
An On-Chip Interconnect and Protocol Stack for Multiple
Communication Paradigms and Programming Models

Andreas Hansson
Electronic Systems Group

Eindhoven University of Technology
Eindhoven, The Netherlands

m.a.hansson@tue.nl

Kees Goossens
Corporate Research Department

NXP Semiconductors
Eindhoven, The Netherlands

kees.goossens@nxp.com

ABSTRACT

A growing number of applications, with diverse require-
ments, are integrated on the same System on Chip (SoC)
in the form of hardware and software Intellectual Property
(IP). The diverse requirements, coupled with the IPs being
developed by unrelated design teams, lead to multiple com-
munication paradigms, programming models, and interface
protocols that the on-chip interconnect must accommodate.

Traditionally, on-chip buses offer distributed shared mem-
ory communication with established memory-consistency
models, but are tightly coupled to a specific interface pro-
tocol. On-chip networks, on the other hand, offer layering
and interface abstraction, but are centred around point-to-
point streaming communication, and do not address issues
at the higher layers in the protocol stack, such as memory-
consistency models and message-dependent deadlock.

In this work we introduce an on-chip interconnect and pro-
tocol stack that combines streaming and distributed shared
memory communication. The proposed interconnect offers
an established memory-consistency model and does not re-
strict any higher-level protocol dependencies. We present
the protocol stack and the architectural blocks and quan-
tify the cost, both on the block level and for a complete
SoC. For a multi-processor multi-application SoC with mul-
tiple communication paradigms and programming models,
our proposed interconnect occupies only 4% of the chip area.

Categories and Subject Descriptors: B.4.3 [In-
put/Output and Data Communications]: Interconnections –
Topology

General Terms: Design, Performance

Keywords: System on Chip, Programming model, Net-
work on Chip, Protocol stack

1. INTRODUCTION
Systems on Chip (SoC) grow in complexity with an in-

creasing number of independent applications on a single
chip [35]. The applications are realised by hardware and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-628-1/09/10 ...$10.00.

software Intellectual Property (IP), e.g. processors and ap-
plication code. A number of trends, relating to the commu-
nication paradigms and programming models, can be seen
in SoCs. First, different IP components (hardware and soft-
ware) in the same system are often developed by unrelated
design teams [16], either in-house or by independent ven-
dors. Second, applications are often split into multiple tasks
running concurrently, either to improve the power dissipa-
tion [32] or performance [36]. Third, SoCs are evolving in
the direction of distributed-memory architectures, offering
high throughput and low latency [22, 39], coupled with a
low power consumption [23]. Fourth, address-less streaming
communication between IPs is growing in importance to al-
leviate contention for shared memories and is becoming a
key aspect in achieving efficient parallel processing [18,40].

The system in Figure 1 serves to exemplify the trends.
Two applications are mapped to the SoC: a video decoder
and an audio post-processing filter. The applications are
implemented in software, and mapped to hardware IP from
different vendors, also using different interface protocols, e.g.
AXI [2] for the ARM, PLB [45] for the µblaze, and DTL [31]
for the IP from NXP. The decoder application is split into
tasks and mapped to the ARM and VLIW. The ARM reads
the encoded input from the SRAM and performs the first
decoding steps. The VLIW performs the remaining steps
and writes the output to the video tile. The decoder uses
distributed memory (the SRAM and local memory in the
VLIW tile) for inter-task communication and for private
data. The filter application is mapped to the µblaze. Sam-
ples are communicated to and from the audio tile by means
of streaming communication and private data is stored in
the SRAM, which is shared with the decoder.

Based on the trends, we identify the following three re-
quirements for the on-chip interconnect: 1) Due to the di-
versity in origin and requirements, the interconnect must
accommodate multiple communication paradigms and pro-
gramming models [19, 29]. 2) The use of distributed memo-
ries places requirements on the interconnect that must sup-
port an established memory consistency model [30], e.g. re-
lease consistency [10], to allow the programmer to reason
about the order of memory operations. 3) To enable the use
of existing IP, the interconnect must support one or more
industry-standard interfaces and be easy to extend.

Existing on-chip interconnects are typically based either
on buses or Networks on Chip (NoC). Buses offer distributed
shared memory communication with established memory
consistency models. However, buses have limited support
for streaming communication and are typically tailored for

streaming initiator

streaming targetmemory-mapped target

ARMµBlazehost

VLD IDCT CCfilter

requests

responses

VLIW

audio video

interconnect

peripheral SRAM

memory-mapped initiator

Figure 1: Example system.

one specific interface protocol, with major impacts on IP
reusability. Moreover, buses are not scalable [17]. NoCs
address the scalability of buses and provide layered commu-
nication [3] with more flexibility in the choice of an interface
protocol. However, most NoCs are tailored for point-to-
point streaming communication, and do not address higher-
level protocol issues, such as ordering and dependencies
between connections, that affect the memory consistency
model and may introduce message-dependent deadlock [12].

For an example of the aforementioned issues, consider our
example system in Figure 1, where the ARM communicates
data to the VLIW via a buffer in the SRAM, and the buffer
administration (used for synchronisation) is placed in the
local memory of the VLIW [24]. Already in this simple ex-
ample of distributed memory the interconnect must offer
mechanisms to ensure that the data is written to the SRAM
(and not somewhere in the interconnect) before the adminis-
tration is updated. Our example system also highlights the
issue of message-dependent deadlock, as neither the filter nor
the decoder application adhere to a strict request-response
protocol. The message-dependency chains [37] created by
the filter and decoder contain also request-request depen-
dencies (and thus cannot be safely mapped to e.g. [3, 38]).

As the main contribution of this work, we present an on-
chip interconnect and protocol stack that, in a structured
way, combines local buses and a network, thus supporting
multiple communication paradigms and programming mod-
els. We describe the rationale behind the proposed stack
and the subdivision of the architectural building blocks and
highlight their important qualitative properties. We quan-
tify the cost and performance of the proposed interconnect
(and stack) by means of synthesis results for the building
blocks. We also demonstrate that the interconnect occupies
only 4% of the chip area for a complete SoC example.

The rest of the paper is organised as follows. First we
review related work in Section 2. Then, Section 3 gives an
overview of the proposed stack and interconnect, with more
details following in Sections 4 and 5, respectively. Exper-
imental results are presented in Section 6, where after we
conclude in Section 7.

2. RELATED WORK
Much work on NoCs is focused on the router network and

does not address communication at the IP level. For exam-

ple, networks with adaptive routing [27] typically ignore the
ordering even within a point-to-point connection and it is
unclear how to offer any established programming model.

NoCs that provide ordered point-to-point communication
are presented in [3, 7, 26, 28, 34, 41, 44]. The NoC in [28] of-
fers time-triggered exchange of application-layer messages.
Communication must take place at a priori-determined in-
stants, placing many constraints on the IP behaviour. These
constraints are removed in [7,26,41] where the IPs interface
with the NoC using OCP. However, OCP is used as a data-
link layer protocol and the works ignore higher-level protocol
issues like ordering and dependencies between connections.

Distributed and shared memory communication is ad-
dressed in [3, 17, 34, 38, 44]. However, neither of the works
give any details on how to support multiple communication
paradigms, i.e. combine streaming and memory-mapped
communication, and also do not show how to implement
a specific memory-consistency model. The issue of memory
consistency and ordering is addressed in [30] by only allow-
ing one outstanding transaction. This, however, is overly re-
strictive and severely impairs the interconnect performance.

Protocol stacks for NoCs are proposed in [3, 5, 6, 19, 20].
The stacks are focused on the lower layers (up to the trans-
port layer), and do not address issues relating to synchro-
nisation and dependencies between connections that takes
place at the session layer [9]. Moreover, to the best of our
knowledge, no NoC offers a complete protocol stack for both
streaming and distributed shared memory communication.

With more elaborate programming models, it is necessary
to address message-dependent deadlock [37]. Most NoCs
rely on strict ordering with separate physical or logical net-
works [3,38], thus severely limiting the programming model,
e.g. to pure request-response protocols. End-to-end flow
control is proposed in [12] to avoid placing any restrictions
on the dependencies between connections outside the net-
work, thus avoiding message-dependent deadlock irrespec-
tive of the programming models used by the IPs.

Extending on [11, 34], our proposed interconnect enables
multiple communication paradigms and programming mod-
els, with the mechanisms required to implement release con-
sistency, and flexibility in the choice of IP interfaces. This
is accomplished by: 1) clearly separating the network stack,
the streaming stack and the memory-mapped stack, both
logically and physically by combining the network with lo-

bus

flit target

C
D

C
C
D

C
n
et

w
o
rk

in
te

rc
o
n
n
ec

t

NI

RR

NI

NI

NI

NI

NI NI

RRR

host

bus bus

ARM VLIW

shellshellshellshell shellshellshell

shell shell shellshell shell

peripheral SRAMaudio video

bus

µBlaze

memory-mapped target used for control

streaming initiator

streaming target

memory-mapped initiator

memory-mapped target

flit initiator

Figure 2: Interconnect architecture overview.

cal buses, 2) allowing any higher-level programming model
without introducing message-dependent deadlock by break-
ing all connection inter-dependencies with end-to-end flow
control inside the network.

3. OVERVIEW
In this section we introduce the interconnect building

blocks and give a brief example of their functionality. Fig-
ure 2 illustrates the same system as Figure 1, but now with
an expanded view of the interconnect, dimensioned for the
decoder and filter applications introduced in Section 1.

To illustrate the functions of the different blocks, consider
a load instruction that is executed on the ARM. The instruc-
tion causes a bus transaction, in this case a read transaction,
to be initiated on the memory-mapped initiator port of the
processor. Since the ARM uses distributed memory, a tar-
get bus forwards the read request message to the appropriate
initiator port of the bus, based on the address. The elements
that constitute the request message, i.e. the address and
command flags in the case of a read, are then serialised by
a target shell into individual words of streaming data. The
streaming data is fed via a Clock Domain Crossing (CDC)
into the Network Interface (NI) input queue of a specific
connection. The data items reside in the queue until the
NI schedules the connection. The streaming data is pack-
etised and injected into the router network as flow control

digits (flits). The flits are forwarded in order through the
network. Once the flits reach the destination NI, their pay-
load, i.e. the streaming data, is put in the NI output queue
of the connection. After another clock domain crossing, an
initiator shell represents the ARM as a memory-mapped
initiator by reassembling the request message. If the desti-
nation target port is not shared by multiple initiators, the
shell is directly connected to it, e.g. the video tile in Fig-
ure 2. For a shared target, such as the SRAM, the request
message is forwarded to an initiator bus that arbitrates be-
tween different initiator ports. Once granted, the request
message is forwarded to the target, here the SRAM, and
a response message is generated. The response message is
sent back through the bus to the initiator shell. The shell
serialises the response message into streaming data that is
sent back through the network. On the other side of the net-
work, the response message is reassembled by the target shell
and forwarded to the target bus. The target bus enforces a
transaction ordering according to the IP port protocol and
also has mechanisms such as tagging [31] to enable program-
mers to choose a specific memory-consistency model. Once
all ordering dependencies are resolved, the bus forwards the
response to the ARM, thus completing the load.

We continue by introducing the protocol stack and dis-
cussing the rationale behind it where after which we show
how the interconnect implements the different stacks.

model

element

NINIrouter

cmd, addr, data

point-to-point streaming communication

link

point-to-point memory-mapped communication

router

distributed shared memory-mapped communication

NICDCshell

ection

packet

FIFO signals

flit

conn-

streaming data

phit

session

IPbus

transport

network

physical

data link

busIP shell

transaction

consistency-

CDC

message

Figure 3: Interconnect protocol stack.

4. PROTOCOL STACK
The proposed stack, shown in Figure 3, is divided into

five layers according to the seven-layer Open Systems Inter-
connection (OSI) reference model [9]. As seen in the figure,
the memory-mapped, streaming and network communica-
tion each have their own stack, bridged by the shell and the
NI. We discus the three stacks in turn, bottom up.

4.1 Network stack
The network stack is similar to what is proposed in [5,

6, 19, 20, 33]. The NI is on the transport layer as it main-
tains end-to-end (from the perspective of the network) con-
nections and guarantees ordering within, but not between
connections. A connection is a bidirectional point-to-point
inter-connection, between two pairs of initiator and target
streaming ports on the NIs. Two uni-directional channels,
one in each direction, connect the two pairs of ports. The
router is at the network layer as it performs switching of
packets. The last element of the network, the link, is at the
data-link layer and is responsible for the clock synchronisa-
tion and flow control involved in the transport of flits. The
physical layer is governed by the physical digit (phit) format.

The requirements placed on the network architecture is
that it: 1) offers in-order and loss-less communication, 2) is
free of routing deadlock, and 3) that no inter-connection de-
pendencies outside the network lead to cyclic resource de-
pendencies inside the network. Most NoCs satisfy the first
two requirements, and a few NoCs satisfy also the third
requirement [12]. Using any of these NoCs, the network
behaves as a collection of distributed and independent FI-
FOs, with data entering at a streaming target port, and
later appearing at a streaming initiator port (as determined
by the resource allocation). As illustrated in Figure 3, the
NI bridges between the streaming stack and network stack
by establishing connections between streaming ports and by
embedding streaming data in network packets. Thus, the
network stack is completely hidden from the IPs, and only
used by means of the streaming stack, about which more
presently.

4.2 Streaming stack
The streaming stack is far simpler than the network stack,

and only covers the two lowest layers. The NI, clock domain
crossing, shell, and IPs with streaming ports (like the µblaze
in our example system or the video blocks in [40]) all make

direct use of this stack. The data-link layer governs the flow
control of individual words of streaming data. The streaming
ports make use of a simple FIFO interface with a valid and
accept handshake of the data. The physical layer concerns
the FIFO signal interface. For robustness, the streaming in-
terfaces use blocking flow control by means of back pressure.
That is, writing to a streaming target port that is not ready
to accept data (e.g. due to a full FIFO) or reading from a
streaming target port that has no valid data (e.g. due to an
empty FIFO) causes a process to stall.

The requirements placed on the streaming interfaces (of
the network) are that they: 1) have no interpretation or
assumptions on the time or value of the individual words of
streaming data, and 2) operate independently without any
ordering restrictions. Both the aforementioned properties
are key in enabling multiple communication paradigms and
programming models.

The most basic use of the streaming stack is exemplified
in Figure 2 by the µblaze that communicates with the audio
tile directly via the streaming ports of the NI, using point-
to-point streaming communication (NI to NI). We now look
at how memory-mapped communication is implemented on
top of the streaming stack.

4.3 Memory-mapped stack
In contrast to the simple FIFO interface of the streaming

ports, memory-mapped protocols are based on a request-
response transaction model and typically have dedicated
groups of wires for command, address, write data, and read
data [2, 25, 31, 45]. Many protocols also support features
like byte enables and burst transactions (single request mul-
tiple data elements). The block that bridges between the
memory-mapped ports of the IPs and the streaming ports
of the NIs is a protocol shell, that serialises the request and
response messages. As illustrated in Figure 3, the shells en-
able point-to-point memory-mapped communication (shell to
shell) by bridging between the elements of the bus-protocol,
e.g. the address, command flags or individual words of
write data, and words of streaming data by implementing
the data-link protocol of both the stacks.

The requirements placed on the shells are: 1) only pro-
tocol translation on the data-link layer is performed in
the shells (and no multiplexing, arbitration, ordering, etc),
2) the shells operate independently, thus enabling multiple
memory-mapped protocols to co-exist by allowing different

pairs of memory-mapped initiators and targets to commu-
nicate using different protocols.

Next, we show how distributed and shared memory-
mapped communication is enabled by placing buses between
the IPs and the shells.

4.3.1 Distributed shared memory

As demonstrated by the ARM in Figure 2, a memory-
mapped initiator port often uses distributed memory [34],
and accesses multiple targets, based on e.g. the address, the
type of transaction or dedicated identifier signals in the in-
terface [25]. The outgoing requests must be directed to the
appropriate target, and the incoming responses ordered and
presented to the initiator according to the protocol. In addi-
tion to the use of distributed memory at the initiator ports,
memory-mapped target ports are often shared by multiple
initiators, as illustrated by the SRAM in Figure 2. A shared
target must be arbitrated, and the initiators’ transactions
multiplexed according to the protocol of the port.

On the session layer in the memory-mapped stack we find
the memory-consistency model, as it governs the ordering
and synchronisation between transactions (and hence con-
nections). Note that this layer is completely left out in
existing NoC stacks [3, 5, 6, 19, 20] and that it depends on
the particular memory-mapped protocol. In this work we
address the problem by adding buses outside the network
(despite all the multiplexing and arbitration inside the net-
work). This division of the stack (and architecture) enables
us to bridge between protocols on the lower layers, some-
thing that involves far fewer challenges than doing so on
the session layer, as proposed in [19, 34]. Moreover, by not
adding a session layer to the network stack (but instead add
a memory-mapped stack) it is possible to support multi-
ple different memory-mapped stacks (protocols) without any
modifications to the network. At the network layer in the
bus stack we have messages, e.g. requests and responses.
It is the responsibility of the bus to perform the necessary
multiplexing and direct messages to the appropriate (local)
destination. Each message is in turn constructed of elements
and the data-link layer is responsible for the flow control and
synchronisation of such elements. Finally, the physical layer
governs the signals of the bus interface.

The requirements placed on the buses (besides adhering to
the specific protocol) are that they: 1) address all ordering
and synchronisation between connections, i.e. all functional-
ity on the session layer, 2) offer the necessary mechanisms to
enforce a memory-consistency model. The choice of a con-
sistency model is thus left for the IP (and bus) developer,
i.e. the interconnect provides the mechanisms, and it is up
to the individual IP to implement a specific policy.

Thanks to the clear separation of protocol shells and buses
it is possible to reuse available buses (library IP) and ex-
isting functional blocks for, e.g. word-width and endian-
ness conversion, or instrumentation and debugging [42], and
these blocks can be developed and verified independent of
the network with established protocol-checking tools such
as Cadence Specman. Furthermore, thanks to the simple
interface between shell and NI, the shells belonging to one
IP port, e.g. the shells of the ARM in Figure 2, can eas-
ily be distributed over multiple NIs, e.g. to provide higher
throughput or lower latency.

We now continue by looking at how the proposed stack is
implemented by the architectural blocks of the interconnect.

5. ARCHITECTURE
In this section we present the building blocks of the ar-

chitecture bottom up, emphasising the properties that are
of importance for the protocol stack. We start with a brief
overview of the network in Section 5.1. We continue with
a description of the clock domain crossings in Section 5.2,
followed by the protocol shells in Section 5.3 and the local
buses in Section 5.4.

5.1 Network
The network, consisting of NIs, routers and links, con-

nects the streaming ports on the shells and IPs over logical
connections. As already discussed in Section 4, the network
is responsible for providing each connection with in-order
and loss-less data transmission, free of routing deadlock. It
should also not restrict any inter-connection dependencies
outside the network. The details of the network are outside
the scope of this work and we give a brief overview focusing
on the aforementioned requirements.

5.1.1 Dependencies and ordering restrictions

Figure 4(a) illustrates the NI architecture, and highlights
the subcomponents together with their control and data de-
pendencies. Starting from the streaming ports on the left,
each channel has a dedicated FIFO in both the sending
and receiving NI and credit-based end-to-end flow control
is used to ensure freedom from message-dependent dead-
lock [12]. Each target streaming port corresponds to an
input queue, with data from the IP to the network. Simi-
larly, an initiator FIFO port corresponds to an output queue
and a credit counter. The latter (conservatively) tracks the
number of words freed up in the FIFO that are not yet
known to the sending NI. The dedicated FIFOs in combi-
nation with end-to-end flow control ensures that the net-
work is free of message-dependent deadlock irrespective of
any inter-connection dependencies outside the network. The
drawbacks of the proposed architecture is that buffer sizes
must be determined at design time (given the application
requirements [15]). Moreover, the NI must maintain addi-
tional counters, and communicate credits between sending
and receiving NIs. As we shall see, credits are sent as part
of the packet headers.

5.1.2 In-order loss-less communication

When data or credits are present in the input and output
queue, respectively, the request generator for that port in-
forms the arbiter. The arbiter decides from which port data
or credits are sent the next flit cycle. After the arbiter, the
flit control unit is responsible for constructing the flits for
the port decided by the arbiter. In the other direction, for
flits coming from the router network, the Header Parsing
Unit (HPU) decodes the flits and deliver credits to the ap-
propriate space counter, and data to the appropriate output
queue. To ensure in-order delivery, the path through the
network is determined by source routing. That is, the path
is embedded in the packet header, as shown in Figure 4(b).
The benefit of source routing is that it is a straight forward
technique to ensure in-order transmission, and the problem
of routing-deadlock avoidance is pushed to the path alloca-
tion. Source routing does, however, require the insertion of
headers, and the path encoding typically restricts the topol-
ogy. Furthermore, to support multiple use-cases, the paths
must be run-time reconfigurable.

streaming

generic
number of

register filebuffer subcomponent scheduler subcomponent

in/out pair

one per port

ports

valid/data

queue id

credit decr

space decr

accept

valid/data

valid

valid

flit data

flit data

queue id/space

reg ctrl

HPU

arbiter

ctrl
flit

reg file

sp
a
ce

cr
ed

it
s

filling

counter
credit

generator
req

queue id

req
counter

(a)

payload phit

p
ay

lo
a
d

d
a
ta

eo
p
=

0
vl

d
=

1

p
ay

lo
a
d

d
a
ta

eo
p
=

0
vl

d
=

1

p
ay

lo
a
d

d
a
ta

eo
p
=

0
vl

d
=

1

p
ay

lo
a
d

d
a
ta

eo
p
=

1
vl

d
=

1

3
8

3
7

vld
=

1
e2

efc

3
6
..3

1

eo
p
=

0
p
a
th

2
9
..0

3
8

3
7

eo
p
=

1
vld

=
1

vld
=

0

p
aylo

a
d

d
a
ta

3
6
..
0

header phit

(b)

Figure 4: NI architecture (a) with associated flit format (b).

In our interconnect, the path field is 30 bits and holds
a sequence of output ports, encoding the path through the
router network and lastly the port in the destination NI.
Along each hop, the router or NI looks at the lowest bits
(corresponding to the 2-logarithm of its arity) of the path
and then shifts those bits away. Not having fixed bit fields,
as used in e.g. [4] (where a hop is always represented by
three bits), allows arbitrary topologies with a varying num-
ber of ports per router and NI. The register file of the NI is
programmable through a memory-mapped target port, en-
abling run-time reconfiguration of the paths and the space
counters required for the end-to-end flow control.

5.1.3 Interpretation of and assumptions on contents

The flit control and HPU are not only involved in sending
header phits, but also payload phits. These phits have no
meaning to the NIs or routers, and are simply forwarded,
without any interpretation or assumptions on the contents.
Note that this requirement is violated in NoCs that rely on
virtual circuits to avoid message-dependent deadlock [12],
where the flits have control information about the messages
they carry to enable the network to put them in the ap-
propriate buffers or use specific scheduling algorithms. The
benefit of having a network that is oblivious to the contents
is that there is no coupling between the network and e.g.
the messages of a specific bus protocol. The main drawback
is that it complicates monitoring and debug of the network,
e.g. the interpretation of the contents of an NI queue.

We conclude that the NIs (and routers) satisfy the require-
ments of the network stack and streaming stack in Section 4.

5.2 Clock domain crossings
The clock domain crossings are not important in satisfy-

ing the requirements of the protocol stacks, but illustrate
the benefits of the clear interface separation. Thanks to the

streaming interface between the protocol shells and the NIs,
the clock domain crossings can be implemented using ex-
isting bi-synchronous FIFOs [8, 21, 43] (although additional
measures must be taken in clock/reset distribution, test-
ing, etc). For simplicity, and compatibility with both ASIC
and FPGA design flows, this work uses a gray-code pointer-
based FIFOs [8] to implement the clock domain crossings.
The FIFOs are compatible with standard CAD tools and let
the IPs (or shells) robustly interface with the network with
high throughput (one transfer per clock cycle) and a small
latency overhead (two clock cycles)

5.3 Protocol shells
The protocol shells bridge between memory-mapped ports

and the streaming ports of the network. As seen in Figure 2,
the shells are connected either directly to the IPs (on the
µblaze, VLIW and video tile), to the target buses (on the
bus of the ARM), or to the initiator buses (on the bus of the
SRAM). For a specific memory-mapped protocol there is a
target shell, an initiator shell, and their associated message
formats, as shown in Figure 5. Consider, for example, the
DTL target shell in Figure 5(a). The request encoder awaits
a valid command (from the initiator port connected to the
shell), then serialises the command, burst size, address and
flags. In the case of a write, it serialises the data elements,
together with the mask (byte enables) and the write-last
signal. In the initiator shell, the request decoder does the
opposite, and drives the command, address and burst size
signals. If the transaction is a write, the initiator shell also
presents the write data along with its masks and the last
signal. Responses follow a similar approach in the opposite
direction. The initiator shell encodes the read data, together
with the mask and last signal, only later to be decoded and
reassembled by the target shell.

Two properties of the shell are important for the stack.

cnd

accept

valid

write data

write last

accept

valid

read data

read mask

read last

data

accept

valid

data

accept

valid

write mask

accept

address

size

decoder
response

request
encoder

(a)

m
a
sk

re
a
d

d
a
ta

ls
t=

0

m
a
sk

re
a
d

d
a
ta

ls
t=

1

m
a
sk

3
1

3
5
..3

2

m
a
sk

3
1
..0

a
d
d
ress

3
1
..0

5
..0

3
6

w
rite

d
a
ta

w
rite

d
a
ta

lst=
0

lst=
1

m
a
sk

3
6

re
a
d

d
a
ta

ls
t=

0

0
..
3
1

3
2
..
3
5

size
cm

d

m
a
sk

re
a
d

d
a
ta

ls
t=

0

m
a
sk

re
a
d

d
a
ta

ls
t=

0

(b)

size

cmd

address

write mask

data

accept

valid

valid

accept

data

accept

valid

write data

write last

accept

valid

read data

read mask

read last

accept

encoder
response

decoder
request

(c)

Figure 5: Target shell (a) and initiator shell (c), with associated message formats (b).

First, the layer of operation that is tightly coupled to the
dependencies and parallelism in the memory-mapped proto-
col. Second, the independent operation that enables support
for multiple memory-mapped protocols. We now discus the
properties in turn.

5.3.1 Layer of operation

The division into an independent request and response
part, as shown in Figure 5, places the shell at the data-link
layer, and is suitable for protocols like DTL, PLB, where
requests and responses are split. Thus, for DTL (and PLB),
where the command group for read and write is shared, we
use one connection per memory-mapped initiator and target
pair. Consequently, the initiator and target shell in Figure 5
each have one pair of streaming ports.

For protocols like AHB and OPB, with limited or no sup-
port for split transactions, there is a much a tighter coupling
between the requests and responses, placing the shell at the
transport layer. The proposed interconnect supports such
protocols, but the parallelism offered by the interconnect
cannot be used efficiently and offers little or no benefit.

In the other end of the spectrum are protocols that offer
more parallelism than what one pair of streaming ports (i.e.
one connection) offers. For protocols like OCP or AXI, with
independent read and write channels, two connections are
used, one for read and one for write transactions. Moreover,
with support for multiple independent threads [2, 25], each
thread can be given its own connection(s). Our separation of
the protocol stacks allows the thread identifier [2] and con-
nection identifier [25] to be used at other granularities than
the connections. Hence, the shells enable different amounts
of parallelism for different protocols.

5.3.2 Support for multiple protocols

Normally, the streaming protocol is narrower, i.e. uses
fewer wires, than the memory-mapped protocols. Thus, as
exemplified by the command group and write data group
in Figure 5(b), the signal groups of the memory-mapped
interfaces are (de)serialised. The proposed message format
is tailored for DTL, but is suitable also for similar protocols
like PLB. Different shells may use different message formats,
allowing multiple memory-mapped protocols to co-exist.

We conclude that the shells satisfy the requirements of the
streaming stack and memory-mapped stack in Section 4.

5.4 Local buses
The final building blocks of the interconnect are the local

buses. Distributed memory communication is implemented
by the target bus, as described in Section 5.4.1. The tar-
get bus is complemented by the initiator bus that imple-
ments shared memory communication, as elaborated on in
Section 5.4.2. Next, we describe the buses in more detail.

5.4.1 Target bus

A target bus, as shown in Figure 6(a), connects a sin-
gle memory-mapped initiator to multiple targets. The target
bus is multiplexer based and very similar to an AHB-Lite
layer [1]. The primary responsibility of the target bus is
to direct requests to the appropriate target, based on the
address of the request. To reduce the negative impact of
latency, the target bus allows multiple outstanding trans-
actions, even to different targets. The target bus also en-
forces response ordering according to the protocol specifi-
cation. That is, responses are returned in the order the
requests where issued (within a thread [2,25], if applicable).
As seen in Figure 6(a), the ordering of responses is enforced
by storing a target identifier for every issued request. These
identifiers are then used to control the demultiplexing of
responses. The ordering guarantees of the target bus, to-
gether with mechanisms like tagging [31] and acknowledged
writes [2], are leveraged by the IP, e.g. through barrier in-
structions in the ARMv5 instruction set, to implement a
certain memory-consistency model.

As exemplified by the ARM in Figure 2, a target bus is
directly connected to all initiator ports that use distributed
memory communication. Each target bus is individually
dimensioned by determining the number of concurrent tar-
gets accessed by the initiator it is connected to. Traditional
bus-based systems require the designer to determine which
targets should be reachable and what static address map to
use. We only have to determine how many targets should
be reachable and not which ones. At run-time, the address
decoder is reconfigured through the memory-mapped con-
trol port shown in Figure 6(a). Thus, the address map is
determined locally per target bus, and per use-case.

5.4.2 Initiator bus

An initiator bus, as shown in Figure 6(b), connects multi-
ple memory-mapped initiators to a single target. The initia-

of target ports

generic number

optionally programmable

address decoder

mask/last

cm
d
/
a
d
d
r/

si
ze

in
it
ia

to
r

id

re
a
d

d
a
ta

/
m

a
sk

/
la

st

write data/

addr
decoder

(a)

of initiator ports

generic number

optionally programmable

bus arbiter

m
a
sk

/
la

st

cmd/addr/size

m
a
sk

/
la

st

ta
rg

et
id

w
ri
te

d
a
ta

/

re
a
d

d
a
ta

/

arbiter
req

(b)

Figure 6: Local target bus (a) and initiator bus (b) architectures.

tor bus is responsible for demultiplexing and multiplexing
of requests and responses, respectively. Similar to the tar-
get bus, the initiator bus implements transaction pipelining
with in-order responses. It is the primary responsibility of
the initiator bus to provide sharing and arbitration of the
target port. Note that the arbitration in the initiator buses
is decoupled from the arbitration in the network, and that
different initiator buses can have different arbiters.

Initiator buses are placed in front of shared target ports, as
exemplified by the SRAM in Figure 2. Similar to the target
buses, each initiator bus is dimensioned individually based
on the maximum number of concurrent initiators sharing the
target port. Similar to the target buses, the initiator buses
are reconfigured at run-time using memory-mapped control
ports. Depending on the arbiter (round-robin, TDM, etc),
the bus is run-time configured with e.g. an assignment to
TDM slots, the size of a TDM wheel, or budget assignments
for more elaborate arbiters.

We conclude that the buses satisfy the requirements of the
memory-mapped stack in Section 4.

6. EXPERIMENTAL RESULTS
In the previous sections we have shown how the re-

quired qualitative properties are implemented by the build-
ing blocks. For our quantitative evaluation we look at the
cost in terms of silicon area, and the ability to provide low
latency and high throughput communication.

Synthesis results are obtained using Cadence Ambit with
Philips 90 nm low-power libraries. We disable clock-gate in-
sertion as well as scan insertion and synthesise under worst-
case commercial conditions. All results reported throughout
this work are before place-and-route, and include cell area
only. The width of the data (and address) interfaces for all
memory-mapped and streaming ports are 32 bits.

6.1 Individual blocks
We start by looking at the individual blocks, bottom up,

and then look at a complete SoC instance.

6.1.1 Network

We adopt the router architecture proposed in [14], which
occupies only 0.015 mm2 in a 90 nm technology. With the
router in place, we continue with the proposed NI, for which
we split the synthesis into two parts and look at the buffers
separately. The reason for the division is that the buffers
grow independently with their depth.

All NI buffers are of a uniform width, 37 bits, correspond-
ing to the message format of the shells, as discussed in Sec-
tion 5.3. The synthesis results in Figure 7(a) shows the
maximum frequency and the associated cell area for a 37-
bit wide fully synchronous, pointer-based Flip-Flop FIFO
of varying depth. We see that the larger FIFOs achieve
maximum frequencies of around 650 MHz. The area grows
linearly with the depth, as expected. The size of the FIFOs
depends on the application, as discussed in [15]. As we shall
see, the NI buffers have a large impact on the total area.

The synthesis results for the arbiter subcomponent and
register files are shown in Figure 7(b). There is a consid-
erable constant part that does not change with the number
of ports (the HPU and flit control), but still an 8-port NI
occupies only 0.1 mm2 and runs at roughly 650 MHz.

6.1.2 Clock domain crossing

The bi-synchronous FIFO scales to high clock speeds,
achieving more than 700 MHz for a 37-bit wide and 3-word
deep FIFO that occupies roughly 5000µm2. More efficient
implementations of bi-synchronous FIFOs, with lower la-
tency and area requirements, are presented in [21,43]. These
FIFOs could be used as part of our interconnect to improve
the performance and reduce the cost, as we shall see.

Area
Frequency

FIFO depth (words)

C
el

l
a
re

a
(µ

m
2
)

M
a
x
im

u
m

fr
eq

u
en

cy
(M

H
z)

20000

15000

10000

5000

0
12108642

1000

950

900

850

800

750

700

650

(a)

Area
Frequency

Number of ports

C
el

l
a
re

a
(µ

m
2
)

M
a
x
im

u
m

fr
eq

u
en

cy
(M

H
z)

50000

40000

30000

20000

10000

0
12108642

700

680

660

640

620

600

580

(b)

Figure 7: Area and frequency for FIFOs (a) and the remaining NI (b).

6.1.3 Protocol shells

The DTL initiator and target shell achieve a frequency of
833 MHz, with an area of 2606 and 2563 µm2, for initiator
and target shell respectively.

6.1.4 Local buses

Figure 8(a) shows the synthesis results of the target bus
as the number of initiator ports is varied. Two different
bus instantiations are evaluated, with a programmable and
fixed address decoder, respectively. In both cases, we allow
a maximum of four outstanding responses. The first thing
to note about the results in Figure 8(a) is that the maximum
frequency for the two architectures is the same. This is due
to the fact that the address decoding is pipelined in both
cases. Even with 12 ports, the target bus runs at more than
550 MHz, which is sufficient for most contemporary IPs.
The area for the target bus is a minuscule 0.01 mm2.

The synthesis results in Figure 8(b) show how an initia-
tor bus with a non-programmable round-robin arbiter (the
most complex arbiter available in the current implementa-
tion) and a maximum of four outstanding responses scales
with the number of target ports.1 Similar to the target bus,
the total cell area is in the order of 0.01 mm2, even when
the operating frequency is pushed to the maximum. More-
over, even the larger instances of the bus run at more than
550 MHz, which is more than what most IPs require.

6.2 System instance
After having shown the cost and performance of the indi-

vidual building blocks, we continue by constructing a proof-
of-concept system instance, with a diverse set of applica-
tions, including the filter and decoder introduced in Sec-
tion 1. The applications use both streaming and memory-
mapped communication, and make use of distributed mem-
ory. The hardware platform is an extension of Figure 1,
containing five VLIW cores with local data and instruction
memories. The system instance also contains two display
controllers, two memory controllers interfacing with off-chip
SRAM, analog video input, an audio ADC/DAC, USB con-
nectivity for interaction with a PC, a debug interface, and
a wide range of peripherals, e.g. a touch screen, timers,
push buttons and a character display. In total there are five
different clock domains on the chip.

1The outstanding transactions are only for the shared tar-
get. There could be many more ongoing transactions in the
interconnect.

The applications together have 35 connections, with
throughput and latency requirements given per connection.
The interconnect is automatically dimensioned for the re-
quirements of the specific applications [13, 15] additional
connections are added for run-time reconfiguration of the
interconnect and the configurable IPs , i.e. the memory-
mapped target ports used for control, as shown in Figure 2.

The entire system occupies roughly 30 mm2. The inter-
connect, including 4 routers (more routers can be added at
a very low cost [14], e.g. to match the floorplan), 6 NIs,
35 protocol shells and 13 local buses occupies only 0.3 mm2,
excluding the NI buffers. The latter, when implemented as
flip-flop gray-code FIFOs occupy 1 mm2 (or roughly five
times less with custom FIFOs). The interconnect is thus in
the order of 4% (or less than 3%) of the entire chip area.

The proposed interconnect offers high throughput (sev-
eral Gbps for all the components) at a very low cost. The
latency, however, is only a couple of cycles for the individual
components, but due to the distributed nature of the inter-
connect, the best-case round-trip for a read operation from
the ARM to the SRAM in Figure 2 (running at 200 MHz
and the network at 500 MHz), is in the order of 30 processor
cycles. In other words, the logical and physical modularity
comes at the price of increased latencies.

7. CONCLUSIONS
Systems on Chip (SoC) integrate applications with diverse

requirements and intellectual property developed by unre-
lated design teams. This leads to multiple communication
paradigms and programming models that the on-chip inter-
connect must accommodate.

In this work we propose an interconnect and protocol
stack that enables multiple communication paradigms and
programming models, with the mechanisms required to im-
plement release consistency. We clearly separate the net-
work stack, the streaming stack and the memory-mapped
stack, both logically and physically by combining the net-
work with local buses. The proposed interconnect al-
lows any higher-level programming model without introduc-
ing message-dependent deadlock by breaking all connection
inter-dependencies inside the network.

We quantify the cost and performance of the interconnect
building blocks with synthesis results. For a complete SoC
instance, the interconnect occupies only 4% of the chip area.

Area (fixed)
Area (programmable)

Frequency

Number of initiator ports

C
el

l
a
re

a
(µ

m
2
)

M
a
x
im

u
m

fr
eq

u
en

cy
(M

H
z)

25000

20000

15000

10000

5000

0
12108642

850

800

750

700

650

600

550

(a)

Area
Frequency

Number of target ports

C
el

l
a
re

a
(µ

m
2
)

M
a
x
im

u
m

fr
eq

u
en

cy
(M

H
z)

20000

15000

10000

5000

0
12108642

780

760

740

720

700

680

660

640

620

600

580

560

(b)

Figure 8: Area and frequency for target bus (a) and initiator bus (b).

8. REFERENCES

[1] ARM Limited. AHB-Lite Product Information, 2001.

[2] ARM Limited. AMBA AXI Protocol Specification, 2003.

[3] Arteris. A comparison of network-on-chip and busses. White
paper, 2005.

[4] E. Beigne et al. An asynchronous NOC architecture providing
low latency service and its multi-level design framework. In
Proc. ASYNC, 2005.

[5] L. Benini and G. de Micheli. Powering Networks on Chips. In
Proc. ISSS, 2001.

[6] T. Bjerregaard and S. Mahadevan. A survey of research and
practices of Network-on-Chip. ACM Comp. Surveys, 38(1),
2006.

[7] T. Bjerregaard et al. An OCP compliant network adapter for
GALS-based SoC design using the MANGO network-on-chip.
In Proc. SOC, 2005.

[8] C. E. Cummings. Simulation and synthesis techniques for
asynchronous fifo design. Synopsys Users Group, 2002.

[9] J. Day and H. Zimmermann. The OSI reference model. Proc.
of the IEEE, 71(12), 1983.

[10] K. Gharachorloo et al,. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In Proc.
ISCA, 1990.

[11] K. Goossens et al. The Æthereal network on chip: Concepts,
architectures, and implementations. IEEE Des. and Test of
Comp., 22(5), 2005.

[12] A. Hansson et al. Avoiding message-dependent deadlock in
network-based systems on chip. VLSI Design, 2007, 2007.

[13] A. Hansson et al. Undisrupted quality-of-service during
reconfiguration of multiple applications in networks on chip. In
Proc. DATE, 2007.

[14] A. Hansson et al. aelite: A flit-synchronous network on chip
with composable and predictable services. In Proc. DATE,
2009.

[15] A. Hansson et al. Enabling application-level performance
guarantees in network-based Systems on Chip by applying
dataflow analysis. IET Comp. and Design Techn., 2009.

[16] ITRS. International technology roadmap for semiconductors,
2007. Design.

[17] V. Lahtinen et al. Bus structures in Network-on-Chips. In
Interconnect-centric design for advanced SoC and NoC.
Springer, 2006.

[18] P. Magarshack and P. G. Paulin. System-on-Chip beyond the
nanometer wall. In Proc. DAC, 2003.

[19] P. Martin. Design of a virtual component neutral
network-on-chip transaction layer. In Proc. DATE, 2005.

[20] M. Millberg et al. The Nostrum backbone - a communication
protocol stack for networks on chip. In Proc. VLSID, 2004.

[21] I. Miro Panades et al. A low cost network-on-chip with
guaranteed service well suited to the gals approach. In Proc.
NANONET, 2006.

[22] L. Nachtergaele et al. Optimization of memory organization
and hierarchy for decreased size and power in video and image
processing systems. In Proc. MTDT, 1995.

[23] L. Nachtergaele et al. System-level power optimization of video
codecs on embedded cores: A systematic approach. Jour. of
VLSI Signal Processing, 18(12), 1998.

[24] A. Nieuwland et al. C-HEAP: A heterogeneous multi-processor
architecture template and scalable and flexible protocol for the
design of embedded signal processing systems. Design
Automation for Embedded Systems, 7(3), 2002.

[25] OCP International Partnership. OCP Specification 2.2, 2007.

[26] L. Ost et al. MAIA: a framework for networks on chip
generation and verification. In Proc. ASP-DAC, 2005.

[27] M. Palesi et al. Application specific routing algorithms for
networks on chip. IEEE Trans. on Par. and Dist. Syst.,
20(3), 2009.

[28] C. Paukovits and H. Kopetz. Concepts of switching in the
time-triggered network-on-chip. In Proc. RTCSA, 2008.

[29] P. G. Paulin et al. Parallel programming models for a
multi-processor SoC platform applied to high-speed traffic
management. In Proc. CODES+ISSS, 2004.

[30] F. Pétrot and A. Greiner. Cache coherency and memory
consistency in NoC based shared memory multiprocessor SoC
architectures. In Proc. DSD, 2006.

[31] Philips Semiconductors. Device Transaction Level (DTL)
Protocol Specification. Version 2.2, 2002.

[32] C. Rowen and S. Leibson. Engineering the Complex SOC:
Fast, Flexible Design with Configurable Processors. Prentice
Hall PTR, 2004.

[33] A. Rădulescu and K. Goossens. Communication services for
network on silicon. In Domain-Specific Processors: Systems,
Architectures, Modeling, and Simulation. Marcel Dekker,
2004.

[34] A. Rădulescu et al. An efficient on-chip network interface
offering guaranteed services, shared-memory abstraction, and
flexible network programming. IEEE Trans. on CAD of Int.
Circ. and Syst., 24(1), 2005.

[35] M. Rutten et al. Dynamic reconfiguration of streaming graphs
on a heterogeneous multiprocessor architecture. IS&T/SPIE
Electron. Imag., 5683, 2005.

[36] H. Sasaki. Multimedia complex on a chip. Proc. ISSCC, 1996.

[37] Y. H. Song and T. M. Pinkston. On message-dependent
deadlocks in multiprocessor/multicomputer systems. In Proc.
HiPC, 2000.

[38] Sonics, Inc. SonicsMX Datasheet, 2005.

[39] D. Soudris et al. Data-reuse and parallel embedded
architectures for low-power, real-time multimedia applications.
In Proc. PATMOS, 2000.

[40] F. Steenhof et al. Networks on chips for high-end
consumer-electronics TV system architectures. In Proc. DATE,
2006.

[41] S. Stergiou et al. ×pipes lite: A synthesis oriented design
library for networks on chips. In Proc. DATE, 2005.

[42] B. Vermeulen et al. Debugging distributed-shared-memory
communication at multiple granularities in networks on chip.
In Proc. NOCS, 2008.

[43] P. Wielage et al. Design and DfT of a high-speed area-efficient
embedded asynchronous FIFO. In Proc. DATE, 2007.

[44] D. Wingard. Socket-based design using decoupled
interconnects. In Interconnect-Centric design for SoC and
NoC. Kluwer, 2004.

[45] Xilinx, Inc. Processor Local Bus (PLB) v3.4, 2003.

