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Abstract—The scalability and performance of the Internet
depends critically on the performance of its packet switches.
Current packet switches are based on single-hop crossbar
fabrics, with line cards that use virtual output-queueing to
reduce head-of-line blocking. In this paper we propose to
use a multi-hop network on a chip (NOC) as the crossbar
fabric, with FIFO-queued line cards. The use of a multi-hop
crossbar fabric has several advantages. 1) Speed-up, i.e. the
crossbar fabric can operate faster because NOC inter-router
wires are shorter than those in a single-hop crossbar, and
because arbitration is distributed instead of centralised. 2) Load
balancing because paths from different input-output port pairs
share the same router buffers, unlike the internal buffers of
buffered crossbar fabric that are dedicated to a single input-
output pair. 3) Path diversity allows traffic from an input port
to follow different paths to its destination output port. This
results in further load balancing, especially for non-uniform
traffic patterns. 4) Simpler line-card design: the use of FIFOs
on the line cards simplifies both the line cards and the (inter-
chip) flow control between the crossbar fabric and line cards,
reducing the number of (expensive) chip pins required for flow
control. 5) Scalability, in the sense that the crossbar speed is
independent of the number of ports, which is not the case for
single-hop crossbar fabrics. We analyzed the performance of
our architecture both analytically and by simulation, and show
that it performs well for a wide range of traffic conditions and
switch sizes. Additionally we prototyped a 32× 32 NOC-based
crossbar fabric in a 65nm CMOS technology. The unoptimised
implementation operates at 413 MHz, achieving an aggregate
throughput in excess of 10

10 ATM cells per second.

I. INTRODUCTION

Current high-performance Internet packet switches are

based on crossbar fabrics [1], [2], and come in two flavours:

unbuffered and internally buffered. The general architecture

of a traditional packet switch is shown in Figure 1(a).

Packets or ATM cells arrive in the line cards, where they

are buffered until they are accepted by the crossbar fabric.

Then they are switched to the appropriate output line card,

where they are buffered before being forward to the next

packet switch. Flow control between line cards and packet

switch ensures that no buffers overflow.

Both unbuffered and buffered crossbar fabrics grow

quadratically in the number of ports. To avoid head-of-

line (HOL) blocking on the line cards, which severely

reduces performance, both require virtual output queueing

(VOQ) [3]. VOQ is complex to implement because multiple

virtual FIFO queues must be administrated on the line cards,

and requiring more flow control signals between the line card

and the crossbar fabric.

The unbuffered crossbar fabric is cheaper than its buffered

counterpart since it contains no internal buffers. However, it

requires a centralized and complex scheduler to configure

the crossbar matrix for packet transfer from the input ports

to the output ports of the switch [3]. Long, and hence slow,

wires are required to connect the crossbar input ports to

output ports, and input/output ports to the scheduler.
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Figure 1. Packet switches.

A buffered crossbar fabric (known as combined input-

crosspoint queued, or CICQ crossbar) overcomes the

scheduling complexity of traditional crossbars by means

of distributed and parallel schedulers, one per port of the

crossbar [4]. However, it requires dedicated buffers for each

pair of input-output ports of the crossbar fabric. Wires are

still long and slow to connect each input port to an output

port via the intermediate buffer, and to their corresponding

scheduler.

In this paper, we propose to implement the crossbar fabric



as a multi-hop network on a chip (NOC), as shown in

Figure 1(b). This offers several advantages when compared

to traditional single-hop crossbar-based fabrics. First, in a

multi-hop interconnect the wires between NOC routers are

short, especially when only neighbouring routers communi-

cate, such as in a mesh topology used here. Additionally,

because arbitration is distributed over the routers, the long

wires from crossbar input/output ports to the central sched-

uler (for unbuffered crossbar) or scheduler per input-output

port pair (for buffered crossbar) are eliminated. The arbiters

also have fewer inputs (3-5: the degree of the router) than

before (2N , corresponding to all input-output port pairs for

an unbuffered crossbar, or N corresponding to all input ports

for an output port for a buffered crossbar). As a result, the

crossbar fabric can operate at a higher speed. This so-called

speed-up strongly improves performance, as we will show

in Section VI.

Second, our design is scalable in the sense that its speed is

independent of the crossbar size, unlike single-hop crossbar

fabrics that employ long wires. Instead it is limited by the

speed of the (small) routers and their short local wires.

Section VI comments on the scalability w.r.t. throughput and

latency.

Third, buffered crossbar fabrics dedicate a buffer to each

input-output port pair. In contrast, in a NOC each buffer in a

router can be used by packets of different input-output port

pairs. This sharing results in load balancing of buffer space

between different flows, and possibly in smaller buffers.

Fourth, a multi-hop NOC has path diversity, i.e. a packet

can use different paths from an input port to an output

port. This results in further load balancing especially in the

presence of non-uniform traffic patterns.

Finally, single-hop buffered crossbar fabrics suffer from

head-of-line (HOL) blocking, where packets that are waiting

in the line card because their output port is not available

block other packets queued behind them in the same line

card, even though they are destined for another free output

port. Virtual output queueing (VOQ) addresses this problem

by replacing, on each line card, a single FIFO by a (virtual)

FIFO per output port, as shown in Figure 1(a). Multi-

hop NOC-based crossbar fabrics do not suffer from HOL

blocking because the NOC is pipelined (multi-stage). As a

result, packets from a single input port heading for different

output ports are accepted by the NOC, even when some

of the output ports may be blocked. The path diversity

and buffer load balancing ensure that packets destined to

different output ports interfere much less with each other. A

NOC-based crossbar fabric can therefore use FIFO buffering

on the line cards, as shown in Figure 1(b) instead of VOQ

buffers. FIFO buffers are simpler to implement than VOQ

buffers. Additionally, the FIFO flow control to avoid buffer

over/underflow between the crossbar fabric chip and the line

cards communicates the available buffer space. For VOQ

buffers, the VOQ identifier must also be communicated.

This either requires additional chip pins, or a higher pin

frequency.

A NOC-based crossbar fabric also has some potential dis-

advantages: 1) distributed buffering may be more expensive

than centralized buffering. Large SRAMs occupy a smaller

area per bit than small SRAMs and register-based FIFOs.

2) Distributed arbitration is suboptimal compared to global

arbitration. 3) Multi-hop interconnects have a higher latency

than a single-hop crossbar.

This paper is structured as follows. In Section II we

discuss related work with respect to both Internet router

design and NOC design. In Section III we introduce our

NOC-based crossbar fabric, including its novel routing al-

gorithm. We perform an analytical throughput analysis of the

architecture in Section IV. Section V introduces a hardware

implementation, followed by a detailed simulation-based

throughput and latency analysis for different traffic types and

speed-ups in Section VI. We show cost:performance results,

and compare the performance to that of a traditional CICQ

switch. We conclude in Section VII.

II. RELATED WORK

The packet switch fabric is the key component of modern

Internet routers. The most common fabric architectures in

use today are bus-based [5], shared memory [6] and cross-

bar [3]. The crossbar fabric has the best performance [3]. It

is non-blocking, inherently supports multicast, and provides

parallel point-to-point communication making it attractive

for real-time applications. The main challenge in the design

of a crossbar is its scalability in terms of data rate and

number of ports. The cost of a crossbar fabric grows as the

square of the number of its ports. Additionally, for a crossbar

with a medium to large number of ports, it is difficult to

achieve a high data rate due to the dominant delay incurred

by the long point-to-point wires connecting inputs to outputs.

Several solutions have been proposed to scale the per-

formance of crossbar fabrics. To cope with high data rates,

one of the most used solutions is bit-slicing [7], where the

crossbar consists of multiple lanes each of which switches

part of the data in parallel. Inputs are fed to a serial-to-

parallel converter, sent through a multiple bit-slice crossbar

and serialized at the output. However, for high data rates,

using parallel slices the crossbar remains the bottleneck.

Additionally, bit-slicing adds significantly increases die size

of the whole crossbar, making it infeasible [7].

Traditional buffered crossbar fabrics (e.g. CICQ) employ

a dedicated buffer for each input-output port pair and parallel

scheduling, to avoid the complex centralised scheduling

of unbuffered crossbar fabrics. The number of buffers is

quadratic in the number of ports, and they are connected by

long wires, as mentioned above. Recent proposals attempt to

reduce the number of buffers. A CICQ switching architecture

with flexible access to crosspoint buffers has been recently

proposed [8]. This approach tries to achieve better internal

buffer usage by sharing them. However, the implementation

cost of this approach is high. Alternative solutions have



minimised the internal buffers by using partial buffering

rather than per input-output port pair [9], [10].

Our multi-hop buffered NOC-based architecture both re-

duces the buffering requirements through a multi-hop/stage

architecture with path diversity, and to increase the crossbar

operating frequency by reducing the length of wires and

distributed arbitration.

Our work differs from [11], [12] that advocate multi-hop

buffered switch architectures by studying the performance

of such architectures under a variety of traffic models and

architectural parameters, and comparing it in detail with

CICQ crossbars.

III. THE UNIDIRECTIONAL NOC CROSSBAR FABRIC

The Unidirectional NOC (UDN) crossbar fabric is shown

in Figure 1(b). The input line cards with FIFO queues are

connected to the input of the crossbar and the output ports

of the switch are connected to the crossbar chip outputs. As

is common, our switch operates on ATM cells instead of

(possibly much larger) Internet Protocol (IP) packets. ATM

cells have a fixed size of 53 bytes of which 48 bytes are

payload. IP packets can be split in ATM cells before being

switched, and reassembled afterwards. In the following cells

will refer to the ATM cells arriving at the line cards, packets

will refer to the packets in the NOC, and routers are part

of the NOC in the crossbar fabric. Cells arrive at the input

line cards and are transferred to the crossbar fabric chip

when there is space in the crossbar’s network-interface (NI)

buffers. Cells are packetised by the ingress NIs; the routers

then route these packets to the egress NIs, where the cells

are depacketised and forwarded to the output line cards. The

NOC is a two-dimensional mesh of packet-switched routers,

with network interfaces (NI) on two opposing sides of the

mesh. The mesh has N inputs and N outputs, and is scalable

in the number of stages.

Packets contain a single ATM cell (including its header),

and flow in one direction through the mesh. Packets are

received entirely by a router before being forwarded to the

next router, known as store and forward. Packets advance

at a maximum rate of one packet per cycle. The actual

operating frequency is discussed in Section VI. The router

architecture, shown in Figure 2, uses FIFO input buffering

with 4 packets per FIFO. Credit-based link-level flow control

is used to ensure packets are sent only when the receiving

router has space. (Buffers must be at least two packets

deep for this reason.) Every router output has a round-robin

arbiter. Because packets do not flow from right to left, the

router is asymmetric, and no deadlock can occur. Routers at

the edge of the mesh omit either the North or South ports.

The route of a packet from the ingress NI to the egress

NI is determined by the ingress NI, and is part of the packet

header. Each router uses the leading 2 log degree bits to

switch the packet to the correct output, and shifts the path

flow control

data

Figure 2. The UDN router.

in the packet by the same number of bits before forwarding

it. Packets follow deterministic minimal paths through the

NOC, using one of two routing algorithms: XY and balanced

XY. In standard XY routing, all packets travel East to the

right column (X) and then to the correct row (Y). This

results in a very unbalanced NOC usage because all vertical

traffic occurs in the column of egress routers, as shown in

Figure 3(a).

(a) XY routing.

(b) Balanced XY routing.

Figure 3. Example of XY and Balanced XY Routing in a 4x4 UDN.

Balanced XY, illustrated in Figure 3(b), remedies this by

introducing an extra turn in one of the earlier columns. A

packet for output x turns South/North when x mod M =
(N−i+j) mod M , and East when x = j, where i, j indicate

the current router position in the mesh, N the number of

inputs/outputs, and M the number of stages of the mesh.

Algorithm 1 describes the actions of router (i,j) on a packet

bound for output x). A flow is an uninterrupted sequence of

packets from a single input to a single output; these packets

should not be reordered. There is no ordering requirement

on packets to different outputs, but all packets of an input-

output pair follow the same path.

IV. UDN THROUGHPUT ANALYSIS

In this section, we analytically study the throughput of

an N × N UDN crossbar fabric that uses the balanced

XY routing algorithm. Throughput is defined as the number

of packets exiting the crossbar per output per time step,

at 100% input load. We assume that the input traffic is



Algorithm 1 Balanced XY.

Switch (packet comes from input)

case North:

if i == x then go East else go South

case South:

if i == x then go East else go North

case West:

if x % M == (N-i+j+t) % M then

if x > j then go South else go North

else go East

random, the output-port arbitration is random, router buffers

are infinitely large, and the number of ports of the switch

is even. Note that our architecture uses store-and-forward

flow control to remove inter-router dependencies, and hence

make it amenable to mathematical analysis. We assume that

the switch speed-up is one, i.e. the frequencies of the line

cards and the crossbar are the same.

In the following we first identify five types of routers,

and compute the number of each. Then we analyse the

throughput of the UDN crossbar both with and without the

effect of HOL blocking. We then show that analysis and

simulation of the UDN crossbar correlate well, and that the

effect of HOL blocking is small. This justifies replacing

VOQ buffering on the input line cards by FIFOs.
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Figure 4. Router types.

A UDN crossbar fabric contains five types of routers

based on the type of flows that pass through them. The

flows are classified based on their directions: West→East,

West→South, West→North, South→East, South→North,

and North→South. The router types are illustrated in Fig-

ure 4. As an example, by overlaying all routes of Figure 3(b)

on one mesh, all router types emerge. We now compute the

number of routers of each type in an N ×N UDN crossbar.

Type a routers do not carry packets that go West-South,

South-East, West-North, or North-East. The number of flows

that can go North-South (equal to those that go South-North)

depends on the position of the router in the mesh: y =
0..(N − 2)/2, where y is the number of flows for North-

South and South-North. For each y there are 2 routers, and

hence Na = N type-a routers.

Type b routers receive the packets that (only) travel West-

East, West-South, and South-East.

Type c routers are symmetric to case b. There are Nb,c =
2N − 3 of these routers.

Type d routers transport packets of type a and type b. The

number of flows that go North-South or vice versa depends

on the router position in the matrix: x = 1..(N − 2)/2,

where x is the number of possible flows for North-South

and for South-North. For each number of flows there are

2(2N − 4x − 3) routers.

Type e routers transport packets of types a and c. They

are symmetric to type d, and the number of routers of this

type is: Nd,e = ((1+(N −2))(N −2)+(1+(N−3))(N −

3) − 2(N − 2))/4.

The total number of routers adds up to Na + Nb + Nc +
Nd+Ne = N+2(2N−3)+((1+(N−2))(N−2)+(1+(N−

3))(N−3)−2(N−2))/2 = N2. Having identified the types

of routers, we first study the throughput of the UDN-based

crossbar taking into account HOL blocking on each router.

We compute the probability that x packets exit the router,

with 0 ≤ x ≤ the number of flows through the router. To

contain the analytical complexity we model a memory-less

router, i.e. packets that did not exit the router in previous

time steps due to HOL blocking are ignored. We compute

the throughput in the ideal case, assuming that all packets

can exit every router without HOL blocking. Finally, we

compare both cases to obtain the (normalised) throughput

of the crossbar, and compare it with simulations.

In the following, Ry
x indicates the number of packets per

cycle of a router of type x, and Ay
x the average number

of packets per cycle for all the routers of type x. The

superscript y is r for real throughput, taking into account

HOL blocking, and i for ideal, without HOL blocking.

The average throughput per type taking into account HOL

blocking is:

Rr
a = 3P (3 diff dest) + 2P (2 diff dest) + 1P (1 diff dest)

= 3
(

y
N

)2
+ 1

(

1 −
y
N

)2
+ 4

(

1 −
y
N

)

y
N = 1 + 2y

N

Ar
a = 2/N

∑(N−2)/2
y=0 1 + 2y/N = 3N−2

2N

Rr
b,c = 2P (2 diff dest) + 1P (1 diff dest)

= 2
(

1
N2

)

+ 1
(

1
N

(

1 − 1
N

))

+ 1
(

1 − 1
N

)

= 1
N2 + 1

Ar
b,c = 1

N2 + 1

Rr
d,e = 3P (3 diff dest) + 2P (2 diff dest) + 1P (1 diff dest)

= 3[(1 −
1
N ) x2

N2 ] +2[ x
N (1 −

x
N −

1
N )(1 −

1
N )

+( x
N )(1 −

1
N )( 1

N )] + 2[(1 −
x
N )(1 −

1
N )( x

N )
+( 1

N )( 1
N ) + ( 1

N )( x
N )] + 1[(1 −

1
N )(1 −

x
N )(1 −

x
N −

1
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+1[(1 − 1
N )(1 − x

N ) 1
N + 1

N
x
N (1 − x

N − 1
N )+

1
N (1 −

x
N )(1 −

x
N −

1
N )] = (2N−1)x+N2+1

N2

Ar
d,e =

∑

(N−2)/2

x=1
(2N−4x−3)((2N−1)x+N2+1)/N2

(1+(N−2))(N−2)/2+(1+(N−3))(N−3)/2−(N−2)

= 16N3
−48N2+17N−36
6N2(N−3)

The average throughput of the crossbar is then:

Ar = (NaAr
a + NbA

r
b + NcA

r
c + NdA

r
d + NeA

r
e)/N

2 =

(3N−2
2 + (4N − 6)( 1

N2 + 1) + 2(16N3
−48N2+17N−36
6N2(N−3) )

(1+(N−2)
2 (N − 2) + 1+(N−3)

2 (N − 3) − (N − 2)))/N2

= 16N3
−14N2+29N−22

12N3

Similarly, the ideal throughput per type, i.e. in the absence

of HOL blocking is:



Ri
a = 2y/N + 1

Ai
a = 2/N

∑(N−2)/2
y=0

2y
N + 1 = (3N − 2)/(2N)

Ri
b,c = 1 + 2/N

Ai
b,c = 1 + 2/N

Ri
d,e = 2x/N + 2/N + 1

Ai
d,e =

∑(N−2)/2

x=1
(2(2N−4x−3)( 2x

N + 2
N +1))

1+(N−2)
2 (N−2)+

1+(N−3)
2 (N−3)−(N−2)

= (8N3
−27N2

−14N+72)/(6N)
1+(N−2)

2 (N−2)+
1+(N−3)

2 (N−3)−(N−2)
= 8N2

−11N−36
6N(N−3)

The average ideal throughput in the switch is Ai = (3N−2
2 +

(1+ 2
N )(4N−6)+(8N3

−27N2
−14N+72

6N ))/N2 = 4N2+3N−4
3N2 .
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Figure 5. Number of Packets per Cycle.

Figure 5 shows the analytical average number of packets

Ar of all router types for different crossbar sizes compared

with that obtained by simulation. For simulation Bernoulli

uniform traffic was used with an input load of 1, and a router

buffer size of 500, which is effectively infinite, like in the

analysis. (Section VI contains more details on the simulation

set-up.) We conclude that our analysis corresponds well with

the simulation results.

From the ideal throughput Ai and real throughput Ar

(without and with HOL blocking, respectively), we calculate

the ratio of all packets that leave the crossbar. Figure 6

shows throughput = Ai/Ar for varying crossbar size N . As

the crossbar size N grows, the real performance converges

to the ideal because increasing N reduces P (i → j). In

other words, the probability that a packet goes from input

i to output j in a router decreases, and the mesh is more

lightly loaded. Hence HOL blocking caused by South-East

and West-South packets is reduced in each router. Only type-

a routers have to deal with more packets (South-North and

North-South increase), However, this does not increase HOL

blocking due to the perpendicular directions of the flows.
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Figure 6. Throughput of UDN Crossbar.

V. IMPLEMENTATION

To assess the cost and performance of our proposed

architectures we synthesised a NOC in an ASIC 65 nm

CMOS technology. We use the Æthereal NOC [13], with

input-queued worm-hole routers, link-level flow control, flit

size three, two VCs, and a non-blocking crossbar. Static-

priority arbitration is used between the two VCs, and round

robin per VC. This router and the UDN router will not differ

significantly in terms of area and speed. The area of a router

is dominated by the number of registers, which is the same

for both routers. The NOC offers guaranteed-throughput and

best-effort services, but here we only use the latter. The

arbitration of the Æthereal router is more complex than that

of the UDN router and hence will be slower. The NIs are

more general than required here because they implement

shared-memory transaction semantics, resulting in (costly)

response buffers that are unused here.

We generated a 3 × 3 UDN topology, RTL VHDL,

and SystemC models of the NOC from a high-level spec-

ification [14]. This instance contains all different router

degrees, and allows us to compute the area of any size

UDN crossbar. Synthesis for a 65 nm CMOS technology,

without any optimisations, achieved 413 MHz with a cell

area of 4.8 mm2. Routers of degree 3 and 4 occupy

0.29 and 0.38 mm2 respectively, and NIs 0.32 mm2. The

area of a crossbar with N ports and M stages is then

0.29 ∗ 2M + 0.38(N − 2)M + 0.32 ∗ 2N mm2, e.g. 403

mm2 for N = M = 32. The registers that are used for (4-

packet or 60-word) FIFO buffers dominate the area. By using

dedicated hardware ripple-through FIFOs, described in [15],

the area drops significantly. In a 90 nm CMOS process

a dedicated FIFO is three times smaller than a register-

based FIFO. Using the same scaling factor for all FIFOs

in 65 nm, an N -port crossbar would occupy approximately

0.15∗2M +0.12(N−2)M +0.14∗2N mm2, e.g. 134 mm2

for N = M = 32.

The data path of the router is 36 bits, hence the cycle
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Figure 7. Delay comparison between UDN and CICQ crossbars.

time (to move one packet or ATM cell from one router to

the next) is 53 ∗ 8/36 + 1 = 13 cycles (assuming store

and forward, and adding one for the NOC packet header).

The maximum sustainable throughput of an N ×N crossbar

(diagonal traffic with no contention), is therefore N/(13∗2.4
ns) = 32N107 cells/second, or 1010 cells/second for N =
32. The minimum cell latency is 13M cycles, or 13 ∗ 32 ∗

2.4 = 1 millisecond for M = 32. Many optimisations are

possible, such as doubling the data width of the NOC which

immediately doubles the throughput, at limited additional

area cost because the number of registers remains the same.

The NI area can be reduced significantly by removing the

response buffers and programming infrastructure [16], which

are superfluous in the current context.

VI. SIMULATION

This section presents the experimental results of the pro-

posed NOC-based crossbar and compares it to a traditional

CICQ buffered crossbar with round-robin scheduling and N2

internal buffers of one cell each. We used the Stanford Uni-

versity simulator [17]. The router architecture of Section III

was implemented with parameterised N , M , B, routing

algorithm, and arbitration (round robin, random, etc.). We

define the cost of a UDN crossbar as SP× silicon area, and

performance as 1/average cell delay. We simulated with

different traffic conditions. 1) Bernoulli uniform and bursty

uniform traffic [3] with different burst sizes b. Uniform traffic

is simple and smooth, and handled well by most crossbar

architectures. In Bernoulli traffic, in each time slot a cell is

generated with probability p; the load is equally distributed

over all outputs. Bursty traffic models Internet traffic, and

contains alternating series of (in)active periods, where the

average number of cells generated in an active period follows

a geometric distribution with burst size b. 2) Diagonal

traffic [18], where input i sends 2/3 and 1/3 of its load to

outputs i and i+1, respectively. 3) In Unbalanced traffic [19]

the parameter w determines the rate of unbalance. w = 0
corresponds to uniform traffic where every input sends cells

to every output, and w = 1 to completely unbalanced traffic

where every input sends cells to exactly one output. This

tests the robustness of the crossbar architecture to traffic

unbalances. All simulations last one million time slots, and

data collection starts after 1/10th of the simulation.

We vary the following crossbar parameters: size N ,

stages M , speed-up SP (ratio of crossbar : line-card fre-

quency), and buffer size B. We evaluate UDN-crossbar

cost:performance, and compare it with that of a CICQ

crossbar, under the traffic conditions defined above. The goal

of our simulations is to determine the relative importance of

the parameters M , SP, and B, as well as the scalability in

performance with varying N , and the robustness of the UDN

crossbar to traffic variations.

A. Uniform Traffic

Figure 7(a) shows the average cell delay of and a fully

buffered CICQ crossbar, and a UDN crossbar with speed-

up 1 and 2. When the traffic is Bernoulli and uniformly

distributed over the outputs, CICQ outperforms UDN. The

Bernoulli uniform traffic is a simple smooth traffic and

therefore most switching architectures perform well under

this traffic pattern. UDN has a higher delay than CICQ, due

to the multi-hop nature of UDN as opposed to the direct

point-to-point interconnect of CICQ. But considering that

the hardware implementation of a UDN crossbar can operate

faster than a CICQ crossbar, the difference may be smaller.

For bursty traffic, UDN with speed-up 2 outperforms the

CICQ architecture at higher loads (most relevant).

Figure 7(b) illustrates the average cell delay of UDN

with varying crossbar sizes N and speed-up SP. The UDN

architecture has a scalable delay performance for increasing

switch sizes, in the sense that for larger N the crossbar

saturates at a higher load. However, the delay at larger

N is larger due to the increase in number of hops. The

same hold for bursty uniform traffic with speed-up one, as

shown in Figure 7(c). These results confirm the analysis of

Section IV. Note that, unlike CICQ, the UDN delay is not



sensitive to varying traffic loads and/or switch sizes. Hence

flows through the crossbar have a constant delay, which is

important for Quality of Service, e.g. for (soft) real-time

flows such as video and audio. This is due to UDN’s path

diversity and balanced XY routing that balance the load,

unlike unique fixed path for every input-output pair in CICQ

crossbars.

Figure 8 contains various cost:performance trade offs.

Recall that cost is SP × silicon area, performance

1/average cell delay. Figure 8(a) shows that the cost of a

UDN crossbar sharply increases with increasing size N , but

without a corresponding increase in performance, for speed-

ups 1 and 2. In fact, at speed-up 2, the performance reduces

with increasing N . The reason is that the multiple stages

M = N become counter-productive for larger N . i.e. all

packets have already arrived at their output row, and incur

additional delays travelling West-East. Figure 8(b) therefore

studies the effects of the reducing the number of stages M ,

and the buffer size B, for N = 32 and SP = 2. For B = 4,

performance increases sharply for 1 ≤ N ≤ 7. For N > 7
the cost increases, but the performance reduces, because the

extra stages are not required to switch packets to their correct

output and just add delay. The best cost:performance point

is therefore N = 32, M = 7 for B = 4, which is a cost

reduction by a factor 5 compared to the baseline implemen-

tation with N = M . The cost:performance inversion is not

seen with B = 2 (performance only increases with larger

N ), from which we can conclude that the buffer size is the

limiting factor rather than the number of stages. Figure 8(c)

shows that the factor N/M ≈ 5 is maintained with N = 64
and M = 12. Figure 8(d) shows that speed-up can be traded

for number of stages. A speed-up from 2 to 3 reduces M
from 7 to 4.

B. Non-Uniform Traffic

This section studies the UDN performance under non-

uniform unbalanced and double diagonal traffic patterns, for

N = M , B = 4. Figure 9(a) shows that the UDN crossbar

with SP = 2 consistently outperforms the CICQ crossbar

in terms of throughput, especially under heavily unbalanced

traffic loads (ω = 0.5). Throughput is defined as the number

of packets exiting the crossbar per output per time step, at

100% input load. Note that we modelled UDN with FIFO-

queued line-cards and CICQ with VOQ-queued line-cards.

Therefore UDN crossbars (at speed-up 2) can use FIFO

buffers instead of more complex VOQ buffering, and still

outperform CICQ with VOQ buffers.

In terms of time-slots delay, Figure 9(b) shows for unbal-

anced traffic that the UDN performs better than CICQ under

higher loads, even with speed-up one. At light loads the

UDN performs worse, due to its multi-hop delay. However,

as mentioned before, the UDN can operate at higher speeds,

which will narrow or eliminate this gap. Similarly, under

double diagonal traffic shown in Figure 9(c), the UDN

performs better at higher loads, but only for speed-up 2.

To assess the effect of the number of stages M for various

N on the UDN throughput, we studied the throughput

and stability performance of UDN under unbalanced traffic

conditions. Figure 9(a) shows that speed-up 2 achieves 100%
throughput, and in Figure 10 we determine by how much

M can be lowered, to reduce cost, while retaining the same

performance. In fact, 100% throughput is achieved at M = 3
for N = 16 (see Figure 10(a)), at M = 6 for N = 32 (see

Figure 10(b)), and at M = 12 for N = 64 (see Figure 10(c)).

This confirms the N/M ≈ 5 cost savings also found for

uniform traffic. For N/M < 5, the number of hops is not

enough to distribute the load in the mesh. This degradation

is more noticeable for smaller meshes because more routers

are removed, relatively to their size. (50%, 33%, 25% etc.

for N = 2, 3, 4, respectively.)

Finally, we study the effect of the router buffer size B
on performance, as shown in Figure 11. Even for speed-

up two, the buffer size B becomes important when M is

reduced. With B = 2, the UDN crossbar does not achieve

100% throughput when M = 15, whereas at B = 4 we

can reduce M to 4. In both Figures 10 and 11 performance

deteriorates mainly for small ω, when the traffic is more

balanced. Balanced traffic is harder to handle and requires

more stages because flows from a single input fan out to

more outputs, and hence have more crossings (points of

contention) with other flows. In fully unbalanced (diagonal)

traffic (ω = 1) all inputs i send packets only West-East to

corresponding output i, without any contention, and even

M = 1 will suffice.
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Figure 8. Cost-Performance of UDN under Bernoulli Uniform Traffic.
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Figure 9. Throughput and Delay Comparison between UDN and CICQ Crossbars for N = 32.
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Figure 10. Unbalanced Traffic with SP = 2, B = 4, and varying M , N .

C. Parameter Analysis

We can draw a number of conclusions from our simu-

lation experiments. First, the UDN parameters in order of

increasing positive impact on the performance are: speed-up

SP, mesh stages M , and router buffer size B. Performance

increases most when increasing speed-up, and speed-up

two achieves 100% throughput for uniform and unbalanced

traffic.

Except for bursty traffic, for SP = 1, reducing the number

of stages M reduces performance, but for SP = 2 the

number of stages M can be reduced to M ≈ N/5 without

loss of performance. However, when using a smaller buffer

size B = 2 the number of stages M cannot be reduced

below N without lowering performance. Hence, in terms

of a cost:performance trade-off, it is best to use speed-

up two, and B = 4 with M = N/5 instead of B = 2
with M > N/2 (Figure 11), even though the total crossbar

buffering is roughly equal in both cases (N ∗ M ∗ B =
N ∗N/5∗4 ≈ N ∗N vs. N ∗M ∗B ≈ N ∗N ∗2/2 = N ∗N ).

The UDN crossbar performs worse with bursty traffic than

for Bernoulli and unbalanced traffic. Speed-up is still the

most important parameter.

VII. CONCLUSIONS

We propose an Internet-router crossbar fabric, based on

a multi-hop network on chip (NOC) with FIFO-queued line

cards. Our design has several advantages over traditional

single-hop buffered crossbar fabrics (CICQ) with VOQ line

cards. 1) Speed-up, i.e. faster crossbar operation, which sig-

nificantly improves performance. 2) Load balancing because

router buffers are shared between all flows, and due to path

diversity. 3) Simpler line-card design due to FIFO instead of

VOQ queuing. 4) Scalability, in the sense that a) the crossbar

speed is independent of the number of ports, and b) larger

crossbars have better performance.

We implemented a prototype 32 × 32 crossbar in 65 nm

CMOS to determine its silicon performance (413 MHz, or

more than 1010 ATM cells per second) and cost. We also

investigated the performance and cost of the NOC-based

crossbar both analytically and using simulation. We deter-

mined the relative importance of several crossbar parameters

with Bernoulli uniform, bursty uniform, and unbalanced

traffic. In order of importance to performance these are

speed-up, number of mesh stages, and router buffer size. The

NOC-based crossbar performs well for all switch sizes with

Bernoulli and unbalanced traffics, and a somewhat less well

with bursty traffic. Speed-up two achieves 100% throughput,

when the number of stages M ≥ N/5 for the mesh size N .

Alternatively, with N = M the router buffer size can be

reduced from four to two. But it is preferable to reduce M
rather than B according to our cost:performance analysis.

The NOC-based crossbar, using FIFO queuing on the

input line cards, with speed-up two has a higher (100%)

throughput than a CICQ crossbar with VOQ queuing, for

Bernoulli and unbalanced traffic. However, for Bernoulli

traffic and light loads, it has higher average cell delays than

CICQ due to its multi-hop nature. The NOC-based crossbar

has a scalable performance in the sense that larger crossbars

saturate at a higher load. A prototype 32 × 32 NOC-based

crossbar in 65nm operates at 413 MHz, with an aggregate

throughput of 1010 ATM cells per second.
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