
aelite: A Flit-Synchronous Network on Chip with

Composable and Predictable Services

Andreas Hansson1, Mahesh Subburaman2, Kees Goossens3,4

1Electronic Systems Group, Eindhoven University of Technology, Eindhoven, The Netherlands
2Electrical Engineering, Linköping Institute of Technology, Linköping, Sweden

3Corporate Research Department, NXP Semiconductors, Eindhoven, The Netherlands
4Computer Engineering, Delft University of Technology, Delft, The Netherlands

m.a.hansson@tue.nl

Abstract—To accommodate the growing number of applica-
tions integrated on a single chip, Networks on Chip (NoC) must
offer scalability not only on the architectural, but also on the
physical and functional level. In addition, real-time applications
require Guaranteed Services (GS), with latency and throughput
bounds. Traditionally, NoC architectures only deliver scalability
on two of the aforementioned three levels, or do not offer GS.

In this paper we present the composable and predictable aelite
NoC architecture, that offers only GS, based on flit-synchronous
Time Division Multiplexing (TDM). In contrast to other TDM-
based NoCs, scalability on the physical level is achieved by using
mesochronous or asynchronous links. Functional scalability is
accomplished by completely isolating applications, and by having
a router architecture that does not limit the number of service
levels or connections. We demonstrate how aelite delivers the
requested service to hundreds of simultaneous connections, and
does so with 5 times less area compared to a state-of-the-art NoC.

I. INTRODUCTION

Systems on Chip (SoC) grow in complexity with an increas-

ing number of independent applications on a single chip [1].

The applications are realised by hardware and software Intel-

lectual Property (IP), e.g. processors and application code. The

growing number of applications require a system architecture

that is scalable on the physical, architectural and functional

level [2]. In addition, many applications have requirements on

the end-to-end real-time behaviour. The system designer has

to integrate all application IP, from independent suppliers, and

verify the combined functional and temporal behaviour.

Networks on Chip (NoC) have emerged as the design

paradigm for scalable on-chip communication architectures.

Most NoCs address scalability on the architectural and phys-

ical levels [3]–[7], with modular design, Globally Asyn-

chronous Locally Synchronous (GALS) design on the level

of independent IPs, and mesochronous or asynchronous com-

munication within the NoC. These NoCs, however, offer no

or limited scalability on the functional level as applications

cannot be developed and analysed in isolation, due to interfer-

ence in shared resources. The interference, although bounded

in some cases [3], [4], [6], [7], couples the temporal, and

potentially also functional, behaviours of the applications, thus

making the burden of verifying application IP the responsibil-

ity of the system designer. The complexity of such monolithic

system analysis grows exponentially and is a major design

challenge [2].

NoCs based on Time Division Multiplexing (TDM) [8],

[9] completely remove interference between applications, thus

providing composable services. They also bound latency and

throughput for individual connection, making the services

predictable and accommodating applications with real-time

requirements. Moreover, in contrast to NoCs based on Virtual

Circuits (VC) [3], [4], [6], [7] the speed and area of the

NoC is not negatively affected by the number of connections

sharing a link. TDM-based NoCs are thus scalable on the

functional level, but traditionally rely on a notion of global

synchronicity [8], [9]. This is becoming prohibitively difficult

(and costly) to achieve in large chips [3], [10], and is not

scalable on the physical level [5].

As the major contribution of this work, we present the aelite

NoC architecture, which is a light version of the Æthereal [8]

NoC, with mesochronous or even asynchronous links. Like

Æthereal, aelite uses TDM-based arbitration, but does so

without requiring global synchronicity within the NoC. We

demonstrate how the flit-synchronous aelite architecture is the

first NoC to offer scalability on the physical, architectural and

functional level, and how it delivers cost-efficient composable

and predictable Guaranteed Services (GS).

The remainder of the paper is structured as follows. We start

by introducing related work in Section II. Next, the problem

domain is described in Section III. Thereafter, the aelite

architecture is described in three steps, starting with the syn-

chronous router in Section IV, followed by the mesochronous

link pipeline stage in Section V, and the asynchronous wrapper

in Section VI. Finally, experimental results are shown in

Section VII and conclusions are drawn in Section VIII.

II. RELATED WORK

Many asynchronous [3], [6], [7], mesochronous [4] and

globally synchronous [8], [9] NoCs provide some for of GS,

by means of latency and throughput bounds for one or more

connections. Most common is GS based on VCs [3], [4], [6],

[7]. With strict priority arbitration between the VCs [4], [6],

[7], only one VC per link can be given bounds on its latency

and throughput, due to the lack of rate regulation. Hence, GS

connections cannot share links, and in practise, these NoCs

only have two service levels, GS and Best Effort (BE).



The fully asynchronous Mango NoC overcomes the prob-

lems of strict priority-based arbitration by introducing a rate-

regulator [3]. As the router uses VC buffering, it grows with

the number of GS connections passing through it, which is not

scalable. Additionally, the arbiter can only allocate a fraction

of the link capacity. Most importantly, Mango only bounds

interference, but does not remove it completely, thus coupling

the behaviour of different applications.

Nostrum [9] and Æthereal [8] offer TDM-based GS, and

hence composable and predictable services. Both NoCs, how-

ever, rely on a globally synchronous NoC. While techniques

such as link pipelining have been proposed to overcome link

latency [11], [12], the cycle-level synchronicity negatively

affects the NoC scalability [5].

To overcome the disadvantages of global synchronicity, but

still enable a traditional synchronous design style, the NoCs

in [4], [5], [13] use mesochronous and asynchronous links [14]

between synchronous network elements. However, no GS is

offered by [5], [13], and priority-based GS that bounds, but

does not remove interference, is provided in [4].

In addition to the aforementioned limitations on physical

scalability and provision of GS, none of the works in [3], [4],

[6], [7], [9] demonstrate the ability to provide latency and

throughput guarantees for more than a handful connections.

We extend existing work by presenting a flit-synchronous

NoC architecture that provides TDM-based composable and

predictable services. We show how this architecture enables

not only complete isolation of applications and provision of

their real-time requirements, but also a significantly smaller

and faster design compared to a state-of-the-art NoC.

III. PROBLEM DESCRIPTION

We start this section by revisiting the main concepts of the

Æthereal NoC [8] that are maintained by aelite, and end with

an enumeration of the problems addressed in this paper.

The applications are realised by software and hardware IP,

where the latter are connected to the NoC. The IP ports com-

municate over logical connections, realised by the Network

Interfaces (NI), the routers and the physical links that together

constitute the NoC. End-to-end flow control is used to avoid

buffer overflows in the NIs and the path is determined by

source routing. The NIs interface with the IPs through bi-

synchronous FIFOs, thus enabling a GALS design approach.

Within the NoC, however, the routers and NIs rely on cycle-

level synchronicity to implement contention-free routing, as

illustrated in Figure 1.

In our implementation of contention-free routing, the in-

jection of flow control digits (flits) is regulated by a TDM

table in the NI such that no two flits ever arrive at the same

link at the same time. In the figure, there are two IP cores,

IPA and IPB , that communicate over the network of routers,

using the connections cA and cB , indicated by a solid and

an open-headed arrow, respectively. Connection cA has slots

0 and 2 reserved in the table, and connection cB has slot

1 reserved in the table. The TDM table has the same size

(or period) throughout the NoC, in this case 4 slots, and

3
cB

0

1

2

3

1,3

3

2,0

2

cA

cA

IPA

NIB

IPB

1

R R
2

0,2

0

1

NIA

Fig. 1. Contention-free routing.

every slot corresponds to a flit of fixed size, assumed to be

3 words, or physical digits (phits), throughout this paper. For

every hop along the path, the reservation is shifted one slot,

corresponding to the flit cycle, i.e. the 3 cycle forwarding

delay, of the router. As a result, neighbouring element must

be cycle-level synchronous to ensure that the output of one

module reaches the next within one cycle, despite any inter-

module delay. Note that the logical synchrononicity within

the NoC does not limit how the IPs use the network. All

interfacing between the IPs and the network uses blocking

reads and writes and the network places no assumptions on

the production or consumption of data.

We consider it our problem to provide a NoC that: 1) en-

ables large-scale SoCs with multiple applications, 2) allow ap-

plications to be developed and verified in isolation, 3) provides

real-time guarantees with bounds on latency and throughput

to individual applications, and 4) does so with a low cost.

In the following sections we describe how the aelite NoC ad-

dresses the aforementioned problems by offering a TDM-based

GS-only router (Section IV), skew-insensitive mesochronous

link pipeline stages (Section V), and asynchronous wrappers

(Section VI). Together, this results in a flit-synchronous NoC,

with composable and predictable services. We return to the

problem statements when discussing the experimental results

(Section VII).

IV. ROUTER ARCHITECTURE

The aelite router, depicted in Figure 2, consists of three

pipeline stages, corresponding to a flit size of three words. The

2

out1

1

inn

in1

0

outn

valid

data

NIIP R NIR

data data’

port idvalid valid

data

data data’

port idvalid

HPU

HPU

switch

Fig. 2. Router architecture.



first stage synchronises the input data. Thereafter, a Header

Parsing Unit (HPU) determines the output port based on

the path encoded in the packet header. The selected output

port remains the same until an End-of-Packet (EoP) bit is

encountered. In contrast to the Æthereal architecture [8], the

valid and EoP bits are explicit control signals and do not need

any decoding, which removes the HPU from the critical path.

The output port numbers are one-hot encoded before being

fed to the switch which determines the assignment of input

to output ports. Thus, three cycles after a flit is presented to

a router, the first word appears on the output, as indicated

by the open-headed arrow in Figure 2. The aelite router is

only parametrisable in its data width and the number of input

and output ports (potentially different) and has no routing

table and only a one-word buffer per input port. It also

has no arbiter because contention is avoided through off-line

scheduling of the flits. This especially benefits asynchronous

router implementations [15].

In contrast to VC-based NoCs [3], [4], [6], [7], the router

is not negatively affected by the number of connections,

service levels, or the real-time requirements of the connections.

The aelite architecture is compatible with existing Æthereal

design tools, for resource allocation [16] as well as analysis,

simulation and synthesis. The benefits over the combined

GS and BE Æthereal architecture are: 1) all connections are

isolated, thus achieving functional scalability, 2) not having BE

reduces the router to one VC and removes the need for link-

level flow control, which greatly simplifies a mesochronous im-

plementation, thus achieving scalability on the physical level

as detailed in Section V, and 3) the hardware implementation

is much simpler, thus enabling lower area and higher speed,

as we will see in Section VII.

A. Limitations

Resources must be reserved in advance and are hence

not available to other connections. It is important to note,

however, that: 1) the routers are much cheaper than in the

original Æthereal architecture, and 2) resource reservations

do not have to correspond to the worst-case requirements if

this is not needed by the application. In other words, if an

application has soft or no real-time requirements there is no

need to overallocate resources. Unused resources remain idle

(rather than being redistributed [3], [8]) and an attempt to

oversubscribe causes the application to slow down due to back

pressure. Thus, there is no possibility for an application to

violate any contract with the interconnect.

A limitation that the basic aelite router shares with Æthereal

is that the NoC requires a globally synchronous clock and a

link delay of at most one cycle. This places strict require-

ments on the placement of routers and the distribution of a

clock. The link delay problem can be mitigated by pipelining

links [11], [12]. With the aelite architecture, this is possible by

moving the input register, as shown in Figure 2, onto the link

itself. However, the clock skew between neighbours must be

sufficiently low to avoid sampling in critical regions, severely

limiting scalability. This problem is mitigated or completely

clkclk + δi
clk + δj

0 1 2 3 4

valid’

RNI R

valid

accept

data

valid

clk wr clk rd

data

Fig. 3. Link architecture.

removed with the introduction of mesochronous link pipeline

stages.

V. MESOCHRONOUS LINK

The choice of a link greatly affects how sensitive the

NoC is to wire delays and what clock distribution scheme

is possible. When the routers and NIs share a clock and

thus have the same nominal frequency but different phase

relationships, mesochronous links mitigate skew constraints

in the clock tree synthesis. Most importantly, mesochronous

NoCs are scalable [5], since the phase difference between

regions is arbitrary.

Normally, link-level flow control and multiple VCs compli-

cate the implementation of mesochronous (and asynchronous)

NoCs [4], [6], [7], [12], [13], due to the increasing amount

of control signals required. The latency involved is also

reported to limit the maximum achievable operating fre-

quency [5]. In aelite, there is no need for link-level flow

control and only one VC, independent of the number of con-

nections/service levels. This is a major difference with existing

mesochronous/asynchronous NoCs. The challenge in aelite is

to provide composable and predictable services without global

synchronicity.

To hide the differences in clock phases we do not only

put bi-synchronous FIFOs between neighbouring elements [4],

[13], [17], but also allocate a time slot for the link traversal,

thus hiding the difference in phase. The architecture of the

link pipeline stage consists of a bi-synchronous FIFO [14],

[18] and a FSM, as shown in Figure 3. The FIFO adjusts for

the differences in phase between the writing and reading clock,

where the former is sourced along with the input data, thus

experiencing roughly the same signal propagation delay [5].

The FSM tracks the receiver’s position within the current flit

(0, 1 and 2). If the FIFO contains at least one word (valid is

high) the cycle a new flit cycle begins (state 0), the FSM

keeps the valid signal to the router and the accept signal

to the FIFO high during the succeeding flit cycle (3 clock

cycles). This is analogous to an actor that fires in a dataflow

graph [19]. Like [4], we assume that the skew between the

reading and writing clock is at most half a clock cycle, and

that the bi-synchronous FIFO has a forwarding delay less than

the number of words in a flit (1-2 cycles) and a nominal rate of



one word per cycle. Under these assumptions, the re-alignment

of incoming flits to the reading clock ensures that: 1) flits are

presented to the router in their assigned time slot, i.e. not too

early and not too late, and that 2) the 3 words of a flit are

forwarded to the router in consecutive cycles. The FSM re-

aligns incoming flits to the flit cycles of the reading clock,

thus achieving flit synchronicity over a mesochronous link.

With the aforementioned behaviour, the FSM ensures that

it always takes 3 cycles (in the reading clock domain) for a

flit to traverse a link. As illustrated with the long open-headed

arrow in Figure 3, this aligns the flit to flit-cycle boundaries,

but introduces additional latency. The three cycles, however,

are enough to absorb the latency of the FIFO and the skew

between the writing and reading clock. Moreover, as the phase

difference is guaranteed to be bounded, the FIFO is chosen

with sufficient storage capacity to never be full (4 words). The

FIFO hence does not need to generate a full/accept signal,

and all handshakes are local. Note that in contrast to NoCs

that rely on VCs [3], [6], [7], the size and number of FIFOs

in the link pipeline stages and the routers is independent of

the number of connections and does not affect the critical

path (and hence scalability) of the NoC. Similar to [5], the

mesochronous implementation of aelite has the benefit that

the NoC can be conceived as globally synchronous on the flit

level. The system designer thus does not need to consider its

mesochronous nature. Between neighbouring routers and NIs,

the phase difference is limited to half a cycle, but all global

constraints are removed. It is also possible to place multiple

link pipeline stages in sequence, if required.

A. Limitations

The mesochronous links are only applicable if the entire

NoC has the same nominal rate. If the routers and NIs are

plesiochronous (or even heterochronous) [17], then adapting

the link is not sufficient. Some router and NIs will be faster

than others, and they must be slowed down to guarantee

that input and output is flit-synchronous relative to neigh-

bouring network elements. This is achieved by introducing

asynchronous wrappers [10], [20], turning them into stallable

processes [20].

VI. ASYNCHRONOUS WRAPPER

To enable NIs and routers to be plesiochronous (or even

heterochronous), we turn the basic aelite router and NI into

stallable processes [20]. This is accomplished by the asyn-

chronous wrapper [10], depicted in Figure 4, that, like a

dataflow actor, only proceeds from one iteration (flit cycle)

to the next once it has synchronised with all its neighbours by

looking at the availability of input data and output space [19].

The wrapper runs synchronously, moving the complexities of

clock-domain crossing to the asynchronous links, and consists

of Port Interfaces (PI), a Port Interface Controller (PIC), and

the router itself, as described in Section IV. Next, we describe

the behaviour of the PIs and PIC.

As advocated in [10], each port of the router is managed

by a separate PI. We distinguish between Input PIs (IPI) and

0 1

out1

clkk

in1

outninn

clkj

64

clki

3

data

data

NI R

fire

data

accept

valid

data

accept

validvalid

accept

valid

accept

R

IPI

IPI OPI

router

OPI

PIC

Fig. 4. Wrapper architecture.

Output PIs (OPI). Each IPI and OPI consist of a synchronous

FIFO and an associated counter. In the IPI, the counter tracks

how many words are present in the FIFO. The counter in the

OPI, on the other hand, reflects how much space is not yet

reserved. Therefore, the counter in the OPI is decremented as

soon as input data is forwarded to the router, rather than when

the data is accepted in the output FIFO. The early reservation

ensures that the forwarding delay of the router does not lead

to overflow. The IPI and OPI signal the PIC when at least one

flit and space for one flit is available, respectively. The flit

thus corresponds to a token in the dataflow model, and every

PI is a firing rule [19].

The PIC fires once all PIs fire. The combined fire signal

is fed back to the IPIs where it acts as an accept signal for

the input FIFOs. The inputs are then fed to the router and a

registered version of the fire signal, with 2 cycles delay (corre-

sponding to the data path in the router without input registers),

is distributed to the OPIs as a valid signal for the output FIFOs.

The behaviour of the PIC guarantees that flits belonging to the

same flit cycle, or tokens belonging to the same iteration [19],

are passed to the router synchronously. The router responds to

the insertion of delays from its neighbours by delaying its

inputs and outputs at the granularity of flits. Thereby, there is

no data stalling inside the router and NI data path. This allows

for a simpler implementation of the FSMs in the router and

NI as they only have to be stallable before transitioning to a

new flit cycle. The delay involved in clock-domain crossing

is hidden by adapting the slot allocation as shown with the

open-headed arrow in Figure 4.

The functionality of the PIs and PIC ensures correct be-

haviour as long as all ports are sending and receiving data

every flit cycle. There are, however, two additional problems

that have to be addressed. First, when there is no useful data

to send on a specific output, the router or NI sends an empty

token, with the only purpose to synchronise with the neigh-

bouring element. Second, a few cycles are spent at reset to



produce initial empty tokens and thus synchronise transmitter

and receiver blocks. Otherwise, the system deadlocks.

A. Limitations

Due the flit synchronicity, which is crucial for system-

level composable and predictable services, the aelite NoC

only runs as fast as the slowest router or NI. This is not a

problem in a plesiochronous NoC, which is our current aim.

However, to benefit from a heterochronous NoC, additional

link-width conversion must be added. Furthermore, the aelite

NoC, in its current form, consumes power while idling. The

power consumption is reduced by moving to a completely

asynchronous implementation [15], or by introducing sleep

modes for individual routers. We consider the latter, together

with link-width conversion, future work.

VII. EXPERIMENTAL RESULTS

To evaluate the aelite design, we return to the problem

statements from Section III.

Our first problem, to enable large-scale SoCs, is solved

by enabling scalability on the physical and architectural

level. The physical scalability is achieved by using either

the mesochronous links or by adopting the asynchronous

wrappers. With the mesochronous links, the constraints on

clock skew are local rather than global and an arbitrary

(and heterogeneous) number of link pipeline stages can be

introduced. These techniques alleviate the designer from strict

requirements on clock skew and link delay, thus enabling an

effective distributed placement of the NoC components, even

with local clock generation. The architectural scalability stems

from the ability to add more links, routers and NIs.

The second problem is to provide functional scalability

by enabling independent development and verification of ap-

plications. This is achieved by offering composable services

with complete isolation of connections. Additionally, the fabric

of the NoC is not negatively affected by the number of

connections or service levels.

The third problem concerns the provision of real-time guar-

antees. In aelite, just as Æthereal, the bounds are based on

contention-free routing, and thus on the ability to bound the

time required for one flit cycle. In this work, we assume that

the entire NoC has same nominal frequency1. The latency and

throughput thus follows directly from the waiting time in the

NI (plus the time required to traverse the path), and the fraction

of slots reserved, respectively.

The fourth item is a good performance normalised to cost.

In this work, due to space limitations, we only consider silicon

area to be the cost. To determine the area, a number of router

instances are synthesised. Results are obtained for worst-

case commercial conditions for a 90 nm low-power CMOS

technology. Note that all synthesis reported throughout this

work are before place-and-route, and include cell area only.

After layout, the area increases and the maximum frequency

1Note that performance analysis of a heterochronous aelite implementation
is possible by modelling the links, NIs and routers in a dataflow graph,
something we consider future work.

Frequency (MHz)

C
el

l
ar

ea
(µ

m
2
)

800750700650600550500

18000

17500

17000

16500

16000

15500

15000

14500

14000

Fig. 5. Frequency and area trade-off.

drops (a utilisation higher than 85% is difficult to achieve and

frequency reductions of up to 30% are reported in [12] for a

65 nm technology).

Figure 5 shows the trade-off between target frequency and

total area for an arity-5 router with 32-bit data width. As

seen in the figure, the router occupies less than 0.015 mm2

for frequencies up to 650 MHz. The area grows steeply after

750 MHz and saturates around 875 MHz. The results suggest

that a frequency of around 600 MHz is a reasonable target

after layout and routing. The area and frequency of the aelite

router is independent of the number of connections passing

through the router, unlike VC-based NoC architectures like [3],

[6], [7], and the synthesis results are to be compared with

the combined GS and BE router of Æthereal, that occupies

0.13 mm2 and runs at 500 MHz, when synthesised in a 130 nm

CMOS technology [8]. Confirming the observations in [8] and

Mango [3], we see that the GS-only NoC architecture provides

a much better performance-to-cost trade off than a combined

GS and BE NoC. In aelite the difference is roughly 5× smaller

area and 1.5× the frequency for the same 90 nm technology.

For the mesochronous link pipeline stages, additional cell

area is added due to the FSM and bi-synchronous FIFOs.

The area of a 4-word FIFO is in the order of 1500 µm2

when using the custom FIFOs from [18], or roughly 3300µm2

with the non-custom FIFOs from [4]. For an arity-5 router

with mesochronous links the complete router with links is

in the order of 0.032 mm2. This is to be compared to the

mesochronous router in [4], or the asynchronous router in [7],

that occupy 0.082 mm2 and 0.12 mm2 (scaled from 130 nm),

respectively. Also note that these two NoCs offer only two

service levels and no composability. Extending the combined

GS and BE router of Æthereal to mesochronous links is more

costly than the aelite GS-only router due to more complex

link-level flow control and larger buffers.

Figure 6 shows how the router scales with the arity and

the data width, when synthesised for maximum frequency. In

Figure 6(a) we see that the area grows roughly linearly with

the arity, despite the multiplexer tree in the switch. Figure 6(b)

shows how the data width affects the area and obtainable

frequency. We observe that the area grows linearly with the

word width while the operating frequency is reduced, also with

a linear trend. It is clear from our experiments that the aelite



Area
Frequency

Arity

C
el

l
ar

ea
(µ

m
2
)

M
ax

im
u
m

fr
eq

u
en

cy
(M

H
z)

30000

25000

20000

15000

10000

5000
765432

1300

1250

1200

1150

1100

1050

1000

950

900

850

(a) Varying router arity for 32-bit data width.

Area
Frequency

Word width (bits)

C
el

l
ar

ea
(µ

m
2
)

M
ax

im
u
m

fr
eq

u
en

cy
(M

H
z)

160000

140000

120000

100000

80000

60000

40000

20000
256224192160128966432

880

860

840

820

800

780

760

740

(b) Varying data width for arity-6 router.

Fig. 6. Total cell area and maximum frequency for varying arity and data width.

router scales to both high arities and wide data widths, thus

offering massive amounts of throughput at a low cost, e.g. an

arity-6 aelite router offers 64 Gbyte/s at 0.03 mm2 for a 64-

bit data width. Our results also suggest that the aelite router is

well suited for more concentrated topologies, with high-arity

routers, as proposed in [12].

To demonstrate the ability to provide composable and

predictable services (scalability and real-time guarantees) we

simulate a NoC with 200 connections, divided across four dif-

ferent applications. The throughput and latency for the connec-

tions is randomly chosen, and range from 10 to 500 Mbyte/s

and 35 to 500 ns, respectively. With a total of 70 IPs, mapped

to a 4 × 3 mesh with 4 NIs per router (i.e. a concentrated

topology). An operating frequency of 500 MHz is sufficient

to satisfy the requirements of all connections and do so with no

inter-connection interference. Next, we use the same mapping

of IPs to NIs, and keep the same paths through the network,

but replace aelite with Æthereal and change the service of

all connections from GS to BE. With this configuration,

application composability is lost, and the cost of the router

network is roughly 5 times as high. For most connections, the

average latency observed with BE service is lower than with

GS, but the distribution of flit latencies is much larger, and

the maximum latencies grow significantly. In fact, the NoC

requires an operating frequency of more than 900 MHz before

the latency observed during simulation is lower than requested

for all connections. From these experiments we can conclude

that aelite not only provides temporal isolation that is essential

for application composability, but also does so at a low cost

and with competitive performance.

VIII. CONCLUSIONS AND FUTURE WORK

A growing number of applications, often with real-time

requirements, are integrated on a single System on Chip (SoC).

Networks on Chip (NoC) have emerged as a scalable infras-

tructure for such SoCs, also providing guaranteed services,

with latency and throughput bounds. A common approach to

providing such bounds, and isolate individual connections, is

Time Division Multiplexing (TDM). Using TDM, however,

requires a global notion of synchronicity, which is becoming

prohibitively expensive with growing chip sizes.

In this paper we present the flit-synchronous aelite NoC

architecture that, in contrast to existing NoCs, offers scal-

ability on the physical, architectural and functional level.

Physical scalability is provided by using mesochronous or

asynchronous links, and functional scalability is provided

by offering composable services, that isolates independent

applications. A complete arity-5 router with mesochronous

links requires only 0.032 mm2 and runs at more than 800 MHz

in a 90 nm CMOS technology.

In our future work we aim to extend aelite with link-

width conversion and include the asynchronous wrappers in

the formal models of the NoC.

REFERENCES

[1] M. Rutten et al., “Dynamic reconfiguration of streaming graphs on a heterogeneous

multiprocessor architecture,” IS&T/SPIE Electron. Imag., vol. 5683, 2005.

[2] A. Jantsch, “Models of computation for networks on chip,” in Proc. ACSD, 2006.

[3] T. Bjerregaard and J. Sparsø, “A scheduling discipline for latency and bandwidth

guarantees in asynchronous network-on-chip,” in Proc. ASYNC, 2005.

[4] I. Miro Panades et al., “A low cost network-on-chip with guaranteed service well

suited to the gals approach,” in Proc. NANONET, 2006.

[5] T. Bjerregaard et al., “A scalable, timing-safe, network-on-chip architecture with

an integrated clock distribution method,” in Proc. DATE, 2007.

[6] D. Rostislav et al., “An asynchronous router for multiple service levels networks

on chip,” in Proc. ASYNC, 2005.

[7] E. Beigne et al., “An asynchronous NOC architecture providing low latency service

and its multi-level design framework,” in Proc. ASYNC, 2005.

[8] K. Goossens et al., “The Æthereal network on chip: Concepts, architectures, and

implementations,” IEEE Des. and Test of Comp., vol. 22, no. 5, 2005.

[9] M. Millberg et al., “Guaranteed bandwidth using looped containers in temporally

disjoint networks within the Nostrum network on chip,” in Proc. DATE, 2004.

[10] J. Muttersbach et al., “Practical design of globally-asynchronous locally-

synchronous systems,” in Proc. ASYNC, 2000.

[11] S. Stergiou et al., “×pipes lite: A synthesis oriented design library for networks

on chips,” in Proc. DATE, 2005.

[12] A. Pullini et al., “Bringing NoCs to 65 nm,” IEEE Micro, vol. 27, no. 5, 2007.

[13] D. Mangano et al., “Skew insensitive physical links for network on chip,” in Proc.

NANONET, 2006.

[14] I. Miro Panades and A. Greiner, “Bi-synchronous FIFO for synchronous circuit

communication well suited for network-on-chip in gals architectures,” in Proc.

NOCS, 2007.

[15] T. Felicijan et al., “Asynchronous tdma networks on chip,” Royal Philips Elec-

tronics, Tech. Rep., 2007.

[16] A. Hansson et al., “Undisrupted quality-of-service during reconfiguration of

multiple applications in networks on chip,” in Proc. DATE, 2007.

[17] D. Messerschmitt, “Synchronization in digital system design,” IEEE Jour. on Sel.

Areas in Comm., vol. 8, no. 8, 1990.

[18] P. Wielage et al., “Design and DfT of a high-speed area-efficient embedded

asynchronous FIFO,” in Proc. DATE, 2007.

[19] E. A. Lee and T. M. Parks, “Dataflow Process Networks,” Proc. of the IEEE,

vol. 83, no. 5, 1995.

[20] L. Carloni et al., “Theory of latency-insensitive design,” IEEE Trans. on CAD of

Int. Circ. and Syst., 2001.


