
Composable Resource Sharing Based on Latency-Rate Servers

Benny Akesson1, Andreas Hansson1, Kees Goossens2,3

1Eindhoven University of Technology
2NXP Semiconductors Research
3Delft University of Technology

Abstract—Verification of application requirements is becom-
ing a bottleneck in system-on-chip design, as the number of
applications grows. Traditionally, the verification complexity
increases exponentially with the number of applications and must
be repeated if an application is added, removed, or modified.
Predictable systems offering lower bounds on performance have
been proposed to manage the increasing verification complexity,
although this approach is only applicable to a restricted set
of applications and systems. Composable systems, on the other
hand, completely isolate applications in both the value and time
domains, allowing them to be independently verified. However,
existing approaches to composable system design are either
restricted to applications that can be statically scheduled, or
share resources using time-division multiplexing, which cannot
efficiently satisfy tight latency requirements.

In this paper, we present an approach to composable resource
sharing based on latency-rate servers that supports any arbiter
belonging to the class, providing a larger solution space for
a given set of requirements. The approach can be combined
with formal performance analysis using a variety of well-known
modeling frame works. We furthermore propose an architecture
for a resource front end that implements our concepts and
provides composable service for any resource with bounded
service time. The architecture supports both systems with buffers
dimensioned to prevent overflow and systems with smaller
buffers, where overflow is prevented with flow control. Finally,
we experimentally demonstrate the usefulness of our approach
with a simple use case sharing an SRAM memory.

Index Terms—composability; latency-rate servers; verification;
real-time; resource sharing;

I. INTRODUCTION

The convergence of application domains in new systems-

on-chip (SoC) results in complex systems with an increasing

number of use cases, comprised of concurrently executing

applications. These applications consist of tasks that are

mapped on processing elements, such as processors and hard-

ware accelerators [1]. Some applications, such as a Software-

Defined Radio [2], have hard real-time requirements and must

always meet their deadlines to prevent significant quality

degradation. On the other hand, applications with soft real-

time requirements, for example a video decoder, tolerate

occasional deadline misses, as these only result in a modest

reduction of quality [3].

Resources, such as memory channels, are shared between

applications to reduce system cost. Resource sharing results

in interference between applications, making it difficult ver-

ify that application requirements are satisfied without slow

system-level simulation of all use cases. This traditionally

causes the verification complexity of the system to increase

exponentially with the number of applications [4]. Use-case

verification is furthermore a circular process that must be

repeated if an application is added, removed, or modified [5].

Together these factors contribute to making the verification

and integration process a dominant part of SoC development,

both in terms of time and money.

Predictable and composable systems are proposed to man-

age the increasing verification complexity of SoCs. Predictable

systems isolate applications using lower bounds on perfor-

mance, which is only applicable to a restricted set of applica-

tions and systems. Applications in a composable system, on

the other hand, are completely isolated both in the value and

time without any restrictions on their behavior. Composabil-

ity simplifies the verification process for the following five

reasons [6]: 1) Applications can be simulated in isolation,

resulting in a linear and non-circular verification process. 2)

Simulating only a single application and its required resources

reduces simulation time compared to complete system sim-

ulations. 3) The verification process can be incremental and

start as soon as the first application is available. 4) Intellectual

property (IP) protection is improved, since the verification

process no longer requires the IP of independent software

vendors to be shared. 5) Functional verification is simplified,

since bugs caused by, for instance, race conditions in the

integrated application, are independent of other applications.

There are currently three approaches to composable system

design. The first involves not sharing any resources, which is

prohibitively expensive for systems not running safety-critical

applications. The second is to share resources using interfaces

where communication is statically scheduled at design time.

This approach requires a global notion of time and is limited

to applications that can be statically scheduled. The third is

to share resources using time-division multiplexing (TDM),

which cannot efficiently satisfy tight latency requirements.

In this paper, we present a fourth approach to composable

resource sharing that is based on latency-rate (LR) servers [7],

which is a general framework for analyzing scheduling al-

gorithms. The two main contributions of this paper are: 1)

an approach to composability that allows resources to be

shared using any arbiter in the class of LR servers, providing

greater service differentiation than TDM. The approach can

be optionally be combined with formal performance analysis

using a variety of well-known frameworks, such as LR
analysis [7], network calculus [8], or data-flow analysis [9].

2) An architecture of a resource front end, containing the

arbiter, that provides composable service for any resource with

bounded service time. The architecture furthermore supports

both systems with buffers dimensioned to prevent overflow and

systems with smaller buffers, where overflow is prevented with

flow control.

The rest of this paper is organized as follows. We start by

reviewing related work in Section II, followed by a conceptual

overview of our approach in Section III. A formal model is

introduced in Section IV in which we provide a definition

of composable service. We then show how LR servers can

be used to provide service according to this definition. In

Section V, we propose an architecture for a resource front end

that implements the presented concepts when combined with a

resource with bounded service time. We experimentally show

in Section VI that our front end combined with a priority-

based arbiter in the class of LR servers provides composable

service, while satisfying low latency requirements for a simple

use case sharing an SRAM. Lastly, conclusions are presented

in Section VII.

II. RELATED WORK

A number of works in the field of high performance

computing discuss performance isolation of applications in

predictable systems by providing lower bounds on perfor-

mance. Fair Queuing Memory Systems [10] and Virtual Private

Caches [11] are both part of the Virtual Private Machine frame-

work [12] for multi-core resource management. The authors

show that the service provided by a Virtual Private Machine

running at an allocated fraction of the original capacity is at

least as good as a real private machine with the same resources.

This allows real-time requirements to be verified in isolation,

assuming that the applications executing on the system are per-

formance monotonic [13], which means that having additional

resources cannot result in worse performance.

Two simulation-based approaches to verification of real-

time requirements in predictable systems are presented in [13],

[14]. The idea in these papers is to simulate the execution

of an application and verify that real-time requirements are

satisfied when emulating maximum interference from other ap-

plications by delaying responses until their worst-case latency.

This is similar to the work presented in this paper, although

with some important differences. In contrast to our work, the

authors propose to disable worst-case interference emulation

when deploying the system to benefit from slack and increase

performance. This breaks the isolation between applications,

limiting the approach to applications and systems that either

have performance monotonic execution, or can be captured in

a performance monotonic model, such as deterministic data-

flow graphs [15]. Furthermore, no hardware architecture is

presented for the approach in [13], although our proposed

resource front end can be used to implement the methodology.

The drawback of relying on performance monotonicity is

that it severely restricts both the supported platform and

application software. The platform has to be free from tim-

ing anomalies, which can appear in shared caches or with

dynamically scheduled processors, such as PowerPCs [16].

Timing anomalies also appear in multi-processor systems [17],

making verification results of distributed applications unreli-

able. Applications can furthermore not have timing dependent

behavior, such as adapting the quality level of a video decoder

based on decoding time of previous frames.

Verification of composable systems, on the other hand,

does not rely on performance monotonicity, since applications

are completely independent of each other in both the value

and time domains. There are currently three approaches to

composable system design. The first involves not sharing

any resources, which is used by federated architectures in

the automotive and aerospace industries [18]. This method is

trivially composable, but prohibitively expensive for systems

that do not have safety-critical applications. The second option

is the time-triggered approach [5] that shares resources using

interfaces where the time instances for communication are

specified in a sparse time base at design time. This approach

requires a global notion of time and is limited to applications

that can be statically scheduled at design time. The third

approach is to dynamically schedule resource access at run

time using TDM, as proposed in [6], [19]. Using run-time

scheduling has the benefit of supporting event-triggered sys-

tems, although a limitation of TDM is that it couples the worst-

case latency and the allocated bandwidth of an application.

This prevents low latency from being provided to applications

with low bandwidth requirements without over allocating and

wasting resources.

This work adds a fourth approach to composability that

is based on predictability, but adapted to remove the severe

restrictions on the platform and the applications. The approach

allows resources to be shared using any arbiter in the class of

LR servers. This allows greater flexibility in the choice of

arbiter thus increasing the solution space for a given set of

application requirements.

III. CONCEPTUAL OVERVIEW

In this section, we provide a conceptual overview of our

approach to composable resource sharing and explain the

benefits. We consider a system in which the tasks of an

application are mapped to one or more processing elements.

We refer to the entities sharing the resources as requestors,

corresponding to ports on the processing elements to which

the tasks are mapped. In this work, we focus on sharing of

slaves, such as memories and peripherals, and assume that

all processing elements and interconnect are either not shared

between applications, or shared in a composable manner

according to any of the previously mentioned approaches. A

requestor and the resource communicate by sending requests

and responses, as shown in Figure 1. Requests are stored

in a Request Buffer in front of the resource until they are

scheduled by an arbiter. The resource processes the request

and stores a response in the Response Buffer of the requestor

when it is finished. A flow-control mechanism is available that

allows a receiving block to stall a sending block to prevent a

buffer overflow. A difficulty with run-time arbitration is that

it typically causes the times at which the resource accepts

requests and sends responses to a requestor to change due to

variable interference from other requestors, making the system

non-composable.

The key idea behind our approach is to make the system

composable again by removing the variation in interference.

We accomplish this by delaying responses and flow control

sent to the requestor to emulate maximum interference from

other requestors. The interface of each requestor is hence

independent of others in the temporal domain, as shown in

Figure 1. This makes the system composable on the level

of requestors, which is a sufficient condition for it to be

composable on the level of applications.

flow control

requests

responses

flow control

P
re

d
ic

ta
b
le

R
e
s
o
u
rc

e

R
e

q
u

e
s
to

r

1

Temporally independent
interfaces

R
e

q
u

e
s
to

r

2

Request Buffer

Response Buffer

Request Buffer

Response Buffer

A
rb

ite
r

Fig. 1. Temporally independent interfaces are created by delaying responses
and flow control.

Our approach to composable resource sharing is based on

LR servers. In essence, a LR server guarantees a requestor a

minimum allocated service rate, ρ′, after a maximum service

latency, Θ, as shown in Figure 2. The allocated service rate

corresponds to reserved bandwidth in case of a memory chan-

nel, and can be either a worst-case or average-case allocation,

depending on the design methodology. The service latency

intuitively corresponds to the maximum interference from

other requestors. This separation of interference due to other

requestors from self interference, which is the time a request

waits for other requests from its own requestor, is a benefit of

the LR server model, since composability only requires us to

eliminate the effects of the former.

The motivation for basing our approach on LR servers is

that it enables us to transparently use any arbiter belonging to

the class, hence allowing the choice arbiter to be matched to

the given set of requirements. It is shown in [7] that many

well-known arbiters, such as Weighted Round-Robin [20],

Deficit Round-Robin [21], and several varieties of Fair Queu-

ing [22] are LR servers. Other arbiters in the class are

Credit-Controlled Static-Priority arbitration [23], which uses

priorities, and TDM [24]. Note that using different arbiters

enable service differentiation even though worst-case service

is enforced. For instance, the maximum latency of a high

priority requestor in a priority-based arbitration scheme is

lower than its corresponding worst-case latency using TDM

or Round Robin. Another benefit of LR servers is that they

support formal performance analysis using approaches based

on either LR analysis [7], network calculus [8], or data-flow

analysis [9]. This enables the possibility to formally verify

applications that can be modeled in any of these frame works.

Our approach to composability is based on predictability.

More specifically, we require predictable resources, where the

time to serve a scheduled request is upper bounded. This is not

a severe limitation, as it applies to most interesting memories

and peripherals. We furthermore require an upper bound on

the interference from other requestors. Given a predictable

resource, this requirement can be satisfied in three ways: 1) by

A
c
c
u

m
u

la
te

d

s
e

rv
ic

e
 u

n
it
s

provided service

Service cycles

requested service

min. provided service =
composable service

Θ

ρ′

Fig. 2. Example of predictable and composable service in a LR server.

characterizing the requestors and derive an upper bound on the

size of a request, as done in [5]. This allows non-preemptive

scheduling to be used, but is not robust in case the charac-

terization is wrong or a requestor malfunctions. 2) Preempt a

request in service after a maximum time, accomplished by a

TDM scheduler in [19]. This solution is robust and can handle

requests whose sizes are initially unknown, but is limited to

preemptive schedulers. 3) Use a hardware block to split up

requests into small atomic service units, referred to as atoms,

with known maximum service time, as proposed in [6]. This

solution assumes that requests can be split into smaller pieces,

which is typically the case for transaction-based resources like

memory channels and peripherals. We choose this option for

our approach, since it enables preemption of requests on the

granularity of atoms using any arbiter in the class of LR
servers, thus providing maximum flexibility.

IV. FORMAL MODEL

In this section, we formally show how to provide compos-

able service based on LR servers by deriving and enforcing

temporal bounds. We start by explaining how service curves

are used to model the interaction between the requestors

and the resource in Section IV-A. This allows us to define

composable service. We then proceed in Section IV-B by

defining a LR server and showing that they can provide

composable service according to our definition.

Throughout this paper, we use capital letters (A) to denote

sets, hats to denote upper bounds (â), and checks to denote

lower bounds (ǎ). Subscripts are used to disambiguate between

variables belonging to different requestors, although for clarity

these subscripts are omitted when they are not required. To

deal with different resources in a uniform way, we adopt an

abstract resource view, where a service unit corresponds to

the access granularity of the resource. Time is discrete and

a time unit, referred to as a service cycle, is defined as the

time required to serve such a service unit. The translation

from service cycles to clock cycles is solved by multiplying

the number of service cycles with the maximum service

cycle length, which is known and bounded for a predictable

resource.

A. Service curves

We use cumulative service curves to model the interaction

between the resource and the requestors. We let ξ(t) denote the
value of a service curve ξ at service cycle t. We furthermore

use ξ(τ, t) = ξ(t+1)−ξ(τ) to denote the difference in values

between the endpoints of the closed interval [τ, t].

A requestor generates requests of variable but bounded size,

as stated in Definition 1. A request is considered to arrive as

an impulse when: 1) it has completely arrived in the Request

Buffer and 2) there is enough space in the Response Buffer

to store a response, as stated by Definition 2. The service

requested by a requestor is represented by the requested

service curve, w, defined in Definition 3.

Definition 1 (Request): The k:th request (k ∈ N) from a

requestor r ∈ R is denoted ωk
r ∈ Ωr. The size of ωk

r in

service units is denoted s(ωk
r) : Ωr → N

+.

Definition 2 (Arrival time): The arrival time of a request

ωk
r from a requestor r ∈ R is denoted ta(ωk

r) : Ωr → N
+,

and is defined as the smallest t at which the last bit of ωk
r has

arrived in the Request Buffer and there is enough free space

in the Response Buffer to store a response.

Definition 3 (Requested service curve): The requested ser-

vice curve of a requestor r ∈ R is denoted wr(t) : N → N,

where wr(0) = 0 and

wr(t + 1) =

{

wr(t) + s(ωk
r) ωk

r arrived at t + 1

wr(t) no request arrived at t + 1

The scheduler in the resource arbiter attempts to schedule

a requestor every service cycle according to its particular

scheduling policy. We let γ(t) : N → R ∪ {∅} denote

the scheduled requestor at time t, where ∅ represents the

case where no requestor could be scheduled. We consider

preemptive scheduling, as mentioned in Section III, and refer

to the first service cycle in which a request ωk is scheduled

as its starting time, ts(ω
k), according to Definition 4.

Definition 4 (Starting time of a request): The starting time

of a request ωk
r is denoted ts(ω

k
r) : Ωr → N, and is defined

as the smallest t at which ωk
r is scheduled.

The provided service curve, w′, reflects the number of

service units provided by the resource to a requestor. The

provided service curve is defined in Definition 5. The finishing

time of a request corresponds to the first service cycle in

which a request is completely served, formally defined in

Definition 6. This corresponds to the earliest time at which the

response is guaranteed to be available in the Response Buffer.

An illustration of a requested service curve and a provided

service curve along with their related concepts is provided in

Figure 3.

Definition 5 (Provided service curve): The provided ser-

vice curve of a requestor r ∈ R is denoted w′
r(t) : N → N,

where w′
r(0) = 0 and

w′
r(t + 1) =

{

w′
r(t) + 1 γ(t) = r

w′
r(t) γ(t) 6= r

Definition 6 (Finishing time of a request): The finishing

time of a request ωk
r is denoted tf(ω

k
r) : Ωr → N,

and is defined as tf(ω
k
r) = min({t | t ∈ N ∧ w′

r(t) =
w′

r(ts(ω
k
r)) + s(ωk

r)}).

A
c
c
u

m
u

la
te

d

s
e

rv
ic

e
 u

n
it
s

Service cycles

s(ωk)

ta(ωk) ts(ω
k)

w

w′

tf(ω
k)

Fig. 3. Service curves and representations of the surrounding concepts.

We conclude this section by providing a definition of

composable service in Definition 7.

Definition 7 (Composable service): The service provided

to a requestor is defined as composable if both the starting

times and finishing times of all requests from the requestor

are independent of other requestors.

B. LR servers

In this section, we define a LR server in our formal model,

and explain how it provides bounds on the starting times and

finishing times of the requests by considering the maximum

interference from other requestors. This allows us to satisfy our

definition of composable service by delaying actual starting

times and finishing times until their corresponding bounds, as

we will explain in Section V. We start by defining the allocated

service of a requestor in Definition 8.

Definition 8 (Allocated service): A requestor r ∈ R is

allocated a fraction of the available resource capacity

ρ′r ∈ R
+, 0 ≤ ρ′r ≤ 1. For a valid allocation it holds that

∑

∀r∈R ρ′r ≤ 1.

We continue by defining a LR server. We use the definitions

from [7], adapted to fit with our use of discrete, as opposed

to continuous, time. The concept of busy periods, defined in

Definition 9, is central to the definition of LR servers. A

busy period is intuitively understood as a period in which a

requestor requests at least as much service on average as it

has been allocated. We refer to a requestor as a busy requestor

during its busy periods. Definition 10 defines a LR server as

a server that guarantees a busy requestor its allocated service

rate, ρ′, after a maximum service latency, Θ, thus providing

a lower bound on provided service, w′. This is illustrated in

Figure 4. The requestor in the figure is busy from ta(ωk)
until τ1 when it catches up with the reference line with slope

ρ′ that we informally refer to as the busy line. A second busy

period starts at τ2 with the arrival of request ωk+3 and lasts

throughout the rest of the shown interval.

Definition 9 (Busy period): A busy period of a requestor

r ∈ R is defined as a maximum interval [τ1, τ2], such that

∀t ∈ [τ1, τ2] : wr(τ1 − 1, t − 1) ≥ ρ′r · (t − τ1 + 1).

Definition 10 (LR server): A server is a LR server if and

only if a non-negative constant cri
can be found such that

A
c
c
u

m
u

la
te

d

s
e

rv
ic

e
 u

n
it
s

Service cycles

busy line

busy period 1

busy period 2

Θ
ta(ωk)

w′

w

w̌′

t̂f(ω
k)t̂s(ω

k)

ρ′

τ1 τ2

Fig. 4. Example service curves in a LR server.

Equation (1) holds during a busy period [τ1, τ2]. The minimum

non-negative constant cr satisfying the equation is defined as

the service latency of the server, denoted Θr.

∀t ∈ [τ1, τ2] : w̌′
r(τ1, t) = max(0, ρ′r · (t− τ1 + 1− cr)) (1)

The lower bound on provided service in Equation (1) is

useful to determine an upper bound on the finishing time of

a request in a LR server. It is shown in [9] that the worst-

case finishing time of a request ωk
r is computed according to

Equation (2), where ta(ω−1
r) = 0.

t̂f(ω
k
r) = max(ta(ωk

r) + Θr, t̂f(ω
k−1
r)) + s(ωk

r)/ρ′r (2)

The worst-case finishing time in Equation (2) consists of

two terms. The first term comprises a max expression that

corresponds to the worst-case starting time of the request,

t̂s(ω
k
r), expressed in Equation (3). This term is determined

by the service latency of the arbiter, or by the finishing time

of the previous request from the requestor, whichever is larger.

The second term represents the time required to finish serving

the request once it is scheduled, referred to as the completion

latency, which is based on the size of the request and the

allocated service rate. In Figure 4, the completion latency of

ωk corresponds to the time between t̂s(ω
k) and t̂f(ω

k).

t̂s(ω
k
r) = max(ta(ωk

r) + Θr, t̂f(ω
k−1
r)) (3)

The bounds in Equations (2) and (3) both require that

requests have completely arrived and that there is enough

space in the Response Buffer to store a response before being

scheduled. These are preconditions for latency bounds based

on LR servers to ensure that a scheduled requestor cannot

stall the resource and prevent accesses from other requestors.

Both of these preconditions are satisfied in our approach,

since requests with insufficient Response Buffer space are not

considered to have arrived, according to Definition 2.

Note that the bounds are based on worst-case interference

from other requestors, but only on actual-case self inter-

ference through the dependency on previous requests from

its requestor. This means that the maximum time between

the arrival time and finishing time is not constant for all

requests, but changes depending on the number of requests

in the Request Buffer of the requestor. Enforcing a constant

delay from arrival time to finishing time requires a conser-

vative bound on the requested service, using for instance a

(σ, ρ) characterization [8], to compute the worst-case self

interference for every request. This results in very pessimistic

finishing times and a lower service rate than allocated, as we

will see in Section VI. It is furthermore very difficult to obtain

an accurate characterization without unnecessarily restricting

the application, which does not fit with our approach to

composability.

V. FRONT-END ARCHITECTURE

In this section, we introduce the architecture of our pro-

posed resource front end that implements the concepts from

Section III based on the model from Section IV. We start by

presenting an overview of the architecture in Section V-A, fol-

lowed by descriptions of the functional blocks in Sections V-B

through V-D.

A. Architecture overview

The proposed resource front end is located in front of a

predictable resource, as shown in Figure 5. The architecture

is comprised of three main simple and reusable blocks: an

Atomizer, a Delay Block, and a Data Bus. Additionally, there

is a Configuration Bus that allows registers inside the different

blocks to be programmed via memory mapped I/O during use-

case transitions [25]. The blocks communicate using a device

transaction level (DTL) protocol, which is a standardized

communication protocol similar to AXI. All ports shown

in Figure 5 are DTL ports. The black ports are used to

communicate requests and responses, and the white ports are

for configuration data.

Composable resource front end

cfg

requestor 1

requestor 2

interfaces

independent

temporally

D
a

ta
 B

u
s

Configuration Bus

P
re

d
ic

ta
b

le
 re

s
o

u
rc

e

Atomizer

Atomizer
Block

Delay

Block

Delay

Arbiter

Fig. 5. An instance of the proposed architecture supporting two requestors.

The architecture achieves composability by combining the

approaches to composable system design, explained in Sec-

tion II, at the block level. The Atomizer and Delay Blocks are

composable because they are not shared with other requestors,

corresponding to the first approach. The Data Bus shares

the predictable resource using an arbiter in the class of LR
servers. The Delay Block hides the interference caused by

scheduling and accessing the resource by emulating worst-case

interference from other requestors, according to the proposed

fourth approach. This creates an interface per requestor that

is temporally independent of the behavior of other requestors,

as shown in Figure 5.

B. Atomizer

The Atomizer is responsible for splitting requests into

homogeneous atoms with a fixed programmable size. This

ensures that requests have a known size that can be served in a

bounded time by the resource, making the design predictable,

as explained in Section III. Fixed-sized requests furthermore

simplify other blocks in the architecture. The size of an atom

corresponds to the service unit of the resource, mentioned in

Section IV, and we choose it to be the minimum request size

that can be efficiently served by the resource. For a single-

bank SRAM, the natural service unit is a single word, but for

an SDRAM it might be bursts of four or eight words, or even

much larger [26]. The original sizes of the requests are stored

in the Atomizer to allow it to merge arriving responses back

into the size expected by the requestor.

C. Delay Block

The most complex block in the architecture is the Delay

Block, shown in Figure 6, and we hence explain this block in

greater detail than the rest. The purpose of the Delay Block

is to absorb the variation in interference from other requestors

to provide a composable interface towards the Atomizer. This

makes the interface of the entire front end composable, since

the Atomizer is not shared. The Delay Block is composable

if all arrows on the interface in Figure 6 pointing left towards

the Atomizer exhibit composable behavior, which implies that

both response data and flow control signals must emulate

maximum interference. We proceed by discussing how to

accomplish this in Section V-C1 and Section V-C2, respec-

tively. We then discuss how to configure the Delay Block in

Section V-C3, before presenting a mechanism to approximate

non-integer completion latencies in Section V-C4.

write data
command

request data
command

read data

config data

flow control

flow control

response data

starting times

Flow

Controller

Sender

Request

Receiver

Request

Sender

Response

Receiver

Response

Register

Bank
Transaction

Buffer

finishing times

Response
Buffer

cmd

data

cmd

data

Request
Buffer

cmd

data

Validator

Request

Fig. 6. Delay Block architecture.

1) Composable responses: Requests are received by the

Request Receiver according to the DTL protocol. Incoming

requests are split into a command (read/write information and

request size) and data (for write requests), and are stored

in a Transaction Buffer. The Request Validator monitors the

incoming request and holds it until it has completely arrived

in the Transaction Buffer and there is enough space to store its

response in the Response Buffer, implementing the definition

of arrival in Definition 2. Once a request has arrived, the

Request Validator enqueues it in the Request Buffer and

computes the worst-case finishing time and the worst-case

starting time, according to Equations (2) and (3), and stores

the results in two respective FIFO buffers.

The Request Sender pops the request at the head of the

Request Buffer and presents it to the Data Bus, such that it

can be scheduled for resource access by the arbiter. This is

further discussed in Section V-D.

Responses are received by a Response Receiver and are

stored in a Response Buffer. The Response Sender pops the

worst-case finishing time from the head of the FIFO buffer and

waits until the appropriate clock cycle to release the response,

thus emulating maximum interference according to the LR
server model. This ensures that the finishing times of the

requestor are unaffected by variations in the interference from

others, which is one of the two requirements to be composable

according to Definition 7.

2) Composable flow control: Having taken care of com-

posable responses, we proceed by discussing the issue of

composable flow control. Both the DTL and AXI protocols

feature flow-control mechanisms that allow a receiving block

to stall a sending block in case the receiving buffer is full. This

may cause non-composable behavior if a request is scheduled

earlier than its worst-case starting time, causing its space in

the Request Buffer to be released prematurely. If the Request

Buffer was previously full, the next request gets an earlier

arrival time and possibly also an earlier worst-case finishing

time than it would if there had been maximum interference,

violating the definition of composability in Definition 7. We

address this problem by basing the flow control on the worst-

case buffer filling, which is emulated by a Flow Controller.

The Flow Controller has a counter that is initialized to the size

of the Request Buffer. The counter is decremented whenever

a request enters the Request Buffer and incremented at the

computed worst-case starting times. This ensures that the start-

ing times of the requestor are unaffected by variations in the

interference from others, which is the remaining requirement

to provide composable service according to Definition 7.

3) Configuring the Delay Block: The Delay Block is pro-

grammed with the service latency and completion latency of its

requestor, expressed in clock cycles, to facilitate computation

of the worst-case finishing times and starting times. Note that

the Atomizer ensures that all requests have the same size

and that we only have to program one completion latency

per requestor. The presence of an Atomizer thus reduces the

amount of computation required to dynamically determine

the completion latency of a particular request, or the space

required to store precomputed values.

For the computed finishing times to be correct, the num-

ber of pipeline stages between the Request Buffer and the

Response Buffer have to be considered. Every block in our

implementation is output registered, resulting in a total of

four pipeline stages. Four clock cycles should hence be added

to the service latency to account for the pipelining in the

implementation. It might seem more intuitive to add this

term to the completion latency, which accounts for the time

between the scheduling time and the finishing time. This

would, however, not correctly model that a pipeline adds a

constant latency to all finishing times. Instead, each request

during a busy period would be delayed an additional four

cycles compared to the previous one, resulting in reduced

throughput.

Composable service can be dynamically disabled by pro-

gramming both the service latency and completion latency to

be zero clock cycles. This feature can be used to implement the

METERG methodology [13], where worst-case interference is

emulated only during verification. This, however, restricts the

supported hardware and software, as mentioned in Section II.

4) Discrete approximation mechanism: A problem arises if

the completion latency, 1/ρ′, is not an integer multiple of clock

cycles, which it typically is not. Rounding off the programmed

value causes the enforced worst-case finishing times to diverge

from the exact values over time for a busy requestor. As

we will see in Section VI, this divergence is significant for

requestors with high allocated rates for resources with small

service units, where completion latencies are in the order of a

few clock cycles. Rounding the programmed value downwards

makes the finishing times too optimistic, leading to non-

composable behavior. On the other hand, rounding upwards

makes the finishing time too pessimistic and causes the actual

provided service rate, ρ∗, to be less than the allocated service

rate, ρ′. This problem is illustrated in Figure 7. Note that the

requestor in the figure is busy throughout the entire shown

interval, although the busy line has been omitted for clarity.

A
c
c
u

m
u

la
te

d

s
e

rv
ic

e
 u

n
it
s

Clock cycles

approximation

Θ

1/ρ′

⌊1/ρ′⌋

w′
w

⌈1/ρ′⌉

ρ∗ ρ′

Fig. 7. Diverging finishing times prevented by discrete approximation of the
completion latency.

Our solution to this problem is to implement a mechanism

that alternates between using the rounded up and rounded

down completion latencies in a weighted fashion to conserva-

tively approximate the actual value, as shown in Figure 7. The

fraction of the service units for which the rounded down value

should be used is expressed as f = ⌈1/ρ′⌉−1/ρ′. Since f ∈ R
+

and 0 ≤ f < 1, our mechanism uses a discrete approximation

based on integer arithmetic that has a fast and simple hardware

implementation. Similarly to the rate approximation technique

in [27], we represent f as a fraction of integers according to

f = n/d, where n, d ∈ N
+ and n ≤ d. The values of n and

d are chosen to be the (n, d) pair that provides the closest

approximation of f, referred to as a closest rate approximation

in [27]. The accuracy of this approximation is only limited by

the number of bits used to represent n and d. The n and d are

computed for all requestors and use cases at design time and

are programmed per use case at run time.

The behavior of the approximation mechanism is based on a

credit counter c, as described by the pseudo code in Figure 8.

The credit counter is set to zero at the start of a busy period,

which is detected by checking if the first parameter of the

max expression in Equation (2) is larger than the second.

The mechanism then alternates between the rounded up and

the rounded down completion latencies based on the value

of the counter. The approximation done by the mechanism

is conservative and guarantees that the maximum difference

between the approximated and actual completion latency is

less than one clock cycle at any time.

for all ωk
r ∈ Ωr do

if ta(ωk
r) + Θr ≥ t̂f(ω

k−1
r) then // Start of busy period

cr := 0
end if

if cr < dr − nr then // Rounding up
cr := cr + nr

t̂f(ω
k
r) := max(ta(ωk

r) + Θr, t̂f(ω
k−1
r)) + ⌈1/ρ′

r⌉
else // Rounding down

cr := cr + nr − dr

t̂f(ω
k
r) := max(ta(ωk

r) + Θr, t̂f(ω
k−1
r)) + ⌊1/ρ′

r⌋
end if

end for

Fig. 8. Mechanism for discrete approximation of completion latency.

D. Data bus

The Data Bus is a regular DTL bus that periodically

schedules requests, according to the policy of an attached

arbiter that belongs to the class of LR servers. The periodic

scheduling signal is generated by a simple clock cycle counter

that repeatedly counts down from the programmed maximum

service cycle length. When the arbiter schedules a request,

the Data Bus stores an identifier to the scheduled port so that

responses are demultiplexed to their respective Delay Blocks.

These identifiers are stored in separate FIFO buffers for read

and write requests, since the DTL protocol does not enforce

ordering between reads and writes.

VI. EXPERIMENTS

In this section, we experimentally evaluate our approach to

composable resource sharing using a simple use case. First,

we present the experimental setup in Section VI-A. We then

proceed in Section VI-B by illustrating the problem of satisfy-

ing tight service latency requirements using TDM, and show

how this problem is resolved by using a priority-based arbiter

in the class of LR servers. We conclude in Section VI-C

by experimentally verifying that the computed bounds on

finishing time are conservative and evaluate their tightness.

We furthermore show that the starting times and finishing

times of a requestor are independent of other requestors and

hence that our design provides composable service according

to Definition 7.

A. Experimental setup

Our experimental setup consists of a cycle-accurate Sys-

temC implementation of a predictable and composable multi-

processor SoC. Traffic generators with exponential request

distributions are used to simulate processing elements that are

interconnected using a model of the Æthereal [28] network-

on-chip. As an example resource, we use a model of an

SRAM controller running at 200 MHz with a 32-bit data path,

offering a bandwidth of 800 MB/s. The service unit size of

this controller is a single word (4 bytes), and the length of a

service cycle is one clock cycle.

For clarity, we use a simple use case with four requestors,

shown in Table I, for our experiments. Three of the requestors

issue read requests, and one issues write requests. The request

sizes are different for all requestors, but they are all integer

multiples of the service unit size. One of the requestors, r0,

is latency critical, but only requires a bandwidth of 20 MB/s.

On the other hand, r1, r2, and r3 are latency tolerant, but

process large amounts of data, requiring a bandwidth of 260

MB/s each. This results in a total allocated load of 100 % of

the offered bandwidth.

B. Comparison with TDM

Using a TDM scheduler, the best-case service latency is

achieved if the reserved slots of a requestor are placed equidis-

tantly in the schedule. In this case, Θtdm
r = ⌈1/ρ′r − 1⌉. The

service latencies of the requestors in the use case, including

the four clock cycles accounting for the pipeline stages in

the architecture, are shown in Table I. We see that the low

allocated service rate results in a very high service latency

for r0, who is latency critical. The only way to reduce the

service latency using TDM is to increase the allocated service

rate, wasting bandwidth. Our use case, however, already uses

all the available bandwidth, resulting in that a tight latency

requirement cannot be satisfied with TDM.

TABLE I
REQUESTOR CONFIGURATION AND RESULTS.

Req. Type Size p σ′ ρ′ Θtdm Θccsp 1/ρ′

[B] [cc] [cc] [cc]

r0 Read 32 0 1.0 0.025 43 4 40.00
r1 Read 64 1 1.0 0.325 7 5 3.08
r2 Read 4 2 1.0 0.325 7 7 3.08
r3 Write 16 3 1.0 0.325 7 13 3.08

Instead, we use a Credit-Controlled Static-Priority (CCSP)

arbiter [23], which combines the use of rate regulation and

priorities to provide differentiated service guarantees. The

service latency of a requestor ri using CCSP, expressed in

service cycles, is computed according to Equation (4). In the

equation, R+
ri
denotes the set of requestors with higher priority

than ri, ρ′ri
the allocated service rate, and σ′

ri
the allocated

burstiness. The allocated burstiness is configured according

to σ′ = 1 for all requestors in the use case, which is the

smallest allocated burstiness that allows CCSP to act as a LR
server. The requestors in the table have descending priorities,

indicated by unique priority levels, p.

Θccsp
ri

=

⌈ ∑

∀rj∈R+
ri

σ′
rj

1 −
∑

∀rj∈R+
ri

ρ′rj

⌉

(4)

Table I shows how these priority levels affect the service

latencies. We note that the highest priority requestor has a

service latency of just four clock cycles, corresponding to the

four pipeline stages in the architecture. This shows the benefit

of using a priority-based arbiter to satisfy tight latency require-

ments. The completion latencies, 1/ρ′r, are the same with both

arbiters, since they guarantee the same allocated rate. Note,

however, that the exact completion latencies of r1, r2, and r3

are 3.08 clock cycles. As mentioned in Section V-C4, rounding

this value downwards might lead to non-composable behavior,

and rounding it upwards results in that the provided bandwidth

is reduced from 260 MB/s to 200 MB/s (1 word / 4 clock

cycles), failing to satisfy the bandwidth requirements of the

requestors. This is prevented by our proposed approximation

mechanism.

C. Simulation results

For our first experiment, we simulate the use case in Table I

during 1 ms to observe the behavior of the front end and the

predictable resource. We let the size of the Response Buffer

be large enough to prevent overflow, since it allows us to

evaluate both the added latency and buffering that follows from

delaying responses. Figure 9 plots the worst-case finishing

times, the actual finishing times and the actual scheduling

times versus the arrival times of the first 200 requests from

requestor r2. We see that the worst-case finishing times are

larger than the actual finishing times, indicating that the bound

is conservative in the shown interval. The minimum difference

between the worst-case and actual finishing times during this

simulation is 3 clock cycles, suggesting that the bound is

rather tight. We note that the difference between the worst-

case finishing time and the arrival time in Figure 9 is not

constant for all requests, as mentioned in Section III. The

drawback of enforcing a constant time between the arrival

time and finishing time is that the constant would have to be

equal to our longest value (115 clock cycles in this simulation).

This value would still assume a perfect characterization of the

requested service and its resulting self interference, which is

very difficult to obtain. The average actual finishing time and

the average worst-case finishing time during the simulation are

17.6 and 23.6 clock cycles after the corresponding arrivals,

respectively. This corresponds to an increase of 34%, showing

that enabling composable service makes it more difficult to sat-

isfy requirements on average-case latency. Delaying responses

furthermore implies that more data has to be stored in the

Response Buffer to prevent reducing throughput. The amount

of extra data to buffer is related to the tightness of the bound

on finishing time, since this determines the extra time an atom

spends in the Response Buffer before being released. Without

delaying responses, the read requestors have a maximum

Response Buffer filling of one word each, since responses

are immediately passed on to the Atomizer. When enabling

delays, the maximum buffer filling increases with one word

for r1 and two words for r2. These results are not unexpected,

since the requests of r2 are buffered an extra 6 clock cycles on

average, roughly corresponding to two completion latencies.

We proceed by experimentally showing that our design

provides composable service. In this experiment, we show

the consequences of small changes in application software by

simulating the use case twice (case 1 and case 2) with different

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160 180 200

C
lo

c
k
 c

y
c
le

s
 (

2
0

0
 M

H
z
)

Request number

Worst-case finishing time
Actual finishing time

Actual scheduling time

Fig. 9. The first 200 request of r2 in the use case.

variances in the request generation for r0. We additionally

increase the allocated burstiness of r0 in Table I according

to σ′
r0

= 8. This creates larger service variations for lower

priority requestors, allowing us to visualize our point more

clearly. The results for requestor r2 are shown in Figure 10.

We see that changing the variance causes the actual finishing

times of the requests to change, making the system non-

composable. However, in our design the requests are held in

the Delay Block until their worst-case finishing times, which

are completely overlapping for the two cases, indicating that

requests are released from the Delay Block at the same time

regardless of these changes.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

C
lo

c
k
 c

y
c
le

s
 (

2
0

0
 M

H
z
)

Request number

Case 1: Actual finishing time
Case 1: Worst-case finishing time

Case 2: Actual finishing time
Case 2: Worst-case finishing time

Fig. 10. Request releases of r2 are unaffected when the behavior r0 changes.

VII. CONCLUSIONS

Composable systems are proposed to mitigate the increasing

verification complexity of application requirements in systems-

on-chip, since they allow applications to be independently

verified by simulation. However, current approaches to com-

posable system design are either restricted to applications that

can be statically scheduled, or share resources using time-

division multiplexing (TDM), which cannot efficiently satisfy

tight latency requirements.

This paper introduces an approach to composable resource

sharing that supports any arbiter in the class of latency-

rate (LR) servers. The key idea is to delay responses and

flow control sent from the resource to an application to

emulate maximum interference from other applications. We

furthermore present an architecture for a resource front end

that provides composable service for any predictable resource

using our approach. We show that TDM fails to satisfy

tight latency requirements in a simple use case sharing an

SRAM controller. We then demonstrate that our front end

provides composable service that satisfies the requirements

when combined with a priority-based arbiter in the class of LR
servers. We experimentally show that the cost and performance

impact of our approach is limited for the considered use case.

The average latency of a memory request is increased by 6

clock cycles and the additional buffering requirements are in

the range of a few words, compared to if the same arbiter is

used without delays.

REFERENCES

[1] S. Dutta et al., “Viper: A multiprocessor SOC for advanced set-top box and digital
TV systems,” IEEE Des. Test. Comput., 2001.

[2] O. Moreira et al., “Scheduling multiple independent hard-real-time jobs on a
heterogeneous multiprocessor,” in Proc. EMSOFT, 2007.

[3] L. Abeni and G. Buttazzo, “Resource Reservation in Dynamic Real-Time Sys-
tems,” Real-Time Systems, vol. 27, no. 2, 2004.

[4] A. Hansson et al., “Undisrupted quality-of-service during reconfiguration of
multiple applications in networks on chip,” in Proc. DATE, Apr. 2007.

[5] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of the

IEEE, vol. 91, no. 1, 2003.
[6] A. Hansson et al., “CoMPSoC: A template for composable and predictable multi-

processor system on chips,” ACM TODAES, vol. 14, no. 1, 2009.
[7] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for analysis of

traffic scheduling algorithms,” IEEE/ACM Trans. Netw., vol. 6, no. 5, 1998.
[8] R. Cruz, “A calculus for network delay. I. Network elements in isolation,” IEEE

Trans. Inf. Theory, vol. 37, no. 1, 1991.
[9] M. H. Wiggers et al., “Modelling run-time arbitration by latency-rate servers in

dataflow graphs,” in Proc. SCOPES, 2007.
[10] K. J. Nesbit et al., “Fair queuing memory systems,” in Proc. MICRO 39, 2006.
[11] ——, “Virtual private caches,” in Proc. ISCA, 2007.
[12] ——, “Multicore resource management,” IEEE Micro, vol. 28, no. 3, 2008.
[13] J. Lee and K. Asanovic, “METERG: Measurement-Based End-to-End Performance

Estimation Technique in QoS-Capable Multiprocessors,” in Proc. RTAS, 2006.
[14] M. Paolieri et al., “Hardware Support for WCET Analysis of Hard Real-Time

Multicore Systems,” in Proc. ISCA, 2009.
[15] M. Bekooij et al., “Performance guarantees by simulation of process networks,”

in Proc. SCOPES, 2005.
[16] T. Lundqvist and P. Stenstrom, “Timing anomalies in dynamically scheduled

microprocessors,” in Proc. RTSS, 1999.
[17] R. Graham, “Bounds on multiprocessing timing anomalies,” SIAM Journal on

Applied Mathematics, pp. 416–429, 1969.
[18] H. Kopetz et al., “Composability in the time-triggered system-on-chip architec-

ture,” in Proc. SOCC, 2008.
[19] M. Bekooij et al., “Predictable and Composable Multiprocessor System Design:

A Constructive Approach,” in Bits&Chips Symposium on Embeddd Systems and

Software, 2007.
[20] M. Katevenis et al., “Weighted round-robin cell multiplexing in a general-purpose

ATM switch chip,” IEEE J. Sel. Areas Commun., vol. 9, no. 8, Oct. 1991.
[21] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,”

in Proc. SIGCOMM, 1995.
[22] H. Zhang, “Service disciplines for guaranteed performance service in packet-

switching networks,” Proceedings of the IEEE, vol. 83, no. 10, Oct. 1995.
[23] B. Akesson et al., “Real-Time Scheduling Using Credit-Controlled Static-Priority

Arbitration,” in Proc. RTCSA, Aug. 2008.
[24] J. Vink et al., “Performance analysis of SoC architectures based on latency-rate

servers,” Proc. DATE, 2008.
[25] A. Hansson and K. Goossens, “Trade-offs in the configuration of a network on chip

for multiple use-cases,” in Proc. Int’l Symposium on Networks on Chip (NOCS),
2007.

[26] B. Akesson et al., “Predator: a predictable SDRAM memory controller,” in Proc.

CODES+ISSS, 2007.
[27] ——, “Efficient Service Allocation in Hardware Using Credit-Controlled Static-

Priority Arbitration,” in Proc. RTCSA, 2009.
[28] K. Goossens et al., “The Æthereal network on chip: Concepts, architectures, and

implementations,” IEEE Des. Test. Comput., vol. 22, no. 5, Sep. 2005.

