconfiguration methodology which is evident from the
Figure 6(B) where the applicationl execution is not affected
when an existing application is a) stopped (SA1 after pro-
cessing the 99MBs) or b) installed (SA2). It is achieved by
reserving the TDM slots in the communication plane over
the communication channels which ensures that there is not
contention of resources at the connection level. These TDM
slots realize interleaved yet non-interfering traffics for appli-
cation bitstream loading and execution over the same network
path. The resources which are freed after the removal of an
application (SA1) are reallocated fully or partially Figure 5,
as per required to the incoming application (SA2). During the
resource reallocation SM takes into account the magnitude and
positioning of the resources, as shown with Figure 6(C) where
Quantizer is allocated with the resources released by Residue
and DCT blocks.

VI. CONCLUSION

In this paper, we presented dynamic reconfiguration
methodology which provides composable behavior of the sys-
tem during the application swapping. It also ensures persistent-
state application swapping in addition to run-time allocation
for the dynamically reconfigured application. We presented
the mechanism to achieve above objectives and modeled the

application dynamic behavior in cycle-accurate transaction-
level SystemC. The methodology uses SM to provide services
of reconfiguration and resource allocation whereas makes use
of an AM to ensure run-time memory allocation and persistent-
storage for the switching (sub)applications. A detailed analysis
is provided in the end to illustrate the composable temporal
behavior of our system during the application swapping and
safe-state transition in 5.84ps.
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