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Abstract

We propose that FPGAs use a hardwired network on

chip (HWNOC) as a unified interconnect for functional

communications (data and control) as well as configu-

ration (bitstreams for soft IP). In this paper we model

such a platform. Using the HWNOC applications

mapped on hard or soft IPs are set up and removed

using memory-mapped communications. Peer-to-peer

streaming data is used to communicate data between

IPs, and also to transport configuration bitstreams. The

composable nature of the HWNOC ensures that appli-

cations can be dynamically configured, programmed,

and can operate, without affecting other running (real-

time) applications. We describe this platform and the

steps required for dynamic reconfiguration of IPs.

We then model the hardware, i.e. HWNOC and hard

and soft IPs, in cycle-accurate transaction-level Sys-

temC. Next, we model its dynamic behavior, including

bitstream loading, HWNOC programming, dynamic

(re)configuration, clocking, reset, and computation.

1. Introduction

Advancements in chip-making technology during

the last two decades have fueled the field pro-

grammable gate arrays (FPGAs) transformation from

a simple PLD to multi-million gate chips [1], [2].

These FPGAs are used to prototype as well to realize

systems as complex as multiprocessor system on chip

(MPSOC). However with MPSOCs systems, consti-

tuting hundreds of processing elements and execut-

ing large number of applications with heterogeneous

characteristics, issues related to IP integration, system

verification and validation become prominent. The

situation becomes even more critical with real time

applications which demand hard guarantees in terms

of throughput and latency from the underlying FPGA

data interconnect.

Before proceeding further we define terminology. A

soft IP is mapped on FPGA reconfigurable compu-

tational blocks (LUTs) which are connected to each

other using FPGA programmable interconnect. An IP

is hardwired or hard when it is directly implemented in

silicon. We define (re)configuration as the installation

of new functionality (of soft IPs) in the FPGA by

sending a bitstream to a reconfiguration region. An

IP is programmed after it is configured, if necessary,

which entails changing the state of its registers when

it is in functional mode.

Soft interconnects are often used interconnect soft

IPs. However, timing closure problems may arise be-

cause the interconnect physically spans the FPGA.

Moreover, dynamic partial reconfiguration may be re-

stricted if the soft interconnect is interspersed with the

soft IPs in the same FPGA regions. To overcome these

limitations we have proposed to hardwire an inter-IP

interconnect [3]. Soft IPs can be (re)loaded without

being restricted by the interconnect. Additionally, we

use a network on a chip (NOC) to ensure that deep

sub-micron and timing-closure problems can be solved.

Our Æthereal HWNOC [4] offers composable com-

munication to ensure that different applications do not

affect each other, as they are configured and started,

run, and are stopped dynamically [5].

In this paper we describe the design-time synthesis

and configuration design flow, and the definition of the

run-time dynamic starting and stopping of applications

without disruption to other concurrent applications. We

model the HWNOC and soft IPs cycle-accurately in

SystemC, including bitstream loading, clocking and

reset, programming and running, and show a detailed

example of the platform in action.

The remainder of this paper is structured as follows.

Section 2 positions our platform with respect to related

work. Section 3 defines the platform, and Section 4

describes the design-time tool flow. Section 5 defines

the run-time dynamic starting and stopping of soft IPs,

and how it is modelled in SystemC. Section 6 extends

this to dynamic partial reconfiguration of applications.

Section 7 shows a worked example, and compares

the performance of the system with a soft and hard

interconnect. We conclude in Section 8.



2. Related Work

Our platform uses a hardwired composable and

real-time NOC to guarantee undisrupted simultaneous

configuration (soft IP bitstream loading) and functional

communications between IPs. We therefore discuss

research on soft and hard interconnects in FPGAs.

Soft interconnects include single-hop buses [6], [7]

and cross-bars [7], and multi-hop networks [8], [9],

[10], [11]. The former are not scalable in the number

of attached IPs, and cope less well with timing closure

problems. The latter, do not suffer from these restric-

tions but are expensive in terms of area and power

because they are soft, i.e. implemented using the LUTs

of the FPGA. They therefore also interfere with the

placement and routing of soft IPs in the FPGA, thus

requiring restrictions on IP and soft interconnect place-

ments if dynamic partial reconfiguration is required.

[9] offers real-time guarantees when applications run,

but implements configuration and functional commu-

nications on separate interconnects.

Hardwired NOCs are described in [12], [13] as

functional interconnects for future FPGA chips. Our

previous work [3] works these concepts out in detail.

More importantly, it 1) unifies the transport of all

kinds of data: configuration (bitstreams) and functional

(programming or control, and “normal” data). And 2)

ensures that concurrent applications do not affect each

other at all during configuration or functional mode, by

using the real-time (i.e. composable) Æthereal NOC.

In this paper we model the proposed platform and

demonstrate its run-time behavior.

The architecture in [14] also proposes the unification

of functional and configuration data by introducing so-

called cells. Although the architecture is described in

detail, no simulation results are shown of it in action,

as we do here.

3. Hardwired NOC Platform

In this section we describe how a hardwired NOC is

embedded and used in a FPGA [3]. Figure 1 illustrates

the different components: configuration and functional

regions (CFR), NOC consisting of routers and network

interfaces (NI), configuration memory, and boot pro-

cessor (BPro).

A CFR is a collection of LUTs that are configured

from one port on the NOC, i.e. some IP connected

to the NOC sends a bitstream to the CFR, where it

is instantiated. Normally, a real-time connection with

fixed latency (and guaranteed bandwidth) would be

used for this. Note that in our case CFRs are isolated
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Figure 1. FPGA with Embedded NOC [3].

configuration regions, but they are not isolated func-

tionally. In other words, a soft IP may span multiple

CFRs (not shown in the figure), and multiple soft

IPs may be placed in the same CFR (e.g. CFR4).

This removes restrictions on IP placement, although

for dynamic partial reconfiguration some restrictions

persist, as described later. NIs are split in hard NI

kernels and soft NI shells [15]. A shell is soft because

is configuration (number of ports, depth of FIFOs,

etc.) depends on the soft IP that is attached it. This is

reflected in how the platform is modeled, as described

in Section 5.2.

The boot processor (BPro) is a programmable or

fixed-function hardwired IP that instantiates soft IPs

by loading bitstreams from a bitstream memory to

the appropriate CFRs. It does so by first setting up

a connection from a port on its NI to the configuration

port on the NI of the CFR. This entails programming

the NOC using memory-mapped IO (MMIO), as de-

scribed in detail in [16], [3]. For our purposes, this

is performed by an abstract open connection func-

tion. After the bitstream has been sent to the CFR,

the bitstream connection is removed. Following this,

the IP is programmed by the boot processor using

connections over the NOC; e.g. filter coefficients are

written in memory-mapped registers. Finally, the IP

starts operating, which includes communication via

connections over the NOC to other IPs.

The Æthereal NOC can use any topology that fits

with the particular layout of CFRs and hard IP on the

FPGA. It offers guaranteed (real-time) performance on

its connections, such as minimum bandwidth and max-

imum latency [4]. In particular, it offers composable

communication [17], [5], which means that different



connections do not influence each other at all. Hence,

an application can be started and stopped (configured,

programmed, run, etc.) without disturbing other con-

currently operating applications. An application con-

tains multiple connections between its constituent IPs,

and a set of concurrent applications is called a use-

case.

4. Design Time

In this section we describe the design-time activities.

Ideally, the soft IPs are independently synthesized

into relocatable units (bitstreams occupying (parts of)

CFRs). The size and shape of these units should then

be passed to UMARS [18]. In general, the UMARS

tool maps ports of IPs to appropriate NI ports, to

minimize the bandwidth on the NOC, and to minimize

the latency for the IPs. It routes connections on the

topology and reserves time slots in a time-division-

multiplexing (TDM) table to ensure that required la-

tencies and bandwidths are met for each connection.

However, unlike [19], it is not aware of the area of IPs.

Moreover, current tools do not permit us to generate

relocatable bitstreams per soft IP. In our experimental

set-up we therefore use a synthetic bitstream per soft

IP, and manually map soft IPs on fixed locations on

the HWNOC, like the hard IPs. We currently do not

support bitstream relocation, i.e. the ability to load a

bitstream in different CFRs. The bitstreams are stored

in the (off-chip) bitstream memory.

5. Run Time

Our platform contains a boot processor (BPro) to

bootstrap the system and to manage the dynamic

starting and stopping of applications. The CFRs are

passive in the sense that they react to the commands of

the boot processor. In this section we describe in detail

all the steps required to start and stop an application,

and also how this is modeled in SystemC. From a high-

level perspective, to start a single soft IP operating, the

following steps take place, also illustrated in Figure 2.

1) The boot processor reads a bitstream from the

bitstream memory. 2) It checks if the bitstream would

overwrite active regions of the CFR. 3) assuming

not, then the clock of the IP is switched off, 4) the

bitstream is sent to the CFR. Then 5) the clock of

the IP is switched on, and 6) the IP is reset. After 7)

programming the IP, 8) the IP runs.

An application normally consists of multiple (hard

and soft) IPs. Steps 1-6 are performed first, for all IPs,

and then the remaining steps. (Configuration is omitted

for hard IPs.) The NOC is reconfigured several times:
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Figure 2. Starting a soft IP.

to transport the bitstream to the CFR (boot processor

to CFR configuration port), to program the IP (clock,

reset, functional MMIO registers), and to enable the

IP to communicate with other IPs (boot processor sets

up connections between the IPs).

The application that we model, described in more

detail in Section 7, comprises a pipeline of soft IPs

that operate on and produce addressless streaming data

(e.g. DCT, Quantizer). The data at the start and end

of the pipeline is read from and written to memo-

ries that are part of a data processor (DPro). In the

description of the run-time process, we assume that

the data processor is set up once and persists over

different applications, while the application (pipelines)

are dynamically started and stopped. Figure 3 explains

the run-time flow to configure and execute a basic

pipeline, starting with the reset of the system.

Our SystemC model includes: 1) A bit and cycle

accurate model of the NOC, including its MMIO

registers, its programming, and transport of bitstreams,

programming, and functional data of IPs. 2) Accurate

modeling of bitstreams consisting of multiple frames

with headers and specific location in CFRs, etc. 3) A

behavioral model of the boot processor, i.e. how it

manages applications and their transitions, including

bitstreams, clock, reset, and programmable registers

of IPs. 4) A bit and cycle accurate behavioral model

of CFRs, including exactly when which frames are

occupied and/or in use by soft IP. It also switches

between the behavioral models of all soft IPs that can

be mapped to this CFR, depending on the bitstream

that has been loaded. The clock, reset, and program-

ming of the soft IPs is also modeled. 5) Models of

all memories, including the bitstream memory. The
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following subsections further detail the boot processor,

the CFR, data processor, and their models.

5.1. Boot Processor

The boot processor is the backbone of the platform:

it starts the applications consisting data processors and

IP pipelines. It knows which applications are stored in

the bitstream memory, and which ones are running in

which CFRs at what location. Bitstreams are modeled

accurately, with registers such as system frame length

(FLR), start frame address (SFAR), total bitstream

frames (TFR) and data frame register (DFR). Similarly,

information about applications includes their status

(ASR), which allows it to avoid configuring a CFR

for a new application when it still in use by another

running application. Additionally, the regions for their

input (IBR) and output (OBR) data at the start and end

of the pipeline are also provided.

The following pseudo-code algorithm illustrates how

bitstreams are loaded, frame by frame, into CFRs.

BootPro Functioning Per UseCase
1 I n i t i a l i z e C F R s ( ) ;

2 / / C o n f i g u r a t i o n Phase

3 For Each a p p l i c a t i o n ,

4 For Each i p i n a p p l i c a t i o n

5 buf = r e t r i e v e ( Config Memory ) ;

6 For Each b i t s t r e a m i n buf

7 IF b i t s t r h e a d e r

8 SFAR = ge tS tFrame ( buf ) ;

9 TFR = ge tFrameCnt ( buf ) ;

10 CFId = getCFRID (SFAR ) ;

11 / / Check IP C o n f l i c t

12 IF IPScan (SFAR , TFR)

13 StopIP ( RST , CFId ) ;

14 EndIF ;

15 / / Save CFId f o r f i r s t i p o f each app ;

16 / / i t i s s e n t t o da ta pr oc . t o p r o v i d e i n p u t da ta

17 IF F i r s t App IP

18 ACF = CFId ;

19 EndIF

20 / / Send Header and Update IP t a b l e s

21 S n d b i t s t r e a m (SFAR , TFR , CFId ) ;

22 Upda te IPT ab le (SFAR , TFR , CFId ) ;

23 EndIF ;

24 IF b i t s t r f r a m e

25 For a l l f rames <= TFR

26 DFR = g e t B i t s t r D a t a ( buf ) ;

27 S n d b i t s t r e a m (DFR , CFId ) ;

28 EndFor ;

29 EndIF ;

30 IF l a s t b i t s t r e a m

31 I n i t i a l i z e I P ( Clk , RST , CFId ) ;

32 EndIF ;

33 E ndIf ;

34 EndFor b i t s t r e a m ;

35 EndFor i p ;

36 E ndfor a p p l i c a t i o n ;

37

38 / / E x e c u t i o n Phase

39 For Each a p p l i c a t i o n

40 buf2 = g e t d a t a ( A p p l i c a t i o n d a t a ) ;

41 IBR = getInBaseMemoryAddr ( buf2 ) ;

42 OBR = getOutBaseMemoryAddr ( buf2 ) ;

43 IMD = g e t I n D a t a R e g s ( buf2 ) ;

44 OMD = ge tOutDa taRegs ( buf2 ) ;

45 Frm = g e t T o t a l F r a m e s ( buf2 ) ;

46 SndDPro ( IBR , OBR, IMD , OMD, Frm , ACF , CFR0 ) ;

The boot processor retrieves the bitstream for each

IP of each application, which is combination of frame

headers and data. The header contains data such as the

location of the start frame, number of frames, and CFR

identifier. By keeping track of all frames of running

applications in the system, the boot processor can spot

if an active frame would be overwritten. After this

check, the CFR is informed of the start frame location

(SFAR), the number of frames (TFR), and the actual

bitstream frames.

Note that the first IP of an application to be set

up is the data processor, which remains active for the

duration of the application because it provides manages

transitions between sub-applications (described later).

The clock generator for a soft IP is also modeled.

Clocks can be programmed and switched on/off by

writing to memory-mapped (MMIO) registers via the

NOC. Similarly, the soft IP can be reset by MMIO.

After configuring and initializing all the IPs, the

required (design-time) input and output address ranges

(IMD, OMD) are retrieved from the bitstream memory,

and are stored in boot processor. Finally, the data

processor is notified about this information, and fetches

the required data from memory and forwards it to the

first IP in the pipeline. In due course it will receive

output data from the last IP in the pipeline. This

concludes the configuration and execution phases for

a single application. The data processor knows when

the application finishes by monitoring the amount of

data it receives from the pipeline, and comparing it



with OMD. When the application has finished, the

data processor notifies the boot processor, who then

updates its data structures on application, CFR, and

frame activity, and stops the IPs (by resetting them,

and switching off their clocks).

Application transitions are quite fast (see Sec-

tion 7.1). As long as independent applications use

different CFRs, the configuration, starting, and stop-

ping of applications does not affect other running

applications because the HWNOC is composable. The

role of the boot processor lies in the creation and

destruction of individual IPs by interacting with CFRs,

described next.

5.2. Configuration and Functional Region

The CFR contains a two-dimensional array of con-

figuration frames that determine its logical function.

It also contains a clock controller that is memory-

mapped, i.e. multiple clocks with programmable fre-

quencies can be enabled or disabled by writing to regis-

ters that are accessible over the NOC. Similarly, a reset

controller is present. The CFR also contains circuitry to

handle incoming configurations. A configuration starts

at a given location in the CFR and contains a number

of frames. An address decoder is used to place frames

at the correct location.

A CFR is configured by its bitstream with (one or

more) soft IPs and their accompanying soft NI shells.

Each NI shell receives data of 32 bits from the NI

kernel at the NOC frequency. It converts this data to

the appropriate data width and frequency for the soft

IP. Similarly, other NI shells receive data from the soft

IP and convert it to NI kernel format and speed. The

use of credit-based end-to-end flow control between

NI kernels, and link-level hand-shakes between NI

kernel, NI shell, and IP ensures safe data transfer even

when IPs (and the data processor) operate at different

frequencies [15].

A CFR can be programmed with different soft

functions at different points in time, which must be

modelled in SystemC. This is done by modeling the

loading of bitstreams, inspecting the bitstream, and

based on this selecting the behavioral model of the soft

IP that has been configured. In this manner, it is not

necessary to model the behavior of the LUTs and so on

of the CFR in a bit-and-cycle accurate manner, which

would be prohibitively complex and slow. The clock

and reset behavior is modelled, as is the programming

of the IPs by the data processor. The CFR architecture

and its SystemC model are shown in Figure 4.

The boot processor and the CFR functionality are

fundamental to our hardwired NOC platform. The data
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processor, described next, illustrates one particular way

to use the platform: dynamic partial reconfiguration of

applications.

6. Dynamic Applications

The data processor, illustrated in Figure 5, is es-

sentially just another soft IP. However, it serves two

important functions. First, it acts as a source and sink

for the processing pipeline, i.e. supplies the first IP in

the pipeline with data, and receives the results from

the final IP in the pipeline. This data is read from and

stored in memory, which can be internal or external to

the data processor. In our experiments it is internal. In a

real system, the input/output data could come from the

FPGA I/O, and would be handled in the same manner.

· Load/ Store Data 
From/ To 
Memory· .·  

· Transport data to the 
IP Block.

· Receive data from IP 
block.

· Notify BootPro.

· Generate Address

· Send it To Data Transporter

IP In & Out 

Mem Addr

Data Processor

Address Generation Unit

Data Transport Unit

Mem
ory

Cmd & 
Mem Addr

Data Out

Data In

Notify BPro

IP Data Out

IP Data In

IP 
Parameters

Figure 5. Data Processor.

Second, the DPro is aware of the progress of the



pipeline, i.e. knows when all source data has been

processed (if ever), and when all result data has been

received (and hence the pipeline is empty). This infor-

mation is application specific, and is communicated to

the BPro. Section 5 defined how the boot processor sets

up and removes an individual soft IP. In this section

we describe how the DPro uses this to tear down (part

of) the application.

As mentioned, the DPro contains one or more mem-

ories that act as sources and sinks to the rest of the

pipeline. DPro uses an address generator shown in Fig-

ure 5 to generates the required input/output addresses

and forwards it to data transport unit (DTU). The DTU

has information about the application pipeline such as

the number of input/output channels of the application,

where the data of these channels is stored in the

memories, and how much information must be sent or

received. This information is stored in local memory

and has been received from the BPro. It also allows the

data processor to know when the application pipeline

is empty and hence finished. It signals this to the boot

processor, which can then reconfigure the system. This

infrastructure enables dynamic starting and stopping of

entire applications, as already described in Section 5.

7. Experiments and Results

We modeled our HWNOC platform in SystemC

using the design flow of [20]. We use a simplified

H.264 application encoding with Quarter Common In-

termediate Format (QCIF) resolution, with behavioral

models of the six IPs as shown in Figure 6. Synthesis

of the VHDL implementations of the residue and DCT

IPs on a Virtex-4 XC4VLX200 chip using Xilinx ISE

8.2 provided their frequencies, which were used in

SystemC. The size of their bitstreams was estimated

from their LUT areas, using the equation (IP LUTs

* frames per column) / (LUTs per CLB * CLB per

column). For Virtex-4 [21] a single CLB contains 8

LUTs, and a column contains 22 frames and 16 CLBs.

The IDCT and reconstruction IPs are similar to the

DCT and residue, and we used the same numbers for

them. The quantizer IP speed and area were estimated

to be between those of the DCT and residue.

We run a single use-case containing two applications

(A1, A2). We assume that A1 does not fit in the

available reconfigurable area, and hence is partitioned

in A1a and A1b. Figure 6 shows the IPs that constitute

the applications. There are two masters (Bpro, Dpro)

and eight slaves that form A1 and A2 (five of which

are shown in Figure 1). The NOC contains six routers

and six NI kernels.
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Figure 6. Application Timing Analysis.

Our simulations aim to show the correct functioning

of application starting and stopping, system perfor-

mance, and evidence that applications do not interfere.

7.1. Undisrupted Configuration And Execu-

tion

This section provides experimental evidence of

undisrupted bitstream and functional data transporta-

tion. A single execution of all the A1a and A1b IPs

processes one 4x4 pixel-block, and 16 such pixel-

blocks constitute single Macro Block (MB). For A1 to

process a complete QCIF frame of 99 macro block,

each IP executes 1584 times. In our example, A2

computes 1.5 QCIF frames to ensure it executes while

A1a and A1b are configured and exectue.

The phases the DCT IP goes through, like the other

IPs, are shown in Figure 7. The DCT IP has a pipeline

depth of 8 as shown with vertical lines and runs

at 66MHz. Prior to bitstream loading, the HWNOC

is programmed by setting up connections to all 5

CFRs, as described in Section 3. It takes approximately

3.8µs before A1a’s configuration data appears on the

network, see Figure 6.
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Execution of A1a starts after programming the NOC,

the data processor send data to the residue IP. The

residual data is forwarded to DCT block on 4x4 sub-

block level, which applies integer pixel transformation

on the input data. The DCT block forwards its output to

the data processor that stores the intermediate results in

its local memory, which serves as the starting input for

A1b, when A1a has finished. The IPs of A1a (and A1b,

and A2) operate as a true pipeline, i.e. they process

their data and communicate over the NOC concurrently

and in a pipelined fashion. The IPs run at different

clock speeds, and flow control ensures that no data is

lost or overwritten. It takes approx. 1100µs to encode a

QCIF frame encoding by A1a, as indicated in Figure 6.

In this example, 21 time-division multiplexing

(TDM) time slots in the NOC are used to divide link

bandwidth between different connections [4]. Phases

S1-S5 in Figure 6 indicate the number of slots al-

located to different phases (configuration, function)

for each application. The NOC throughput line shows

the percentage utilization of the NOC. A1a and A2

configuration each use 29.4%, concurrent execution of

A1a and A2 (41.2%), concurrent configuration of A1b

and execution of A1b (46.1%), and A1b execution only

(24.5%).

The loading of A2’s bitstreams take place in parallel

with A1a’s execution. Figure 8 illustrates that the load-

ing of the bitstream of A2’s residue IP is not affected

by A1a because the bitstream latency is constant.

Figure 8. Bitstream Loading with Fixed Latency.

The data processor of A1 observes when A1a has

finished executing. It notifies the boot processor, which

configures A1b and starts it. The entire transition takes

0.64µs. As explained before, this requires reprogram-

ming the HWNOC, loading bitstreams, enabling the

clock, resetting and programming the IPs of A1b.

During all this, A2 operates in parallel without any

interference. Note that the resources that were allocated

to A1a, such as NOC time slots and CFRs, are re-

allocated to A1b. This can be observed in Figure 6,

where the 10 time slots of A1a in phase S4 are re-

allocated to 8 time slots of A1b in phase S5.

7.2. Configuration And Functional Perfor-

mance Comparison

We compared the latency of configuration using our

platform with a HWNOC, with that in a conventional

FPGA. It takes 0.165µs = 173.4µs/1051 to transport

a single bitstream frame of application A1a when no

other applications are present in the system, and we

use the full capacity of the platform. It takes 0.44µs
if we reserve capacity for A2 (whether it is present or

not then makes no difference). In a traditional FPGA

with a 32-bit 60 MHz SelectMap interface, a frame

requires 0.7µs to configure the destination region.

Figure 9. Configuration Comparison.

To compare the functional performance, we consider

the transport of the residue IP’s data through the NOC.

We compare our HWNOC that runs at 500MHz with

several soft implementations of it on a Virtex-4 FPGA.

Our measure is the delay, i.e. the time in the router

network, of the connection with the longest path (boot

processor to residue IP). Table 1 shows the time to

transport half of the current and predicted Macro block

(MB) data, each comprising 128 bytes, to the residue

IP, for a number of NOCs. The times are computed by:

((Flithoptime*(Total Flits + Number of hops + 1)).

In the equation Flithoptime accounts for time taken

by a flit of 3 words in each router. It is equal to

0.0250, 0.0333 and 0.0462µs for synthesized 2x2, 3x2

and 3x3 NOCs, respectively. The last term represents

the output queue at the destination. Compared to a

conventional soft NOC, our HWNOC can transport

data approximately 5.5 times faster, for 3x2 network.

The experiments in this section illustrate that mul-

tiple applications can be started and stopped con-

currently, without any interference. Reconfiguring an



Table 1. Functional Comparison (µs).

Network #Hops soft NOC HWNOC

2x2 3 0.650 0.156

3x2 4 0.899 0.162

3x3 5 1.29 0.168

application takes a minimum time of 0.64µs. Recon-

figuration using the HWNOC is faster than a soft NOC,

even when not all of its bandwidth is available, e.g.

because other applications operate concurrently.

8. Conclusions

In this paper, we modeled a FPGA architecture that

uses a hardwired NOC (HWNOC) to transport config-

uration (bitstream) and functional data. We describe

the run-time procedures to configure, program, and

run soft IPs. This basic infrastructure is then used

to dynamically start and stop entire applications, and

also sub-applications. The latter is useful when an

application does not fit in the resources (configuration

regions) allocated to it. Dynamically swapping sub-

applications then enables the entire application to exe-

cute anyway, although at a lower speed. Our platform

is composable, which means that starting and stopping

of applications does not affect concurrently operating

applications (and vice versa).

We modeled the platform in cycle-accurate

transaction-level SystemC, together with soft IP

blocks. In particular, we model bitstream loading

and frame placement of soft IPs, soft IP clock

management and reset, the programming of HWNOC

and IPs, and their functional operation. We simulated

the concurrent configuration and execution of two

small applications, one of which was split in two

sub-applications.

We compared the performance of a conventional

FPGA with a soft NOC and dedicated configuration

interconnect with our HWNOC platform. Bitstream

loading is faster in our platform.
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