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Abstract—The Internet growth coupled with the variety of
its services is creating an increasing need for multicast traffic
support by backbone routers and packet switches. Recently,
buffered crossbar (CICQ) switches have shown high potential
in efficiently handling multicast traffic. However, they were
unable to deliver optimal performance despite their expensive and
complex crossbar fabric. This paper proposes an enhanced CICQ
switching architecture suitable for multicast traffic. Instead of a
dedicated internal crosspoint buffer for every input-output pair
of ports, the crossbar is designed as a multi-hop Network on Chip
(NoC). Designing the crossbar as a NoC offers several advantages
such as low latency, internal fabric load balancing and path
diversity. It also obviates the requirement of the virtual output
queuing by allowing simple FIFO structure without performance
degradation. We designed appropriate routing for the NoC as well
as on-chip router scheduling and tested its performance under a
wide range of input multicast traffic. Simulations results showed
that our proposal outperforms the CICQ architecture and offers
a viable architectural alternative. We also studied the effect of
various parameters such as the depth of the NoC as well as the
speedup requirement for high-bandwidth multicast switching.

Index Terms—Multicast, Buffered crossbar fabrics.

I. INTRODUCTION

Recent years have witnessed an increasing convergence

of media services (broadcasting, cable TV and on-demand

multimedia) to packet-based networks with a growing number

of online multi-party applications such as online gaming,

IPTV, video teleconferencing, etc. The popularity of these

applications is stressing the need for efficient multicast support

by Internet routers and packet-switches. Despite the various

attempts to coming up with an optimal multicast switching

architecture, efficiently handling multicast traffic is still an

open problem.

Multicast traffic support has been studied over the last two

decades. The crossbar based fabric is considered the most

prominent switch interconnection architecture due to its low

cost, scalability and most importantly to its intrinsic multicast

capabilities [1]. Consequently, most of the research work has

been carried on the input queued (IQ) crossbar-based switch-

ing architecture [2][3][4] [5][6]. Because of the multicast

traffic nature, the input queueing structure represented a major

design choice. Unlike unicast traffic, where a packet (cell) has

only one destination output port, a multicast cell can have 1 or

more destination output ports known as its fanout set. This has

imposed a constraint on the number of FIFO queues per input

in order to avoid the Head of Line (HoL) blocking problem. In

addition to the input queueing constraint, IQ switches suffer

the high inherited scheduling complexity due to the centralized

control in crossbar fabrics.
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Fig. 1. The proposed NoC based crossbar fabric architecture.

The centralized scheduling complexity of unbuffered cross-

bars can be solved by adding a limited amount of memory

in every crosspoint of the crossbar, e.g. a buffered (CICQ)

crossbar switch [7]. The appeal of the CICQ switching archi-

tecture has attracted considerable research work for multicast

traffic support [1][8] [9][10]. As expected, the CICQ exhibited

better performance under multicast traffic than IQ switches,

however it suffers throughput degradation with increased

switch size [10]. Additionally, whether a crossbar switch is

buffered or not, the fabric requires long point-to-point wires

to interconnect the switch inputs to its outputs. This results

in long delays and consumes high power to drive these wires.

Another issue is the choice of the input queueing structure.

Using just one FIFO per input port results in low performance

due to the HoL problem, whereas avoiding the HoL is virtually

impossible for multicast traffic and medium to large switch

size [4].

This paper calls for rethinking buffered crossbar packet-

switch design for efficient multicast traffic support. Instead

of a buffered crossbar fabric with dedicated internal buffers,

we design the crossbar fabric as a Network on Chip (NoC).

Each internal crosspoint buffer is replaced by a NoC router.

The proposed architecture consists of one FIFO queue per

input port, a NoC as its interconnect stage and output ports,



as depicted in Figure 1. When a multicast packet arrives at

an input port, i, it gets queued in FIFOi and waits its turn to

be switched. The packet at the head of FIFOi gets switched

to the first on-chip router (Ri,1) as soon as there is space in

the router’s input buffer. From then on, the packet gets routed

through the multi-hop NoC to its set of destination output

ports. This paper describes appropriate multicast routing algo-

rithms for the proposed NoC. Multicast traffic is routed using

two strategies: copy network and multicast network. In the

first strategy, copies of the packet are made (as many copies

as destination output ports) in the input line card and packets

are treated as unicast. The second strategy makes use of the

multicast capability of each NoC crossbar router.

Our design offers several advantages when compared to

traditional CICQ design. First, speedup, because short wires

allow reliable high-speed signalling and simple local arbi-

tration per on-chip router. Additionally, because arbitration

is distributed over the routers, the long wires from crossbar

input/output ports to the central scheduler (for unbuffered

crossbar) or scheduler per input-output port pair (for buffered

crossbar) are eliminated. Second, load balancing, because

paths from different input-output port pairs share the same

router buffers. This is in contrast to traditional CICQs, where

each buffer is dedicated to each input-output pair. Path di-

versity allows traffic from an input port to follow different

paths to its destination output port. This sharing results in

load balancing of buffer space between different flows, and

possibly in a reduction of the size of the buffers.

An important feature of our proposed architecture for multi-

cast traffic support is its simple and efficient FIFO input queu-

ing structure. Traditional crossbar based architectures (both

IQ and CICQ) suffer from the HoL blocking. To avoid this

problem for multicast traffic, a costly solution known as the

multicast virtual output queueing (MC-VOQ) is required [4].

Alternatively, k multicast queues per input are required, where

higher values of k result in better performance but at higher

costs [11]. In addition to this, multicast fanout splitting policy

is often required to achieve acceptable performance [2]. How-

ever, this mandates higher crossbar frequency as compared

to the input-output line speeds, to account for the multiple

submissions (copies) of the same packet over the serial links

between the line cards and the crossbar core. Our architecture

overcomes the above problems as only one FIFO queue is

maintained by input and non-fanout splitting is used. Multi-

hop NoC-based crossbar fabrics do not suffer from HoL

blocking because the NoC is pipelined (multi-stage). As a

result, packets from a single input port, heading for different

output ports, are accepted by the NoC even when some of the

output ports may be blocked. Path diversity and buffer load

balancing ensure that packets destined to different output ports

interfere much less with each other.

The remainder of this paper is structured as follows. In

Section II we provide some background knowledge on multi-

casting and discuss related work. In Section III we introduce

our NoC-based crossbar fabric, referred to as the Unidirec-

tional NoC (UDN). We explain its dynamics and describe two

novel multicast routing algorithms for the UDN architecture.

Section IV introduces a simulation-based throughput and la-

tency analysis for different traffic types and speedup values

and compares the performance to that of a traditional CICQ

switch. We draw conclusions in Section V.

II. RELATED WORK

Multicast support has been considered an obvious must for

the Internet due to the advantages it offers such as optimized

network performance, better use of resources, scalability, and

reduced network load. Consequently, various studies have tried

to develop suitable architectures for multicast traffic [3][12].

The earliest and most straightforward multicast solution was

the use of copy networks. In copy networks, an input multicast

packet is replicated as many times as the number of its

destination output ports. Then all copies of the packet are

treated as unicast packets. However, copying packets has

two disadvantages: increasing the required bandwidth and

making packets contend for crossbar access multiple times.

For these reasons, most of the studies have then focused on

the performance of crossbar switches for multicast traffic. The

crossbar fabric natural multicast capability avoids copying the

packet to all the destinations. It has the capability to transfer a

packet simultaneously to multiple outputs using simultaneous

(parallel) switching paths.

In a N × M router with multicast capabilities, a multicast

packet arriving to any of the N input ports can have any

set of destination output ports between 1 and M . The set

of these destinations is known as the packet’s fanout set.

One of the popular input multicast queueing structures used

was the adoption of one FIFO queue per input port of the

switch [13]. However, using only one FIFO per input resulted

in a severe HoL blocking problem, similar to the unicast

case. Completely avoiding the HoL blocking would require to

maintain up to 2M−1 separate FIFO queues per input, each per

distinct fanout set. This architecture, known as the multicast

VOQ (MC-VOQ) switching architecture [4], is considered

unfeasible for even medium sized switch due to the high

number of queues required. As a result, researchers have

been looking for alternative queuing structures. A compromise

between maintaining one FIFO per input and using the MC-

VOQ structure was the use of k FIFO queues per input

(1 ≤ k ≪ 2M − 1) [11]. Because k is smaller than the fanout

set cardinality, how to distribute incoming traffic over the k

queues is important as it affects the scheduling performance.

Appropriate cell placement schemes have been proposed to

address this issue [11][14]. A more recent result proved

that that crossbar-based switches could never reach 100%

throughput for increased port numbers [10].

An equally important factor for multicast traffic handling

is the multicast service discipline used. Two known service

disciplines exist. The first is named non-fanout splitting policy,

in which all the copies of a packet must be sent in the same

packet time. If any of the output packets loses contention for an

output port, none of the output packets are transmitted and the

packet must try again in the next packet time. The non-fanout



splitting policy is simple to implement, however it suffers low

performance. The second discipline is called fanout-splitting,

in which output packets may be delivered to the output ports

over any number of packet times. Only those output packets

that are unsuccessful in one packet time continue to contend

for output ports in the next packet time. Research has shown

that fanout-splitting enables a higher switch throughput for

little increase in implementation complexity [13]. However,

it also requires additional bandwidth between the input line

cards and the crossbar fabric core and this is undesirable.

Our work differs from previous solutions by proposing a

multihop NoC fabric crossbar for multicast traffic. Our pro-

posed architecture does not require sophisticated nor expensive

input memory. It is natively designed for simple input queuing

structure. One FIFO per input port is sufficient as the multi-hop

NoC allows a high path diversity and low HoL blocking. This

is in contrast to traditional crossbar switches, in which k FIFO

queues are required. Additionally, our proposal inherently

implements non-fanout splitting policy without performance

degradation. This is due to the architectural property of the

NoC crossbar switch, where packets are injected once in the

NoC (crossbar core) without any need for input-output port

synchronization, as it is the case with conventional crossbar

switches.

III. THE UNIDIRECTIONAL NOC CROSSBAR FABRIC

The Unidirectional NoC (UDN) crossbar fabric is shown

in Figure 2. The input line cards with FIFO queues are

connected to the input of the crossbar and the output ports

of the switch are connected to the crossbar chip outputs. As

is common, our switch operates on fixed size packets (cells),

where variable-length packets are segmented into fixed size

cells upon entering the switch and reassembled at the exit. In

the following cells will refer to the incoming cells arriving at

the line cards, packets will refer to the packets in the NoC,

and routers are part of the NoC in the crossbar fabric. Cells

arrive at the input line cards and are transferred to the crossbar

fabric chip when there is space in the crossbar’s network-

interface (NI) buffers. Cells are packetized by the ingress NIs;

the routers then route these packets to the egress NIs, where

the cells are depacketized and forwarded to the output line

cards. The NoC is a two-dimensional mesh of packet-switched

routers, with network interfaces (NI) on two opposing sides

of the mesh. The mesh has N inputs and N outputs, and is

scalable in the number of stages M .

A. Multicast Switching Strategy

The set of destination output ports (fanout set) of a packet

is decoded in the packet’s header using a bit mask. The bit

mask contains as many bits as the number of destination output

ports in the switch. A bit set to “1” means that the output

port indexed by that bit is a destination for the packet. It is

worth noting that our switch implements the ‘conventional’

non-fanout splitting policy, where a packet is switched only

once between the input port and the switch core. However, the
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Fig. 2. The UDN crossbar fabric architecture.

switch core (the NoC routers) use fanout splitting internally,

where a packet can be switched through a NoC router over

multiple time slots.

In this paper, two types of strategies are tested for multicast

traffic. In the first one, referred to as Copy Network, cells are

replicated in the NIs and converted into unicast packets. Then,

packets enter the switch core (NoC) and are distributed using

a routing algorithm. In the second type of strategy, known

as Multicast Network, cells are sent as multicast packets

inside the switch core (NoC) without replication. Depending

on the routing algorithm employed, a NoC router decides

when a copy of a multicast packet has to be made, and

at what stage inside the NoC. Since a multicast packet can

have multiple destinations, copies of the packet may need to

be generated at certain stages (coordinates) of the NoC and

this is decided by the multicast routing algorithm. Each NoC

router accesses the bit mask of every incoming packet and

may update its corresponding bit-mask. An example of this

situation is represented in Figure 4. It is a 3×3 switch in which

a multicast packet, coming from input 0, enters the crossbar

NoC at time slot 0 (T0). The packet has two destinations,

output 0 and output 1. These destinations are marked in the bit-

mask with “011”. At time T1, the packet reaches Router[0][1].

This router makes a copy of the packet to send one packet to

the East and another packet to the South. Each copy of the

packet has an updated bit-mask (“001” for East and “010” for

South). To avoid indefinite routing, when a packet gets split, its

bit-mask is updated to contain only appropriate destinations.

B. Routing in the UDN

Packets are routed from the input NIs to their corresponding

egress NIs. Packets follow deterministic minimal paths through

the NoC, using balanced XY routing, an algorithm based on

the standard XY routing. XY routing distributes the packets

by first sending them in the horizontal direction to the last

column and then in the vertical direction to the correct row

(see Figure 3(a)). This causes an unbalanced load distribution

in the mesh. To this end, we propose the balanced XY routing



(a) XY routing.

(b) Balanced XY routing.

(c) MXY routing.

Fig. 3. Example of XY, Balanced XY and MXY Routing in a 4x4 UDN.
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Fig. 4. Example for the bit-mask update.

algorithm. Balanced XY routing solves the unbalance problem

by introducing an extra turn in one of the earlier columns. A

packet that goes from input x to output y turns South/North

when y modulo M = (N − i + j) modulo M , and East/West

when y = j, where i, j indicate the current router position

in the mesh, N the number of inputs/outputs, and M the

number of stages of the mesh. This is depicted in Figure 3(b),

where each input-output pair turns in a different column.

This algorithm is tested for Copy Network strategy and for

Multicast strategy.

This algorithm can be simplified if all the packets belonging

to the same input, take the turning decision in the same row.

All the packets from input i to an output, will turn in the same

column j. In this way, the number of packets that can have the

maximum destination is augmented. We refer to this algorithm

as the MXY algorithm. An example for this algorithm is

represented in Figure 3(c): each input turns in a determined

column to send the packets to the different outputs.

Algorithm 1 Balanced XY.

Switch (packet comes from input)

case North:

if i == y then go East else go South

case South:

if i == y then go East else go North

case West:

if y % M == (N-i+j) % M then

if y > j then go South else go North

else go East

Algorithm 2 MXY.

Switch (packet comes from input)

case North:

if i == y then go East else go South

case South:

if i == y then go East else go North

case West:

if (N-1) % M == (N-i+j) % M then

if y > j then go South else go North

else go East

IV. PERFORMANCE ANALYSIS

This section presents a performance study of the proposed

NoC-based crossbar and compares it to a traditional CICQ

buffered crossbar that uses round-robin scheduling and N2

internal buffers of one cell each. We tested the performance

of the proposed UDN architecture by tuning its various param-

eters, such as switch size (N ), the number of stages (columns

or depth) of the NoC mesh (M ), and the routing as well as

the arbitration algorithm used. Different input traffic scenarios

are used including Bernoulli uniform, Bursty uniform as well

as non-uniform Diagonal traffic [15], where input i sends 2/3
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Fig. 5. A 32× 32 switch under Bernoulli uniform multicast traffic.

and 1/3 of its load to outputs i and i + 1, respectively.

The arrival process consists of multicast traffic flows and

arrivals at different input ports are independent of each other.

The fanout set of every incoming packet (set of its destination

output ports) is chosen uniformly over all possible destination

addresses. The fanout size follows an exponential distribution

with an average of N
2

, where N is the number of output

ports. Simulations run for 1 million time slots and statistics

are gathered when fourth of the total simulation length has

elapsed. A time slot is defined as the inter-arrival time of two

packets to an input, which is also equal to the time it takes a

packet to go from one NoC router to another.

A. UDN under multicast traffic

Because our proposed UDN architecture is a multi-hop

NoC, we expect it to run faster than conventional CICQ

switching due to the short wires connecting the NoC routers

and their size, as opposed to the long ‘back-to-back’ delay it

takes to switch a packet across a synchronous crossbar fabric.

We therefore use speedup (referred to as SP in the experiments

and defined as the ratio of the crossbar NoC to the line-card

frequency) in our experiments to reflect the expected high

frequency of the UDN architecture. In the experiments, SP1

refers to a speedup value of 1 and SP2 refers to a speedup

value of 2. Here, we compare a 32× 32 UDN to a traditional

CICQ switch of the same size under different traffic settings.

UDN is tested for both Copy Network and Multicast Network

strategies. Copy Network strategy uses only the Balanced XY

algorithm while the Multicast Network strategy uses both

Balanced XY and MXY algorithms. They are referred to

as Balanced XY Copy, Balanced XY Multicast and MXY

Multicast respectively in the graphs. Under Bernoulli uniform

traffic, depicted in Figure 5, CICQ performs better under light

load (<95%) when UDN employs SP2. This is attributed to

the multi-hop delay of the UDN as compared to the CICQ.

For high loads, UDN outperforms CICQ for SP2.

The same trend is observed under Double Diagonal traffic,

illustrated in Figure 6. UDN has a similar response than with
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Fig. 6. A 32× 32 switch under Double Diagonal multicast traffic.
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Fig. 7. A 32× 32 switch under Bursty uniform multicast traffic.

Bernoulli Uniform traffic. With speedup two and high loads

(>95%), UDN outperforms CICQ, i.e. has a lower average

cell delay and better throughput. Figure 7 shows both UDN

and CICQ under Bursty uniform traffic, with burst size of 16

packets. As we can see, when the input traffic is bursty, the

outcome is quite different. In this case, bigger sized flows

cause much HoL blocking and UDN performs better than the

CICQ above 60% load even with SP1. From the 3 previous

Figures (Figure 5, 6 and 7) we can see that Balanced Multicast

and MXY Multicast perform better than Balanced XY Copy

Network strategy. This is attributed to the better network

resources use (share) when employing Multicast Network

strategy as fewer packets are routed through the NoC-based

switch core.

B. Varying parameters

Figures 8 illustrates the average cell delay, in time slots, of

the UDN with varying crossbar sizes N and speedup values,

SP, under Bernoulli uniform traffic. The UDN architecture has

a scalable delay performance for multicast traffic for increasing

switch sizes, in the sense that the saturation throughput in-

creases with increasing switch sizes, N , for both Balanced XY
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Fig. 8. UDN under Bernoulli traffic for different switch sizes.

Copy (Figure 8(a)) and Balanced XY Multicast (Figure 8(b)).

Under SP2, Balanced XY Copy and Balanced XY Multicast

have 100% throughput.

Varying the depth of the mesh, M , can reduce the cost of the

switch while maintaining good performance. This is illustrated

in Figure 9(a) where, under Balanced XY Copy, the number of

columns of the switch (depth M ) can be reduced by a factor

of 5 while keeping full throughput. Note that the switch size

used in Figure 9 is N × M , where N refers to the number

of switch input/output ports and M to the switch core (NoC)

depth (number of stages) i.e., 32 × 5 refers to a UDN with

32 input/output ports and a NoC of depth 5. Balanced XY

Multicast has better performance as only 1 column is sufficient

to manage all the input load both for a 32 × 32 and a 64 ×

64 switch. This is because the fewer columns there are, the

fewer copies have to be made (see Figure 9(b)). When there

is more than 1 column, packets turn in different positions for

different output ports. Figure 3(b) shows how i.e. a packet

going from input 0 to output 1 meets the path of the packets

going from input 0 to output 2 in the NoC Router[1][2]. Then,

two different copies of the same original packet may contend
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Fig. 9. UDN under Bernoulli uniform traffic for varying M

for the output. On the other hand, when there is only 1 column,

the packet would not have been split avoiding the possible

contention and minimizing the number of packets. Under SP1,

no optimization can be made as even with maximum M , the

throughput is not 100% for full load (Figure 8(a), 8(b)).

Round robin was the scheduling algorithm performed in the

previous tests. More sophisticated arbiters can be implemented

i.e. choosing the packet having the maximum fanout. Figure 10

shows this analysis. Since the NoC routers have few number

of ports, the scheduling scheme seems to be not critical.

We can withdraw a number of conclusions out of this

analysis. We can see that Multicast Networks outperforms

Copy Networks when we compare Balanced XY Copy with

Balanced XY Multicast for different traffic scenarios. It is

worth noting that the UDN outperforms Buffered Crossbar

(CICQ) under multicast traffic scenarios and speedup two

(SP2). Also, the number of columns M can be reduced by a

factor of 5 for SP2 when using Copy Network, and to only 1

column for SP2 when we employ Multicast Network strategy.

This results in significant cost saving as compared to a fully

buffered crossbar.
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V. CONCLUSIONS

In this paper we proposed a novel architecture for a switch

fabric under multicast traffic. We described a multi-hop cross-

bar fabric based on NoC instead of the dedicated crosspoint-

based buffered crossbar switch. Our proposal offers several ar-

chitectural advantages when compared to a CICQ switch, such

as speedup, path diversity and load balancing. With regards to

multicast traffic, the UDN proposal has two main advantages

of using a single FIFO per input and adopting non-fanout

splitting policy while maintaining high-performance. This is

in contrast to traditional buffered crossbars that maintains k

queues per input and require costly fanout-splitting policy. The

UDN architecture exhibits good performance under different

traffic patterns and is scalable in terms of switch port count

and speed per port.
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