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Abstract: A growing number of applications, often with real-time requirements, are integrated on the same
system on chip (SoC), in the form of hardware and software intellectual property (IP). To facilitate real-time
applications, networks on chip (NoC) guarantee bounds on latency and throughput. These bounds, however,
only extend to the network interfaces (NI), between the IP and the NoC. To give performance guarantees on
the application level, the buffers in the NIs must be sufficiently large for the particular application. At the
same time, it is imperative to minimise the size of the NI buffers, as they are major contributors to the area
and power consumption of the NoC. Existing buffer-sizing methods use coarse-grained application models,
based on linear traffic bounds or periodic producers and consumers, thus severely limiting their applicability.
In this work, the authors propose to capture the behaviour of the NoC and the applications using a dataflow
model. This enables one to verify the temporal behaviour and to compute buffer sizes using existing dataflow
analysis techniques. The authors show what is required from the NoC architecture and demonstrate how to
construct an NoC model, with multiple levels of detail. Using the proposed model, buffer sizes are determined
for a range of SoC designs with a run time comparable to existing analytical methods, and results comparable
to exhaustive simulation. For an application case study, where existing buffer-sizing methods are not
applicable, the proposed model enables the verification of end-to-end temporal behaviour.

The individual applications have different real-time
requirements [4], for example, constraints on periodicity,
throughput and latency, that the platform must

1

Systems on chip (SoC) grow in complexity with an increasing

Introduction

number of independent applications integrated on a single
chip [1, 2]. The applications are realised by hardware and
software intellectual property (IP), for example the processors
and application code, that is reused across platform
generations and instances. Additionally, applications are often
split into multiple tasks running concurrently, either to
improve the power dissipation [3] or to meet real-time
requirements that supersede what can be provided by a single
processor.

accommodate. For firm real-time applications, for example,
a software-defined radio [5], deadline misses are highly
undesirable because of standardisation, for example, upper
bounds on the response latency in many wireless standards,
or steep quality reduction in the case of misses. Soft real-
time applications, for example, an MPEG-2 decoder, can
tolerate occasional deadline misses with only modest quality
degradation. To guarantee a certain real-time behaviour at

the application level, that is, irrespective of other
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applications, the interconnect must provide guarantees on
latency and throughput for the communication between

individual IPs [6].

Networks on chip (NoC) offer bounds on latency and
throughput by reserving resources on the level of
connections [7—-10]. However, the bounds only cover the
router network and the network interfaces (NI), as shown
in Fig. 1a. To extend the guarantees to the application
level, it is necessary to also include the IPs and the NI
decoupling buffers [11-13]. If the buffers are not
sufficiently large, the application performance suffers. Thus,
for an existing NoC architecture, we must be able to
determine the temporal behaviour of the applications
mapped to it, given fixed buffer sizes [14]. On the other
hand, if we are designing an NoC specifically for a set of
applications, then it is desirable to determine minimal sizes
for the NI buffers, as they are major contributors to NoC
power and silicon area [15].

Existing approaches to compute the size of NI buffers [11,
15] model the application behaviour by means of a traffic
characterisation. Buffer sizes are computed such that for
every traffic source that adheres to the characterisation,
there is always sufficient space in the buffer to allow data
production. The work presented in [11] uses linear bounds
to characterise traffic, whereas Coenen ez al. [15] assume
strictly periodic producers and consumers. Neither of the
approaches allows the availability of buffer space to
influence the production time of data. Hence, it is not
possible to derive the temporal behaviour given fixed buffer
sizes, that is to map a new application to an already
existing NoC. Moreover, in [11, 15], it is not possible to
capture dependencies between different connections, for
example, the dependency between requests and responses in
a memory. All these restrictions on the traffic
characterisation severely limit the applicability of the
methods.
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In this paper, we model the NoC and the application
behaviour using a dataflow graph [14]. This leverages
existing dataflow analysis techniques [16—19] that can:
(1) compute the buffer sizes given constraints on the temporal
behaviour of the applications, for example, to dimension an
NoC architecture for a given set of applications, and
(2) determine bounds on the temporal behaviour, that is, a
worst-case schedule, for given buffer sizes, for example, to
analyse if a new application fits on an existing NoC. This
is done, also taking the effect of (non)availability of space
into account [17], by showing that a schedule exists with
sufficient throughput. The analysis guarantees that buffer
capacities are still sufficient to satisfy the application
constraints in case data are injected faster.

As the main contribution of this paper, we show how to
construct a dataflow graph that conservatively models a
connection of any NoC that offers guaranteed latency and
throughput. We exemplify the model by constructing
several instances based on the Aithereal [9] NoC
architecture. The applicability of the model is illustrated by
using it together with state-of-the-art dataflow analysis
techniques [17] to derive conservative bounds on buffer
sizes in the Nls. The computed buffer sizes are compared
with existing approaches, for a range of SoC designs.
Coupled with fast approximation techniques, buffer sizes
are determined with a run time comparable to existing
analytical methods [11], and results comparable to
exhaustive simulation [15]. For larger SoC designs, where
the simulation-based approach is infeasible, our approach
finishes in seconds. Moreover, we demonstrate how the
dataflow models enable us to capture the behaviour of both
the application and the NoC in one model, thus greatly
improving the applicability compared to [11, 15]. An
application case study, where previous approaches are not
applicable, exemplifies how the proposed model is used to
determine the temporal behaviour when mapping a new
application to an existing NoC instance.
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Figure 1 The hardware blocks and corresponding model of a connection

a Hardware blocks
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The remainder of the paper is structured as follows. We
start by introducing related work in Section 2. Next, the
problem domain is described in Section 3, including an
introduction to a general NoC architecture with guaranteed
services. Section 4 presents the terminology and concepts
of dataflow graphs together with their applications. As the
major contribution of this paper, a detailed description of
the temporal behaviour of our example NoC architecture is
given in Section 5, after which our proposed model of an
NoC communication channel is derived in Section 6.
Experimental results, using different analysis techniques
together with the proposed model, are presented in Section
7, followed by conclusions in Section 8.

2 Related work

Several NoCs offer guarantees on latency and throughput per
connection [7-10, 20, 21] and can, thus, be modelled using
the techniques proposed in this work. Mango [10] is based
on routers with a rate-controlled static-priority scheduler
that isolates individual communication connections based
on local scheduling decisions. Similar approaches, using
different scheduling mechanisms, are used in [20, 21].
Nostrum [8], aSOC [7] and Athereal [9] implement the
guarantees by globally scheduling the communication
channels through time-division multiplexing (TDM). The
NoC hardware, however, only offers the mechanisms to
offer guaranteed performance. It remains a problem to
dimension the NoC and allocate resources for the different
connections.

Many tools have been presented for designing NoC
architectures, with complete design flows for network
hardware and software generation [22]. Mapping of IPs to
NIs (spatial) and connections to paths (spatial and
temporal) [23, 24] are important steps in such a design
flow, especially in the presence of real-time requirements.
These steps are, however, focused on the NoC internals,
and guarantee throughput and latency inside the NoC (the
router network in Fig. 1a). To guarantee temporal
behaviour on the application level, it is necessary to include
the application and the buffers between the application and
the NoC in the performance analysis [14, 24, 25].

Simulation is a common approach to incorporate the
application in the performance analysis [15, 26]. Trace-
based buffer sizing [26] provides an optimal bound on the
buffer size for the given input traces. However, it does not
guarantee that the derived size is sufficient for other traces,
that is, for other traces, the applications might even
deadlock. Analysis based on statistical models of the
application have the same limitations [27] and are, thus,
not applicable. The algorithm in [15] uses exhaustive
simulation of given periodic traces. While the method
provides tight bounds, it does so at the price of a high run
time, requiring hours or even days for larger SoC designs.
Moreover, the applications, as well as the NoC, are assumed
to be completely periodic, thus severely limiting the scope.

More generally applicable than exhaustive simulation is the
use of conservative linear bounds on the production and
consumption of data [11]. Assuming that it is possible to
find such a traffic characterisation, the buffers are sized
such that they never overflow. The coarse application
model results in a low run time of the analysis, at the cost
of large buffers. More importantly, the restrictive
application model severely limits the scope of the
applications, and it remains a problem to derive a
conservative traffic characterisation for a given application.
In addition to the limited applicability, both the
aforementioned  approaches [11,15] are unable to
determine the temporal behaviour for given buffer sizes.

In [14, 24, 25], the application, as well as the NoC, is
modelled using dataflow graphs. Thus, in contrast to
[11, 15], it is possible to either compute the buffer sizes
given the application requirements, or derive bounds on the
temporal behaviour (latency and throughput) for given
buffer sizes [5, 17, 28]. The latter is demonstrated in
[24, 25] where applications are mapped to an existing NoC
platform. Although [24, 25] present dataflow models of an
NoC, they do so for a specific system architecture, and do
not discuss which NoC properties are necessary to derive
such a model or how it can be applied to other NoCs.
Additionally, neither of the works compares the dataflow
analysis with existing approaches for buffer sizing.

Extending on [14], this work gives a detailed exposition on
how to construct a cyclo-static dataflow (CSDF) [29] graph
that conservatively models an NoC communication
channel, and the relation between the architecture and the
model. We demonstrate how the model is used to
determine buffer sizes for given requirements, and to derive
guarantees on the temporal behaviour of an actual
application.

3 Problem description

In this paper, we address the problem of constructing an
NoC model that enables the verification of the performance
requirements of the applications (realised by the IPs), and
sizing of the NI buffers. To do this, we must characterise
the behaviour and the requirements of the applications, as
well as the behaviour of the IPs that run the applications,
and the NoC.

The application is implemented by hardware IPs (and
potentially their associated software). The IPs, or rather
their ports, act as either initiators or targets [30, 31], as
illustrated in Fig. la. Initiators initiate transactions by
issuing requests, for example a read or write. One or more
targets receive and execute each transaction. Optionally, a
transaction also includes a response, returning data or an
acknowledgment from the target to the initiator. This
transaction model allows for both a distributed shared
memory and message-passing communication paradigm.
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We assume a general NoC architecture where a protocol
shell adapts from the IP protocol, for example, AXI or
OCP [32], to a word-based first-in first-out (FIFO)
streaming protocol. The shell, thus, performs all necessary
handshakes with the IP and (de)serialises the, potentially
wider, interface of the IP to a sequence of words that are
communicated over the NoC. Both the interface between
IP and shell, as well as between and shell NI, use blocking
and hence non-lossy flow control [30], [31]. In Fig. 1 (and
throughout this work), this is illustrated by a solid arrow
for data (valid), and an open-headed dashed arrow for flow
control (accept).

The NI is responsible for buffering, packetisation and for
implementing the end-to-end services [12, 13]. As shown
in Fig. 1a, a connection is a bidirectional peer-to-peer
interconnection between an initiator and a target. It
comprises a request channel, from the initiator to the
target, and a response channel in the opposite direction.
Every connection is associated with four logical buffers, one
on the initiator side and one on the target side, for request
and response channels, respectively. Hence, requests are
buffered in B,,,; and B, ,. Similarly, responses are buffered

in Bresp,t and Bre{/),i‘

req,t*

Given an NoC architecture that offers guaranteed
latency and throughput for individual channels, it is our
problem to construct an NoC channel model, as shown
in Fig. 14, that allows us to verify the application
requirements and size the NI buffers. We assume that
the application models are given as a variable-rate
dataflow graphs [33]. Moreover, we assume that all
hardware and software tasks, in the application as well
as the architecture, only execute when they have input
data available and sufficient space in all output buffers;
that is, we assume blocking flow control.

4 Analysis model

A dataflow graph can be used to compute buffer capacities
and to guarantee the satisfaction of latency and throughput
constraints [34]. Fig. 2 shows an example producer—consumer

Figure 2 Example buffer capacity problem with a producer
and consumer task
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task graph, with the corresponding dataflow model on top.
A task 4, for example, a software task running on a
processor, communicates via a buffer with a task #, for
example, the scheduler in an NI. If the buffer is full, z, is
stalled, and if the buffer is empty #, is stalled.

The dataflow graph is divided in components that
necessitate a partitioning of the graph. This is exemplified
in Fig. 2 by component C, that models task #,, and
component C, that models task #. Note that the dataflow
model also includes an edge from C; to C,. This is because
a task in the implementation only starts when there are
sufficient free buffer locations, that is space, in all its output
buffers. To make it easier for the reader, this type of edge
is represented with open-headed and dashed arrows, similar
to what we have already seen in Fig. 1.

Next, Section 4.1 provides a brief introduction to CSDF
graphs and the terminology used in the analysis. For
further details and examples, see [17, 19, 34]. Thereafter,
in Section 4.2, a sufficient buffer capacity 4 is computed
given a requirement on the minimum throughput of the

complete dataflow graph.

4.1 CSDF graphs

A CSDF graph [29] is a directed graph G =
(V, E, d, 7, m v, k) that consists of a finite set of actors ¥,
and a set of directed edges, £ = {(v;, v)lv;, v; € V3. Actors
synchronise by communicating tokens over edges. This is
exemplified in Fig. 2, where tokens, modelling data, flow
from actor v, to the actors v,, and v, and tokens,
modelling space, flow from v, to ©,. The graph G has an
initial token placement &: E — N, as exemplified by the
single token on the self edges of v, and v__, and the & tokens

on the edge between them.

op

An actor v; has k(v;) distinct phases of execution, with
k:V — N, and transitions from phase to phase in a cyclic
fashion. An actor is enabled to fire when the number of
tokens that will be consumed is available on all its input
edges. The number of tokens consumed in a firing % by
actor v; is determined by the edge ¢ = (7)]», v;) and the
current phase of the token consuming actor,
v:ExN—N, and therefore equals (e, (£—1)
mod «(v;)) + 1) tokens. The specified number of tokens is
consumed atomically from all input edges when the actor is
started. By introducing a self edge (with tokens), the
number of simultaneous firings of an actor is restricted.
This is used in the example graph in Fig. 2, where actor
v, o models latency, that is, it does not have a self edge, and
actor v, , models throughput, that is, it can only consume
and produce tokens at a certain rate.

The response time (v, f), 7:V xN —= R, is the
difference between the finish and the start time of phase f
of actor v;. The response time of actor @; in firing £ is

therefore 7(v,, (£ — 1) mod «(v;)) +1. When actor v,
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finishes, it atomically produces the specified number of
tokens on each output edge ¢ = (v, fuj). The number of
tokens produced in a phase are denoted by 7: £ x N — N.
In the example, v, has the response time sequence
7,=(2,1) and v, has the response time sequence
7.9 = (2). In this graph, v, consumes and produces two
tokens in the first phase from the edges to and from v,
and v, ,, respectively. For brevity, the notation »” denotes a
vector of length y in which each element has a value x. In
the example, this is seen on the self edge of v, where
12 =1, 1).

For edge e = (v, fvj), we define I1(¢) = Z;(:q)i) (e, f) as the
number o£ (ggkens produced in one cyclo-static period, and
I'ee)=>" f=/1 v(e, f) as the number of tokens consumed in
one cyclo-static period. We further define the actor
topology ¥ as an |E| x |V| matrix, where

and v,

1(e,,) if ¢, = (v;, v)) P # Y,
v —I'Ce,,) ife,=(v,v) and 9, # v
mi H(em) — F(em) if e, = <7)z'7 cyl.)
0 otherwise

If the rank of W is | V| — 1, then a connected CSDF graph is
said to be consistent [29]. For a consistent CSDF graph,
there exists a finite (non-empty) schedule that returns the
graph to its original token placement. Thus, the
implementation it models requires buffers of finite capacity.

We define the vector s of length V], for which holds
Ws =0, and which determines the relative firing
frequencies of the cyclo-static periods. The repetition vector
g of the CSDF graph determines the relative firing
frequencies of the actors and is given by

g = As withAikz{K(%) i i= 2

0 otherwise

The repetition rate g; of actor v; is therefore the number of
phases of wv; within one cyclo-static period times the
relative firing frequency of the cyclo-static period. For the
example in Fig. 2, the vector s is found to be [2 6 31,
and the repetition vector is g = [4 6 31

For a strongly connected and consistent CSDF graph, we
specify the required minimum throughput as the requirement
that every actor v; needs to fire ¢; times in a period u [19]. In
[35], it is shown how also latency requirements can be taken
into account. Given such a requirement on the period w,
sufficient buffer capacities are computed, as discussed in
Section 4.2.

A CSDF graph is said to execute in a self~timed manner
when actors start execution as soon as they are enabled. An
important property is that self-timed execution of a
strongly connected CSDF graph is monotonic in time [36].
This means that no decrease in response time or start time
of any firing £ of any actor v; can lead to a later enabling of

firing / of actor v;. We return to discuss the importance of
this property in the following section.

4.2 Buffer capacity computation

Two conditions must hold to compute the buffer capacity
using dataflow analysis [17]. First, there must be a one-to-
one relation between components in the dataflow graph,
and tasks in the implementation. Secondly, the model of
each component must be conservative. That is, if
component C models task # then it should hold that if
data arrives not later at the input of task 7 than tokens
arrive at the input of component C, then data should be
produced not later by task # than tokens are produced by
component C. The mentioned relation between token
arrival and production times is required to hold for tokens
that represent data as well as space. As previously
mentioned, the self-timed execution of a strongly
connected CSDEF graph is monotonic, that is there are no
scheduling anomalies in the model. Together with
conservative component models, this means that bounds on
buffer sizes, throughput and latency are valid even if a
component produces or consumes faster in the actual
implementation.

In addition to a model that fulfils the aforementioned
conditions, which is one of the major contributions of this
work, we also need an algorithm to perform the analysis. In
this work, we wuse a low-complexity (polynomial)
approximation technique [17] to compute sufficient buffer
capacities for CSDF graphs given a throughput constraint
and given constraints on the maximum buffer capacities. In
this algorithm, a schedule is constructed for each actor
individually, which satisfies the throughput constraint.
Subsequently, token production and consumption times
resulting from these schedules are linearly bounded. Using
these linear bounds, sufficient differences in start times of
the individual schedules are derived such that tokens are
always produced before they are consumed. These minimal
differences in start times form the constraints in a network
flow problem that computes minimal start times that satisfy
these constraints, thereby minimising the required buffer
sizes. Buffer sizes are in the end determined using the
computed start times together with the linear bounds on
token production and consumption times. We refer the
reader to [16, 17] for more details.

Together with an appropriate model, the algorithms in, for
example [16]-[19], are used to find sufficient buffer
capacities. For example, consider the task graph and
corresponding dataflow graph in Fig. 2. Assuming that CP
and C, conservatively model #, and 7, a sufficient buffer
capacity is computed by finding a token placement 4 such
that the throughput constraint is satisfied, for example,
p=6. For the example graph, we have that the graph
deadlocks with & = 2, whereas with d = 3 the graph has a
period of 16. The throughput constraint is satisfied with
d=17.
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Next, we proceed with the major contributions of this
work, where we leverage the existing algorithms for buffer
capacity computation and: (1) show what is required from
an NoC for these techniques to be applicable (Section 5),
(2) exemplify with a model of a specific NoC (Section 6)
and, (3) evaluate the applicability of the proposed model
(Section 7).

5 Network architecture

In this section, we discuss what must be considered in the
NoC architecture to construct a channel model as shown in
Fig. 14. First, the channel flow control must be blocking.
In other words, data are never lost if a buffer is full, and
reading from an empty buffer causes the reading party
to stall until data are available. This is the most common
way to implement non-lossy flow control in NoCs, and
is used in for example, [7-10, 20] (and probably many
others).

Secondly, we require that all the arbitration points of a
channel can be modelled as latency-rate servers [37],
independent of other channels. Any number of arbitration
points is allowed, the resources (such as buffers and links)
do not have to be statically partitioned to individual
channels. Moreover, the arbitration scheme does not have
to be TDM based. In contrast, latency-rate characterisation
is possible for any starvation-free arbiter. Examples of
NoCs that fulfil these requirements are the TDM-based
NoCs in [7-9], all of which have a single arbitration point
per channel. Other examples, with multiple arbitration
points are [20, 10] that use round-robin and rate-controlled
static-priority arbitration, respectively.

For an NoC architecture that fulfils the requirements, the
latency and throughput must be conservatively modelled.
Although this initially might sound like an easy task, the
actual NoC implementation has a wide range of
mechanisms (pipelining, arbitration, header insertion,
packetisation and so on) that affect the latency and

throughput and have to be taken into account. We
exemplify this using the Athereal NoC.

5.1 Athereal architecture

To model the architecture, we must understand its internals,
and what affects the latency and throughput. The Athereal
router network is wormhole switched, and works on the
granularity of flow control units (flits). Flits are transported
between NIs using contention-free routing [9]. That is, the
injection of flits into the network is governed by TDM slot
tables in the NI [12], such that flits do not contend,
similar to [7, 8]. The NI is, thus, the only arbitration
point, in contrast to for example, [10, 20] where every
router is an arbitration point. The allocation of contention-
free paths and time slots is outside the scope of this work,
and we refer the reader to [6, 23] for more details.

www.ietdl.org

Because of the use of source routing, the path is included in
every packet in the form of a packet header. The contention-
free routing removes the need for buffers in the routers as no
packet ever has to wait. It does, however, require that data be
always immediately accepted by the NIs, otherwise, the data
would have to be dropped by the NI and the performance
guarantees would be violated. Athereal therefore uses
credit-based end-to-end flow control per channel [12].

The latency and throughput of a channel is determined by
the resources allocated to a connection, and the direction of
the channel, that is, request or response. In the case of
/Athereal, the resource reservation is captured by the slot
table and the path, 7., ¢,,, 7., and &,,, for the request
and response channels, respectively. As seen in Fig. 15,
when analysing the request channel, we must also take the
response channel into account and vice versa. This is
because of the end-to-end flow control that travels back on
the channel in the opposite direction. Note that credits
travelling on the request channel do not affect data on the
request channel, and similarly for the response channel.

As will be seen in the following sections, the behaviour
depends on the number of slots reserved and the distance
between them (Section 5.1.1), the number of slots that are
used to send headers rather than data (Section 5.1.2), the
length of the path through the network (Section 5.1.3),
and the availability of flow-control credits (Section 5.1.4).
Additionally, a number of architectural constants,
summarised in Table 1, affect the temporal behaviour. In
the following sections, we present the different
contributions in the order they appear when a data word
traverses a channel and credits are returned.

5.1.1 Slot table injection: Data injection is regulated by
the forward slot table, #;,, which is a sequence of slot
reservations. All slot tables in the NoC have the same
number of slots and, thus, have the same period, namely
P> and the flit size is fixed at s, throughout the NoC. The
number of slots reserved affects the throughput of the
channel, whereas the distances between reserved slots

Table 1 Symbols used for the router and NI

Symbol Description Unit

St flit size words
Sh packet header size words
Pn TDM slot table period cycles
Sp maximum packet size flits

Sec maximum credits per header | words
O NI NI (de)packetisation latency | cycles
Oa i NI data pipelining latency | cycles
Ocni NI header pipelining latency | cycles
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Figure 3 Example channel with slot tables and paths

contributes to the latency. In the channel model, we use |#;]
to denote the number of slots reserved, and d,(#,) to denote
the maximum latency from the arrival of a word until the
average data rate can be sustained. Exhaustive search over
the possible arrival times is used to determine d,(#,). For
most practical cases, however, the latter is simply the largest
distance between two allocated slots. This is exemplified in
Fig. 3, by #,=(1,2,3,58,9) with [f;/=6 and
d,(t;) = 3s;, which happens if a word appears in the first
cycle of slot 5.

5.1.2 Header insertion: Besides data, the forward
channel also carries headers. This affects the throughput of
the channel, and it is necessary to bound how much of
the capacity be used to send headers rather than data. The
header insertion is governed by the NI, based on the
reservations in the slot table, and the maximum packet size,
55 The header has a fixed size of s, words, with s, < 5
For a group of consecutive slots, the first one always has to
include the path, and hence a packet header. For example,
consider #; in Fig. 3 where slots 5 and 8 include a packet
header (slot 1 follows after slot 9). In addition, with s, = 4,
also slot 3 includes a packet header (as it comes after 8,9,1
and 2). We must provide a lower bound on the rate of data
sent. Therefore we introduce the function 4 that provides
an upper bound on the number of headers inserted during
a period of p,. In the example, A(z;,) = 3, which occurs, for
example, if we start in slot 4.

5.1.3 Path latency: As all rate regulation is done in the
NI, the traversal of the router network only adds to the
latency of the channel, and does not affect the throughput.
The latency for a path ¢ depends on the number of hops,
denoted |¢|, the pipelining depth of the routers (which is
equal to the flit size sf), and the (de)packetisation latency
of the NI, 0,N1- The path latency Hp(q,')) = 0,1+ [Pl
that is, the time required to (de)packetise the flit plus the
time it takes for the complete flit to traverse the NoC. In

Flg 3, (7) (d)d) - P,NI + 25f

5.1.4 Return of credits: Until now, we have only looked
at the data travelling on the forward channel, but there are
also credits going in the reverse direction, affecting the
latency and throughput of the channel. Whenever a word is
scheduled for injection in the router network, a counter in

the sending NI is decremented. If the counter reaches zero,
no more data are sent for the channel in question. When
words are consumed from the receiving NI, credits are
accumulated and sent back.

The credits are returned in the packet headers of the reverse
channel, with the number of headers depending on the
distribution of slots in #.. To conservatively model the return
of credits, we need to determine a lower bound on the rate
at which they are sent back, and an upper bound on the
latency before they are sent. This is to be compared with the
bounds determined for the injection of data in Section 5.1.1.

The function 5 provides a lower bound on the number of
headers inserted during any interval p,. For each header, a
maximum of s, credits are sent. With 5 bits reserved for
credits, for example, a maximum of 31 credits can be sent
in each header. In addition to bounds on the rate of
credits, 4.(#,) denotes the maximum latency between the
arrival of credits (i.e. a word is consumed from the
receiving NI) until the average credit rate can be sustained.
The slot table allocation, as well as the maximum packet
size, is taken into account just as for the data. Looking at
the example, d4.(z) = 4sp and #(z) =2, which happens
when starting in slot 9.

6 Channel model

In this section, we show how to construct a dataflow graph
that conservatively models a network channel using the
expressions that we derived in Section 5.1. We go from a
coarse model in Section 6.1 and successively refine it until
we arrive at our final model in Section 6.4. Additionally,
Section 6.5 complements the channel model by capturing
the behaviour of the protocol shells.

In Section 7, we use the proposed channel models together
with models of the application and apply dataflow analysis
[17, 19] to the constructed CSDF graph to determine the
conservative bounds on the required buffer capacities and to
verify application-level performance guarantees.

6.1 Fixed latency (Fig. 4a)

Our first model, depicted in Fig. 44, has only one actor v,
with a single token on the self edge. This prohibits an
execution to start before the previous execution has
finished. As seen in the figure, the actor only fires when
buffer space is available in the consumer buffer 8., and
then frees up space in the producer buffer 8,. The response
time of the actor, appearing below the graph, captures the
worst-case latency a data word can ever experience. This
happens when a word arrives and there are no credits
available in the producer NI. Next, we present the four
terms that together constitute the response time.

The first term, 6,(z,) = 0_ny + 4,(2), captures the worst-
case latency for the injection of credits. The latency is a
sum of: (1) the maximum cycles spent updating the credit
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Figure 4 Different channel models

a Data and credits joined

b Data and credits joined, latency and rate split
¢ Data and credits split

d Data and credits split, latency and rate split

counter on data consumption and the maximum latency until
the credits are seen by the NI scheduler, and (2) the
maximum number of cycles without any slots reserved. The
second term, OP(d)[), corresponds to the time required in
the router network to return the credits to the producer NI.
With data and credits available, it only remains to bound
the time until the data are available in the consumer buffer.

Similar to the injection of credits, 6,(2,) = 0, N1 + 4,(2,),
bounds the latency experienced by a data word in the sending
NI. The latency consist of: (1) the number of cycles before a
word that is accepted by the NI is seen by the scheduler, and
(2) the worst-case latency for data. The fourth and last term is
attributable to the router network in the forward direction,
which adds a latency of HP((bd).

The model in Fig. 4a is sufficient to model the NoC

channels and perform buffer sizing and application-level

To = Oc(te) + 0p(de) + 0a(ta) + 0p(Pa)

b

-1
74,0 = 0a(ta) Tap =pn/p; (ta) Ta,.6 = Op(da)

fe ® 1
1
.i 1.‘1- l.l
=] — — - — - - - =
L
L’I

1

Te,p = ap(‘?‘}r') Te,p = ?:'nflﬂr l(tr') Te, 8 = ﬂf‘(?‘-r-}

d

performance analysis. It is, however, overly conservative as
it does not distinguish between credits and data, and
assumes a worst-case arbiter state for every data and credit
item that is sent. Note in particular that only latencies
appear in the model. The number of slots reserved, for data
as well as credits, are not taken into account.

Next, we show how it is possible to refine the model along
two different axes. First, by looking over a larger interval we
can create less conservative models. If data/credits arrive fast
enough, we only have to assume the worst-case state for the
first item. For subsequent items, we have more knowledge
about the state [37]. This leads to a model where latency
and rate is split. Secondly, by distinguishing between the
forwarding of data and return of credits, we capture the fact
that the two happen in parallel. This leads to a model
where data and credits are split. Finally, we present a
model that combines both these refinements.
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6.2 Split latency and rate (Fig. 4b)

We split our first model into multiple actors according
Fig. 44. The difference with Fig. 44, is that the latency,
now modelled by v, can be experienced by more than one
word at a time, that is, the actor has no self edge. Instead,
the actor v, bounds the rate at which data and credits are
sent. With one token on the self edge, the response time
of the actor is a conservative bound on the length of time
it takes to serve one word after an initial latency 7, As
seen in the figure, the response time is the period of the
TDM wheel, p,, divided by the minimum of the
maximum amount of data and maximum amount of
credits. The amount of data is upper bounded by
pgl(td):vad| — A(ty)s,, that is, the amount of words
reserved during p,, minus the maximum space required for
headers. Similarly, the credits are upper bounded by
pb_l(t[) = A(z,)s,. In this channel model, we see that the
latency experienced is the sum of the credit and data
latency, and the rate is determined by the minimum, that
is the most limiting, of the two.

6.3 Split data and credits (Fig. 4c)

Our third model, shown in Fig. 4c, splits the data and
credits into two different actors, v, and v, Actor v,
which models the arbitration on the forward channel, fires
when it has input data and credits available, as seen by the
edge from v, The firing of v, also frees up one buffer
space, as seen by the edge going back to the producer. The
return of credits is modelled by o, that fires when a word is
consumed from B,. The response times of the actors,
appearing above and below the graph, capture the time it
takes for a word/credit to be scheduled by the NI and
traverse the path through the network. Compared with our
first model, we see that the latency for data and credits now
appear as the response times of v, and w,, respectively. We
also see the asymmetry between the producer buffer By,
which is local and the consumer buffer B,, which is located
in the receiving NI.

6.4 Final model (Fig. 4d)

By splitting the model into a data and credit part, as well as a
latency and rate part, we arrive at our final model, shown in
Fig. 4d. In the forward direction, data experience
scheduling latency and rate regulation in the NI, modelled
by v, and v, . The router network also adds latency,

Table 2 Burst sizes for different channel types

v, - For the return of credits, the situation is similar. The
NI is modelled by v, and v, ,, and the router network by
v,4- In our final model, we use independent actors to
model latency/throughput and data/credits.

Note that the channel model is independent of the
application using it. If the application behaviour changes,
or the model of an application is refined, nothing has to be
modified in the channel model. Similarly, the application
model is not affected if the channel model is replaced or
refined, that is, by choosing one of the aforementioned
levels of detail.

6.5 Shell model

Thus far, we have only modelled the NI and router network,
and to complete the model we must also include any potential
protocol shells. The shell is closely coupled to the IP and the
protocol it uses. If the IP uses a word-based FIFO protocol,
for example, an audio A/D converter, no shell is needed. For
a bus protocol like AXI, however, the shell serialises and
deserialises the hundreds of parallel command, address and
data signals sequence that are
communicated over the NoC.

into a of words

In Table 2, we show an example of how the read and
write bursts of an IP are transformed into a number of
words. As seen in the table, the size of a burst, from the
perspective of the NI, depends on the burst size of the IP,
the transaction type, the channel direction and the size of
the message headers. Table 2 shows the case when the IP
and the NoC wuse the same data width. As seen in
the table, a read operation requires the read command
(plus potential flags) and the address to be sent as a
request. The response, in turn, carries the actual data as
well as status information. For a write operation, the
command, flags and address are sent together with the data
(and potentially a write mask). When executing a write
operation, the target may also return status information and
error codes.

Note that a shell model only captures command
handshakes and data transfer for requests and responses.
Higher-level protocol issues, for example, coupling between
requests and responses or dependencies between different
requests from the same initiator are captured in the model
of the application, as exemplified in Section 7.2.

Transaction Direction IP (words) Shell (words) Total (words)
read request 0 Preq,r Preq,r
read response b Bresp,r b+ hpesp s
write request b Pregw b+ hregw
write response 0 Prespw Prespw
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7 Experimental results

In this section, we demonstrate the applicability of the model;
first, by comparing the run time and buffer sizes derived
using our approach with those of [11, 15] in Section 7.1.
and secondly, by showing how to apply it to verify the end-
to-end temporal behaviour of an audio post-processing
application in Section 7.2.

Throughout our experiments, we assume a word width of 32
bits used by both the IPs and the NoC. The NoC operates at a
frequency of 500 MHz and has a flit size sp = 3, a header size
5, = 1, a maximum packet size 5, = 4, an upper limit on the
credits per header s, = 31, pipelining latencies 6,y; = 2
and 6.y =2, and a packetisation latency 6, =1 (as
defined in Table 1). The shells are assumed to have
bregr =25 Brogpr = 0, by oy = 2 and Bregpi = 0. Note that the

period of the NoC, p, is determined per NoC instance when
allocating resources for the various use-cases [23].

7.1 Buffer sizing

We compare the run time and buffer sizes derived using our
approach with those of [11, 15]. Using the terminology of
[15], we hereafter refer to the two approaches as analytical
and simulated, respectively. Moreover, using our proposed
channel model, we also show the differences using the
dataflow model with fast approximation algorithms [17]
and exhaustive back-tracking [19]. Thus, we use the same
model as input, but two different tools in the analysis. The
run time is measured by using the Linux command time,
looking at the wuser time, including potential child
processes. The reason we use this command is that the
dataflow analysis tools are separate binaries, that are called
for every connection that is analysed in the NoC design
flow [22]. For the dataflow analysis, the time includes the
forking of the parent process, the writing of XML files
describing the CSDF graphs to disk, and then reading and
parsing of those files.

The first step to comparing with [11, 15] is to adopt an
equivalent application model (Section 7.1.1). Thereafter, we
apply the methodologies to a range of synthetic
benchmarks (Section 7.1.2), a mobile phone SoC design
(Section 7.1.3), and a set-top box SoC (Section 7.1.4).

7.1.1 Modelling the application: To facilitate a
comparison with existing work, we choose to employ a
model that subsumes [11, 15], where the input specification
is done per connection, and contains a transaction type
a € {R, W}, determining if a transaction is read or write, a
burst size # € N in words, and a period p € N in network
cycles (if the IP and NoC are using different clock

frequencies).

Similar to [15], the model is based on the notion of a
producer and consumer. To determine the sizes of the four
buffers in Fig. 14, where the initiator and the target act as

www.ietdl.org

both producers and consumers, we first look at the data
going from initiator to target to determine B,,,; and B, ,.
Thereafter, we swap the roles and let the target be the
p g
producer and the initiator the consumer to determine (3

and

resp,t

resp,i*

Dividing the buffer calculation for request and response
channels into two separate steps, implicitly assumes that the
production and consumption inside the IPs is completely
decoupled, that is, there is no relation between
consumption and production times of the IP. Again, this is
to keep the model comparable to [11, 15], and is to be
contrasted with Section 7.2.

Having separate connections for reads and writes assumes
that they can make independent progress. This corresponds
to the separate read and write data paths of, for example,
AXI. Protocols with a more strict ordering, for example,
AHB, are therefore not accurately modelled without further
additions. The reason we use a more limited model than
allowed by dataflow analysis is again the comparison with
[11, 15].

Fig. 5a shows the models we adopt for periodic producers.
Since we model an IP that produces words on a bus interface,
we know that a burst of more than one word cannot be
produced in one cycle. This is reflected in the model,
where only one token is produced per actor phase. Space is
acquired in the first 4 phases, each taking one cycle. Data
are released in the last & phases, also taking one cycle each.
Both actors have a cumulative response time of p. Note
that the model of the consumer is completely symmetrical,
with the only difference being which edges represent data
and credits. Hence, the consumer acquires data in the first
b phases, and releases the space that the data occupied in
the last 4 phases.

The two models capture periodic producers and consumers
with half a period of jitter on the burst. If the producer
actually acquires its space later, then the buffer capacities
computed with this dataflow model are still sufficient. This
is because space will arrive in time to allow for
consumption times according to the model, which implies
that space arrives in time for these later consumption times.
If the producer actually releases its data earlier, then also

Figure 5 IP models used for buffer-size comparison

a Producer
b Consumer
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the computed buffer capacities are sufficient. This is because
an earlier production of data can only lead to an earlier
enabling of the data consumer, that is, the NI. This is
because of the one-to-one relation between components in
the implementation and the model, together with the fact
that the dataflow model is monotonic in the start and
response times. The reasoning for the case in which the IP
consumes instead of produces data is symmetric, because in
the dataflow graph tokens model both data and space.

7.1.2 Synthetic benchmarks: To assess the performance
over a broad range of designs, we choose to compare the
different algorithms on a set of randomly generated use-cases.
The benchmarks follow the communication patterns of real
SoCs, with bottleneck communication, characterising designs
with shared off-chip memory, involving a few cores in most
communications. All generated designs have 40 cores, with
an initiator and a target port, connected by 100 connections.
Bandwidth and latency requirements are varied across four
bins, respectively. This reflects, for example, a video SoC
where video flows have high bandwidth requirements, audio
has low bandwidth needs, and the control flows have low
bandwidth needs but are latency critical. A total of 1000
benchmarks are evaluated, using the proposed channel model
more than 200000 times in total, with widely varying

requirements.

Fig. 6a shows the distribution of the total buffering
requirements, relative to [11]. As seen in the figure, both
the simulation-based algorithm and the algorithms using
our dataflow model result in significant reductions on the
total buffer size. Averaging over all the benchmarks, we see
a reduction of 36% using the dataflow approximation
algorithm, 41% using the exhaustive simulation and 44%
when applying the exact dataflow analysis. Moreover, the
distribution of relative improvement is much wider for the
simulation-based algorithm, ranging all the way from 5%
up to 45%. The dataflow model, on the other hand,
consistently results in an improvement of more than 30%,
and even 35% in the case of an exact analysis. The large

Distribution of relative buffering per design
0.7
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0.6 Dataflow approximation [17]
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05 055 06 065 07 075 08 085 09 095

a

improvements stem from rather small slot tables (<32
slots), and hence a large bandwidth-allocation granularity
(with 32 slots, each slot corresponding to roughly
63 Mbps). Although this leads to an increased burstiness
and larger buffers using the analytical method, the dataflow
analysis leverages the reduced response times, thereby
reducing the buffer sizes.

The run times measured when deriving the
aforementioned buffer capacities are also compared with
[11], and the relative distribution is shown in Fig. 64. It is
clear from the experiment that the dataflow approximation
algorithm is roughly one order of magnitude slower than
the analytical approach, being on an average 11 times
slower. Note though, that the run time is still below a
second for an entire SoC design. The exact dataflow
analysis and the simulation, on the other hand, are three
orders of magnitude slower, averaging at 450 and 520
times the execution time of [11] (but faster algorithms for
the exact dataflow analysis exist [18]). The run time of the
simulation-based algorithm depends heavily on the period
of the producer, network and consumer. As the generated
designs use relatively small slot tables, the run times are in
the order of minutes.

7.1.3 Mobile phone SoC: A phone SoC with telecom,
storage, audio/video decoding, camera image encoding,
image preview and 3D gaming constitutes our first design
example. The system has 13 cores (27 ports distributed
across an ARM, a TriMedia, two DSPs, a rendering
engine etc.), one off-chip DDR memory, one on-chip
SRAM plus a number of peripherals. Communication is

done via memory, and the NoC runs at a frequency of
235 MHz.

The total buffer size and the time needed to derive all
buffers, for all the use-cases, are shown in Table 3. As
explained in [15], the buffer sizes are determined per use-
case and then the maximum for every buffer is used in the
architecture. Again, we see that the dataflow-based

Distribution of relative run-time per design
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Figure 6 Comparison of run time and total buffer size for the synthetic benchmarks

a Relative buffer sizes compared with analytical [11]
b Relative run time compared to analytical [11]
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Table 3 Buffer sizes for mobile phone system

Algorithm Run Tot. buffers Impr.,

time, s (words) %

analytical [11] 0.05 1025 ref

simulated [15] 6845 799 12

dataflow approx. 0.78 721 30

[17]

dataflow exact 547 680 34

[19]

methods result in improvements of 30 and 34%, respectively.
The simulation, however, only reduces the buffers by 12%,
thus performing significantly worse than for the synthetic
benchmarks.  Moreover,  although  the  dataflow
approximation technique results in run times that are
comparable to those seen in the synthetic benchmarks, the
exact analysis and the simulation-based approach are,
respectively, roughly 10 000 and 100 000 times slower than
those in [11]. The reason for the increased run time is a
large amount of low bandwidth connections with long
periods.

7.1.4 Set-top box SoC: Our second design example is a
set-top box with four different use-cases, all having hot-spots
around three SDRAM ports and 100 to 250 connections.
These connections deliver a total bandwidth of 1-2 Gbps
to 75 ports distributed across 25 IP modules. With more
than 500 connections to be analysed, this constitutes the
largest example. The slot table size is also larger, with 67
slots, to accommodate a wide variety of bandwidth
requirements.

As with the mobile phone SoC, we look at the total buffer
capacity required across the use-cases and the run time
needed to compute the buffer sizes. The results are
presented in Table 4, except for the simulation-based ones
that had not even finished the first use-case after running
for 24 h. Simulating one least common multiple for every
possible scheduling, interleaving is therefore often
impractical for a design of this size. For the dataflow
analysis, the approximation algorithm is almost as fast as

Table 4 Buffer sizes for set-top box system

Algorithm Run time, Tot. buffers Impr.,

s (words) %

analytical [11] 6.10 9190 ref

simulated [15] - - -

dataflow approx. 6.87 7818 15

(17]

dataflow exact 15 229 7170 22

[19]
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[11], since the ratio computation and file I/O are far larger
than for the previous examples. It should also be noted that
this time also necessitated four invocations of the exact
algorithm, as the heuristic failed to find a solution.
Exclusive use of the exact algorithm, on the other hand, is
considerably slower, again because of very large solution
space. The slot table size for this design is also fairly large,
leading to smaller discretisation effects, and this benefits
the analytical algorithm that uses less conservative bounds.
At the same time, the dataflow analysis does not have the
opportunity to reduce the buffering requirements by
exploiting lower response times, and we see a relative
improvement of only 22% for the exact analysis.

Although 7170 words of buffering in the NIs might seem
costly, it should be noted that most of this buffering is located
close to the memory controller and its three ports. It is, thus,
possible to use a few large dual-ported SRAMs rather than
dedicated FIFOs. Thus, the roughly 24 kbits worth of
buffering occupies only 0.2 mm? [38] in a 65 nm CMOS
technology.

7.2 Application case study

In this section, we demonstrate how to model a complete
application as a CSDF graph and, thus, enable verification
of the end-to-end temporal behaviour and computation of
NoC buffer sizes. For more examples, we refer the reader

to for example, [24, 25].

The audio post-processing application, shown in Fig. 74,
comprises three tasks: first, the source analogue to digital
conversion (ADC), periodically producing signed 16-bit
pulse-code-modulated stereo samples; secondly, the actual
filter task, executed on a statically scheduled VLIW

a=(1,0,0,0)
b=1{(2,2,0,3)
¢=1{0,1,1,0)
d=(0,0,0,1)

TApc = 1000
Tpac = 1000
Tritter = (42,77, 4)
3

Figure 7 Task graph and dataflow model of the audio post-
processing filter

a Task graph
b Dataflow model
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without caches; and thirdly, the digital to analogue
conversion (DAC), which acts as a periodic sink. Both the
ADC and DAC have a sampling frequency of 48 kHz, and
the NoC, processor and memory run at 48 MHz on an
FPGA instance of the system. The filter task receives input
samples from the ADC via the NoC and adds a two-tap
reverberation and echo effect by mixing in past samples.
The output is then sent both to the DAC and stored in
the background memory for future mixing with the input.
The filter application is firm real-time, as the failure to
consume and produce samples in 48 kHz leads to
noticeable clicks in the output.

The dataflow model of the filter application is shown in
Fig. 74, with time indicated in network cycles, that is, at
48 MHz. The ADC and DAC are modelled by single
actors that have a response time of 1000 cycles. The filter
application requires three connections, and a total of four
channels, as indicated by the grey boxes in Fig. 74. The
processor uses FIFO streaming for the communication
with the ADC and DAC, and these connections only have
request channels. Shared memory communication is used
for reading and writing reference samples in the
background memory, using both a request and response
channel, over which both reads and writes are sent. Every
grey box corresponds to any one of the channel models in
Fig. 4. The filter, together with its associated NI shell, is
modelled by v, Finally, the memory with its NI shell is
modelled by v,,,,, using the technique proposed in [39]. A

detailed discussion of the last two actors follows.

The filter actor vy, has four phases, corresponding to the
two read operations, the actual calculation, and the writing of
the output. The rates for the NoC channels are indicated by
a, b, cand din Fig. 75. Note that the rate is the same for both
the consumption (incoming edge) and production (outgoing
edge). In the first phase, an input sample is read from the
ADC, and a read request is sent to the memory (4,,,,). In
the second phase, a new read request is sent, and the read
response from the first phase returns one reference sample
from memory (1+ 4,,,). In the third phase, the read
response from the second read returns. In the fourth and
last phase, the output sample is written to memory
(1 + Ay,.,) and sent to the DAC. The response times of the
different phases are determined by the analysis of the program
flow [40]. The first two phases take four cycles each, partly
because of the shell. Thereafter, 77 processor cycles are spent
performing arithmetic operations and accessing local memory.
Finally, another four cycles are spent writing the output.

The memory actor v,,,, models an SRAM with a fixed
access time of six cycles. The shell spends two cycles
reassembling the bus transaction, and four cycles are for the
pipelining of the controller and the TDM arbiter (more
elaborate arbitration schemes are possible [36]). The
production and consumption rates of the request and
response channels are indicated by ¢ and f'in Fig. 74. Reads

and writes from the filter to the memory share the same

connection. This is a complication, as the production and
consumption rates of v,,,, are different for the two types of
operations (and also depends on the burst size). Therefore
we model the memory with three phases, corresponding to
the three accesses of the filter (read, read and write). This
is only possible as the order of the operations is fixed, and
not a generally applicable technique. There are, however,
more elaborate dataflow models that enable variable-rate
model [33], but this is outside the scope of this paper. In
the first and second phases, a read request is received
(5,,,), and a reference sample is sent back to the filter
(14 A,p,)- In the third phase, a write request is received
(1+4,,.), without sending any response back (as
hyep. = 0). The response time for all the phases is six
cycles, as previously discussed.

The filter model in Fig. 75, together with a channel model
in Fig. 4 can now be used to determine an NoC configuration
such that the ADC and DAC are guaranteed to produce and
consume samples in 48 kHz. This simple example
application, being just a pipeline with three tasks,
demonstrates: (1) how the NoC channel model is included in
a dataflow model of the application to include the temporal
behaviour of inter-task communication, (2) how the mapping
to an architecture gives rise to cyclic dependencies even
though the application is a pipeline, (3) how coupling
between NoC channels, for example, the request and
response channels to memory, is taken into account in the
dataflow model and (4) that more elaborate dataflow models,
with variable rate, are needed also for very simple applications.

8 Conclusions and future work

A growing number of applications, often with real-time
requirements, are integrated on the same SoC, in the form
of hardware and software IP. NoC offer guaranteed
throughput and latency to the communication between IPs.
However, the guarantees only cover the router network and
NI. To give performance guarantees on the application
level, the buffers in the NIs must be sized according to the
application behaviour. If these buffers are not sufficiently
large, the performance requirements cannot be guaranteed.
At the same time, the size must be kept at a minimum as
the buffers are a major contributor to NoC power and
silicon area.

In this work, we show how to construct a dataflow graph
that conservatively models an NoC connection. The only
requirements are that the NoC uses blocking flow control
and that a connection is a latency-rate server. We show
that an Athereal guaranteed-throughput connection is a
latency-rate server, and present a detailed model of such a
connection. The proposed model is evaluated quantitatively
by comparing with existing buffer-sizing approaches over a
range of SoC designs. Buffer sizes are determined with a
run time comparable to existing analytical methods, and
results comparable to exhaustive simulation. In contrast to
existing buffer-sizing methods that rely on coarse linear
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bounds or exhaustive simulation, the presented dataflow
model allows for a more expressive application model,
capturing cyclic dependencies and variation in execution
times. Given that the application itself has a dataflow
model, the presented channel model can be inserted to
include the temporal behaviour of the communication
between tasks. This enables the computation of NoC
configurations that satisfy end-to-end temporal constraints.
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