
1

Performance Analysis of Soft and Hard Single-Hop and
Multi-Hop Circuit-Switched Interconnects for FPGAs

Jae Young Hur1, Kees Goossens1,2, and Lotfi Mhamdi1
1 Computer Engineering Laboratory, Delft University of Technology, The Netherlands

2 Research, NXP Semiconductors, Eindhoven, The Netherlands
Emails:{J.Y.Hur, K.Goossens, L.Mhamdi}@ewi.tudelft.nl

Abstract— This article presents a performance analysis of hard
and soft on-chip networks for FPGAs. We applied the Jackson’s
queuing model to analyze the performance of a multiprocessor
system on a chip (MPSoC). We further used the Jackson’s model
to analyze circuit-switched networks on chip (NoC). Our simula-
tion results showed the same trend as that of the analytical model.
Considering streaming media applications and the Æthereal NoC,
an analysis is conducted to compare hard and soft NoCs. The
analysis and simulation indicate that the hardwired networks
perform significantly better than conventional soft NoCs. Finally,
we propose to hardwire crossbars in FPGAs to improve the
performance of the inter-processor communication. An MJPEG
case study suggests that hardwired crossbars achieve significantly
better throughput compared to soft crossbars.

I. I NTRODUCTION

Field-programmable gate array (FPGA) is increasingly used
to implement modern systems on a chip. Compared to the
ASIC counterpart, however, FPGAs are slow in speed [1].
When the communication functionality is mapped onto re-
configurable (orsoft) resources such as bit-level interconnects
and look-up tables (LUTs), performance is degraded because
of the long wires and the delay variation. Additionally, inter-
IP communication is mostly coarse grained. Nevertheless, the
fine-grained reconfigurability is a valuable asset to implement
any IP functionality with the desired granularity. Due to
these different requirements, inter-IP and intra-IP interconnects
should be differently designed as discussed in [2]. It is well
known that a crossbar performs high for small (or interme-
diate) sized networks and provides non-blocking communi-
cation. However, when these crossbars are implemented with
reconfigurable resources in FPGA, the area is the bottleneck
due to all-to-all interconnects inside the crossbar. This can be
solved by the custom crossbar [3] which establishes necessary
soft interconnects for a given application. However, the custom
crossbar still utilizes reconfigurable bit-level interconnects,
which are slow and occupy certain on-chip logic resources
in FPGAs. Another problem of the soft interconnects is the
inefficiency of the partial reconfiguration. Though bus macros
can be utilized to geographically split different modules [4],
it is difficult to split the computation and communication IPs
because the communication IP is by nature distributed over the
chip. To solve these problems, the networks-on-chip (NoC) can
be directly implemented in (hard) silicon [2][5][6]. Though
regular hardwired NoC (HWNoC) is promising for future
FPGAs, design methods utilizing existing on-chip resources
are not well defined. To bridge the gap between the state-of-

the-art soft interconnects and the future HWNoC, we propose
to hardwire crossbars in FPGAs.

Queuing analysis is one of the widely used modeling
methods in telecommunication networks and provides a rea-
sonable fit to the reality with relatively simple formulation [7].
However, the analysis of NoC-based multiprocessor systems
on a chip (MPSoC) is challenging because traffic patterns in
the MPSoC and telecommunication networks have different
implications. First, unlike Internet traffic, in MPSoC, traffic in-
formation can be extracted from the application specification.
This means that a priori logical information such as topology
and bandwidth can be exploited for the analysis and design.
Second, we usually reuse pre-verified IP components and their
specifications. This means that the physical information such
as the area, the clock speed, and/or latency of IPs are available
at design time. Third, the communication and the computation
are highly inter-related in MPSoC. Subsequently, it is desirable
to derive the (worst-case) performance from the system or
application perspective. To do this, we derive an approximated
service time and utilize Jackson’s open queuing model [8]
for the comparative analysis. Our analysis intends to guide a
system designer to determine network parameters at an early
stage, by deriving a relative performance, for example with a
topology exploration, an application mapping and a network
dimensioning. The main contributions of this work are:

• Considering the Æthereal NoC [9] as an example, we
apply the Jackson’s queuing model [8] and derive the
relative network performance to analyze (virtual) circuit-
switched NoCs.

• Additionally, we present the effectiveness of the hard-
wired NoC in FPGAs. The simulation results indicate that
hardwired NoC provides 4.2× better network latency for
the MJPEG task graph, when compared to soft NoCs.

• We propose that crossbars are built in FPGAs for the
inter-IP communications. In our MJPEG case study, the
hardwired crossbar is 5× better in network throughput
and 40% better in system throughput, compared to the
soft crossbar.

This paper is organized as follows. In Section II, related
work is reviewed. In Section III, hardwired crossbars are
discussed. We present our performance analysis for hard and
soft on-chip networks with a case study in Section IV. Experi-
mental results are presented in Section V. Finally, conclusions
are drawn in Section VI.

2

II. RELATED WORK

Little has been reported regarding the queuing analysis
of on-chip networks. In [10], a router with virtual chan-
nels is modeled. We present an analysis of a system as
well as networks on chip, whereas only a single router is
considered in [10]. In [11], a queuing analysis for a single
output-queuing router is conducted to determine the buffer
size and reduce packet loss probability. An M/D/1/B model
with deterministic service rate is used. In practice, packet
loss should be avoided. While the performance analysis in
terms of latency and throughput is not presented in [11], we
present the performance analysis from the system and network
perspective. In [3], Jackson’s model is applied to analyze soft
single-hop crossbar networks. In this work, we present an
analysis of an entire system as well as hard and soft multi-hop
circuit-switched networks.

In [5][6], general approaches on the hardwired NOCs are
discussed, where no architectural or implementation details
are presented. Architectures and implementations of soft, firm,
and hard Æthereal NoC [9] instances are compared in [2].
Additionally, unifying configuration and functional network is
proposed in [2]. Though interfaces of the HWNoC with exist-
ing resources are discussed in [9], the design method needs to
be significantly changed. In this work, we present hardwired
crossbars and an analysis from the system perspective.

III. H ARDWIRING CROSSBARS INFPGAS

A soft shared bus is still widely used for system platforms
such as FPGAs. However, a hardwired bus has following
advantages. First, the system designer can use existing design
method and existing IPs with minor modifications. The bus
component is only needed to be instantiated as a hard macro.
Second, the available bandwidth in the hardwired bus signif-
icantly increases because of the increased clock frequency.
Accordingly, the contention probability of a network is re-
duced, which means that hardwired bus performs better than
the soft bus. However, because many buses are sequential they
suffer from traffic congestion before concurrent interconnects
do. Therefore, we propose to hardwire the crossbars as built-
in components in FPGAs. The main advantage of a crossbar
is that minimum traffic congestion occurs inside the crossbar
network because the dedicated interconnects are physically
established. Data transactions inside a crossbar can be fully
parallel. Though an area cost is a bottleneck, the area of
the crossbar can be adequate for small-sized, for example
up to 16 ports. In order for many IPs to communicate via
multiple hardwired crossbars, these small-sized crossbars are
interconnected or arbitrated using soft bridges. Similar to
shared buses, the existing design methods and IPs can be
used without modifications. As described in the next sections,
the hardwired crossbar (HFBAR) performs significantly better
than soft crossbars. The HFBAR does not occupy any recon-
figurable logic such as look-up tables. Moreover, bus macros
are not necessary for the partial reconfiguration.

As depicted in Figure 1(1), hardwired crossbars can be
interconnected using soft bridges. In this work, the transaction
protocol in [12] is considered as an example, as depicted in
Figure 1(2). Figure 1(3) and (4) depict a possible physical

hard & soft interface for the Xilinx FPGA layout. We aim to
bridge the gap between the current soft interconnects [3][4]
and the future NoC-based hardwired networks [2]. Since all-
to-all hardwired interconnects are established inside a crossbar,
the wire utilization can be low. However, it can be noted that
the reconfigurable logic such as LUTs is usually a bottleneck
in modern FPGAs. Moreover, as presented in Section V,
the area of the HFBAR is small enough for the utilization
problem to be mitigated. Traffic congestion in the soft bridge
between the crossbars can be also a bottleneck. However,
many practical applications exhibit a traffic locality property
[3]. The hardwired crossbars combined with soft bridges are
beneficial especially when the traffic pattern has such a locality
property. This is due to the fact that the hardwired crossbar can
accommodate these localized traffic with reduced congestion.

Soft IPs

Look-up
tables

Hardwired

crossbar

port

Switch
box

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB

CLB

CLB CLB

CLB CLB

CLB

CLB

CLB CLB

CLB CLB

CLB

CLB

CLB CLB CLB

CLB CLB CLB

Reconfigurable interconnects

CLB CLB CLB

Switch
box

Config.

bits

Vcc

Config. bit

Switch
box

Hardwired
Network

HardSoft

Config.

bits
Vcc

Config. bit

IP
interface

(4) Layout(3) Boundary of hard & soft

CLB

CLB

CLB

Soft IP

FIFOs

Local

memory

clk1 Read_request

FIFO select

Acknowledge

Acknowledged

Read command

Data

Data to processor

Read command to FIFO

Crossbar
clk2

Network I/F
(soft)

(1) Built-in crossbars (2) Transaction example [12]

Soft
bridges Soft IPs

Soft
bridges

Processor

Configurable logic block

Reconfigurable
(soft) region

Built-in

(hard) region

Fig. 1. Built-in crossbars and physical interface in FPGAs.

IV. PERFORMANCEANALYSIS

In this section, we present the performance analysis of
hard and soft on-chip networks with a case study using
the Jackson’s model. For Poisson-distributed incoming traffic,
Jackson model can be generally used for a network of queues
with arbitrary topologies [7]. For the analysis, we reuse
specifications of network IPs in [3][9] and computation IPs
in [4]. As a system model, we assume that the physical FIFOs
are established for a logical connection to constitute a network
of queues [3].

A. Jackson’s model

Jackson’s model states that the number of items in the
system is the summation of the number of items in the
individual queuing systems. Then the system response time
is derived by dividing the number of items (in the system)
by the arrival rate of the incoming traffic. Accordingly, the

3

response time is formulated as:

Tresponse =
1

λ

N∑
i=1

λi

µi − λi
, (1)

whereN is the number of individual queuing systems.λ is the
incoming arrival rate to the entire system.λi is the incoming
arrival rate to theith queuing system.µi is the service rate
of the ith queuing system. Jackson’s model is also useful in
that an average buffer size can be directly obtained from the
formulation. λi

µi−λi
corresponds to the buffer size of theith

queuing system. Subsequently,
∑N

i=1
λi

µi−λi
corresponds to the

number of items in the entire system.
Figure 2 depicts our model for an MJPEG application.

A task graph with 7 logical connections is depicted in Fig-
ure 2(1a), where numbers on the edge indicates the min-
imum bandwidth requirement of an application. The bold
line represents streaming data path for an application. The
corresponding network of queues is depicted in Figure 2(1b).
N = 7, i.e. there are 7 queuing systems (numbered 1-
7). Figure 2(1c) depicts individual queuing systems for each
logical connection. The queuing system consists of the wait-
ing queue and the server. A server consists of the network
component that provides transportation service and the com-
putation component that provides a data processing service.
To computeλi in Equation (1), we utilize the bandwidth
information in Figure 2(1a). As an example,λ1 is computed by

62
62+0.6+1+0.6λ = 0.97λ. For a givenλ, the system response
time is determined fromµi. Figure 2(2) and (3) depict the
traffic mapping onto different networks such as crossbars or
NoCs. Given the computation IPs, the service rateµi varies
with different network components. As depicted in Figure 2(2),
a connection consists of two logical channels, arequestand a
responsechannel.

Video

in

DCT

Q

VLE

Video

out

Video

in

DCT

Q

VLE

Video

out

62Mbps

0.6

1

0.6

62

63

64

DCTNetwork

QNetwork

VLENetwork

OutNetwork

(1)

(5)

(6)

(7)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Server

(1a) Task graph (1b) Network of queues (1c) Queuing systems

 for logical connections

λ

(2) Crossbars

A1

A2

A3

A4

A5

P1

P2

P3

P4

P5

P1

P2

P3

P4

P5

Read

Request

(3a) 2x3 mesh

R

P1P2

P3

P4 P5

(3b) 1x1

RaP3

Rb

P4 P5

P2 P1

(3c) 1x2

(3) Mapping on different topologies

Data

Response

A Arbiter

R Router

P1

P2

P3

P4

P5

(1) Queue model for MJPEG application

network
service

system service

computation

IP

1
λ

5
λ

6
λ

7
λ

R R5

R1 R4

R2 R3

P5

P1 P4

P3P2

5
λ

6
λ

7
λ

1
λ

2
λ

3
λ

4
λ

Fig. 2. Queue model for MJPEG application and mapping onto networks.

The system performance varies with specific computation
and computation patterns. Our aim is to derive a relative
performance and determine network parameters by a topology

exploration and an application mapping. The network param-
eters (for example, buffer sizes) are usually dimensioned at
design time for the worst case. Therefore, we consider the
worst case scenario and assume that a computation IP is
sequentially operated. As an example, a master IP requests
data block to a slave IP and waits until an entire data
block arrives. Then the master IP sequentially processes the
data block. Accordingly, communication transactions are not
pipelined. While the transactions in the entire system are
concurrent, an individual network queuing server serves an
entire transaction at a time. In this way, the response time is
derived in a conservative manner.

B. System and network service rates

We formulate two types of service rates, namely thesystem
service rateµsystem that includes the computation time and
the network service rateµtoken that does not include the
computation time (see Figure 2(1c)).

1) System service rate:The worst-case system service rate
µsystem denotes the back-to-back service rate for logical
channels and is defined as:

µsystem = (Tblock + Tcompute)
−1 (2)

whereTblock denotes the network service time for the delivery
of a data block.Tcompute denotes the computation time in the
server for the data block.

2) Network service rate:The network service rateµtoken

for a single token can be derived by:

µtoken = T−1
token = (Tarbit + Ttransmit)

−1 (3)

whereTtoken is the network service time1 for a single token,
from the first word (in the departure queue) to the last
word (absorbed by the destination IP). Atoken is the set of
consecutive words and refers to the primitive communication
unit. Tarbit denotes the arbitration time.Ttransmit is the actual
data transmission time.

3) Network and system performance:The network (or
system) response timeTresponse can be derived by substituting
the µtoken (or µsystem) in Equation (1). It can be noted that
the computation IP often requires block of data in order to
operate. As an example, MJPEG application operates in image
blocks with8 × 8 pixels and we consider that the token size
is 3 words in this work. Subsequently,Tblock in Equation (2)
can be a multiple ofTtoken in Equation (3). This means that
µsystem is less thanµtoken.

C. Crossbars

We consider the full crossbar (FBAR) with all-to-all inter-
connects and the custom crossbar (CBAR) with on-demand
interconnects. The on-demand interconnects for the MJPEG
application are represented in bold lines in Figure 2(2).
For these single-hop crossbars, we use the formulation in
[3] summarized as follows. The arbitration time for a full

1Generally, data transmission through the NoC is pipelined resulting in
shorter delays. Therefore Equation (3) is the worst-case for the NoC.

4

crossbarTarbit full and a custom crossbarTarbit custom are
approximated as:

Tarbit full ≈ (b#ports
2

c + Chand) /(fnet) (4a)

Tarbit custom ≈ (b#links
2

c+ Chand) /(fnet), (4b)

where a request check latency is approximated asb #ports
2 c or

b #links
2 c cycles. Chand refers to the handshaking latency in

number of cycles. The arbitration timeTarbit in our crossbar
varies with number of ports #ports or logical channels #links.
The transmission timeTtransmit in Equation (3) corresponds
to the token size, as derived by following:

Ttransmit =
Stoken

fnet
, (5)

whereStoken denotes the token size or the number of words.
fnet refers to the clock frequency of a network, which is
equivalent to the word rate.

D. MJPEG case study for hardwired crossbars

We derive the crossbar network and system performance
for the MJPEG specification depicted in Figure 2(1a). We
consider a hardwired full crossbar (HFBAR) for the token size
Stoken=3 words and the number of ports #ports=8 ports. The
handshaking latencyChand is 2 cycles and the clock frequency
fnet is 446 MHz from the implementation (see Section V).

1) Network service rate:The network service rateµtoken in
the HFBAR is derived as follows. SinceChand = 2 cycles and
fnet = 446MHz,Tarbit full is derived by(b 8

2
c+ 2)/(446× 106)

for Equation (4a). SinceStoken = 3 words, the transmission
time Ttransmit is derived by 3

446×106 seconds. Theµtoken is
derived by substitutingTarbit full and Ttransmit in Equation
(3). Subsequently,µtoken = 446×106

b 8
2 c+2+3

= 49× 106 tokens/s. This
means that the HFBAR provides a physical network bandwidth
of 49× 106 tokens/s for a logical connection.

2) Network performance:The network response time is
derived by substituting the network service rateµtoken in
Equation (1). Figure 3(1) depicts the network performance for
soft and hard crossbars. The network performance for soft
crossbars is derived in [3]. As a result, the throughput of
HFBAR is 5× better than the soft full crossbar (FBAR) and
3× better than the custom crossbar (CBAR). This is mainly
because of the higher clock frequency.

3) System service rate:We derive the system service rate
µsystem that includes the computation time. In MJPEG, DCT
is the most time-consuming task, in which 6 cycles are
required for each pixel [4]. The Quantization (Q) task requires
74 cycles per image block [4]. The computation time of
variable-length encoding (VLE) task is determined only in
run time, which means that the service rate is not predictable
at design time. In this work, we obtained the approximate
computation time by profiling the application. Subsequently,
the VLE task requires 40% of the computation time of DCT.
The system service rate for each logical connection is derived
by substituting these computation time in Equation (2).

4) System performance:The system response time is de-
rived by substituting the system service rateµsystem in Equa-
tion (1). As a result, Figure 3(2) depicts the system response
time for a single image block. The general trend is similar to
Figure 3(1), while the performance gap is much reduced. This
is because of the intensive computation load. As depicted in
Figure 3(2), the throughput of the HFBAR is 40% better than
the FBAR and 20% better than the CBAR.

(2) System response time for single image block

 (block size = 64 words)

(1) Network response time for single token

 (token size = 3 words)

(us) (us)

0.0

0.2

0.4

0.6

0.8

1.0

0 7 14 21 28 35 42 49 56 63 70

Token rate (X10
6
 tokens/s)

CBAR

FBAR

HFBAR

Network response time

0

15

30

45

60

0.0 0.1 0.2 0.3 0.4 0.5

Token rate (X10
6
 tokens/s)

CBAR

FBAR

HFBAR

System response time

Fig. 3. Crossbar network and system performance for MJPEG.

E. Applying Jackson’s model to circuit-switched networks

In this section, we conduct a performance analysis for the
circuit-switched networks (CSN). We consider GT (guaranteed
throughput) Æthereal NoC [9] as an example. The required
bandwidth for each logical connection is reserved by allocating
time-division-multiplexed slots. The global scheduler in the
network interface multiplexes (or arbitrates) channels based
on the allocated slot table and the remote buffer space. When
the channel is arbitrated, the worst-case transmission time in
the router network is derived similarly to a single-hop crossbar.
This means that the worst-case performance of the CSN can be
analyzed similarly to the crossbar. The main differences are
the arbitration time and the number of hops that the packet
(or token) traverses in the multi-hop router network. This also
means that the GT-mode Æthereal NoC operates as a virtual
single-hop crossbar with a physically pipelined transmission.
We assume connections are long-lived, and ignore the time
associated with their set up and tear down [14].

1) Arbitration time: In Equation (3), the arbitration time
is derived as follows. The arbitration time is determined by
the slot size, the slot table size, and the number of allocated
slots for a channel. The arbitration timeTarbit for a token is
approximated by:

Tarbit =
Sslot × d Stab

2×Aslot
e

fnet
, (6)

where Sslot denotes the slot size in number of words.Stab

denotes the slot table size in number of slots.Aslot denotes
the number of slots that is reserved for a channel in the slot
table. In this work, aslot contains 3 words (in the worst
case, 1 header and 2 payload words). Similar to Equation
(4), we divide by 2 for the circular round-robin to derive an
approximate average arbitration time. Note thatTarbit is an
approximation because it assumes slots are equally distributed
and does not consider the (small) messagisation overhead.

5

2) Transmission time:Similar to the crossbar in Figure
2(2), the transaction consists ofread requestanddata response
channels. The transmission time consists of the time to send
data, the pipeline delay, and the length of a message, which
can be approximated by:

Ttransmit =





d Sreq
Sslot−1

× Stab
Aslot

e+ #hop×CSW + Sreq

fnet
for request

d Sresp
Sslot−1

× Stab
Aslot

e+ #hop×CSW + Sresp

fnet
for response,

(7)
where (Sslot − 1) refers to the slot size in number of payload
words, while a slot contains 1-word of header.Sreq andSresp

denote the token size in the number of words for the request
and response channel, respectively. The first termd Sreq

Sslot−1
×

Stab

Aslot−1
e refers to the number of cycles to send data. This is

an approximation because it assumes slots are equally spaced.
However, otherwise the first term needs to be split in adiv
term for the number of table revolutions, and amod term for
the delay in the last revolution. The second term refers to
the pipeline delay. #hop refers to the number of intermediate
routers in the routing path.CSW denotes the number of cycles
for the switching per router hop. The third termSreq or Sresp

refers to the length of message.

F. MJPEG case study for hardwired circuit-switched networks

We derive the performance of the hardwired circuit-
switched network (HCSN). The MJPEG task graph is mapped
onto different topologies as depicted in Figure 2(3). Consider
the HCSN with 2×3 mesh topology depicted in Figure 2(3a).
The slot sizeSslot is 3 words. The clock frequency of the
hardwired networkfnet = 500 MHz from the implementation
(see Section V). The switching latency per router hopCSW

is 3 cycles from the implementation. The token size for the
request channelSreq and the token size for the response
channelsSresp are 3 words. The slot table sizeStab and
number of the reserved slots per channelAslot are derived
from the bandwidth distribution. In this work, we used the
automated design flow in [15] to obtainStab and Aslot for
an MJPEG task graph. The arbitration time and transmission
time are derived as follows:

1) Arbitration time: Using the tools of [15],Stab is 4 slots
andAslot is 1 slot per channel. The arbitration time is derived
by substituting theSslot=3 words,Stab=4 slots, andAslot=1
slot in Equation (6). Subsequently, the arbitration timeTarbit

is derived by
3×d 4

2×1 e
500×106 = 12ns per channel.

2) Transmission time: Since Sslot=3 words and

Sreq=Sresp=3 words, the time to send data is
d 3
3−1× 4

1 e
500×106 = 12ns.

From the topology mapping and the routing strategy, the
number of hops #hop is obtained for each channel. The
routing paths are depicted in Figure 2(3a) for the response
channels. As an example, #hop betweenP1 andP2 is 2 (see
bold line in Figure 2(3a)). SinceCSW =3 cycles,Ttransmit

is derived by
d 3

3−1× 4
1 e+2×3+3

500×106 = 30ns for a channel between
P1 andP2.

3) Network performance:The service rate can be derived
by substitutingTarbit and Ttransmit in Equation (3). As an
example, the service rateµ1 for the connectionP1 and P2

is derived by 1
2×(12+30)ns

= 12 × 106 tokens/s. Note that a
connection consists of two channels, therequest and the
responsechannel. The total network response time is de-
rived by substituting individual service rates in Equation (1).
Similarly, the performance of hard and soft networks with
different topologies are derived, as depicted in Figure 4(1).
The 11CSN in Figure 2(3b) performs relatively better than
other topologies due to the single-hop communications. In
addition, the hardwired NoC is significantly better in latency
and throughput than the soft NoC.

(us)Network response time

(1) Worst case

0.0

0.6

1.2

1.8

2.4

0 10 20 30 40 50 60 70

Token rate (X10
6
 tokens/s)

(2) Average case

(us)Network response time

0.0

0.6

1.2

1.8

2.4

0 4 8 12 16 20

Token rate (X10
6
 tokens/s)

11HCSN
12HCSN
23HCSN
11CSN
12CSN
23CSN

Fig. 4. The worst-case (1) and the average-case (2) network performance
for MJPEG task graph in Figure 2. Token size is 3 words. 23(H)CSN denotes
a soft (hardwired) circuit-switched network with 2×3 mesh topology.

G. Average case analysis for circuit-switched networks

The service rate in the previous section is derived for the
worst case, by considering the sequentially operated computa-
tion IPs. Typically, the multi-hop latencies and the arbitration
latencies can be hidden, since multiple logical channels are
pipelined in the shared physical links. An average service
rate for a logical channel in the HCSNµHCSN (tokens/s)
is represented by:

µHCSN =
Aslot

Stab
× fnet

Stoken
, (8)

whereAslot, Stab, Stoken and fnet are defined in the previous
section. First termAslot

Stab
denotes how much bandwidth is

allocated for a channel. Second termfnet

Stoken
denotes the

maximum token rate. Similar to the previous section, we
conduct an MJPEG case study, as depicted in Figure 4(2).
Compared to the worst-case scenario, the network performs
3.3× better in throughput at the average case.

In our MJPEG case study, the performance of the HFBAR
is comparable to the average case performance of the HCSN,
from Figure 3(1) and Figure 4(2). In general, on-chip networks
provide the maximum bandwidth offnet

Stoken
per link at the

best case. In our case study, the maximum bandwidth of the
HFBAR is therefore446×106

3
= 149 × 106 tokens/s and the

maximum bandwidths of the HCSN is500×106

3
= 167 × 106

tokens/s per link. Note that we aim to explore the different
topologies, we consider the worst case latency model for the
analysis as well as the experiments in the next section.

V. EXPERIMENTS AND RESULTS

In this section, we present the simulation and the hardware
implementation results. We conduct three experiments. First,
to verify the analysis, we experiment with cycle-accurate
SystemC simulation for the Æthereal NoC [15] and compare
it with our worst-case latency model. Figure 5(1) depicts an

6

average of connection latencies for the MJPEG task graph (in
Figure 2). The average of connection latency in our analysis
is represented byAN . The minimum/average/maximum sim-
ulated connection latencies are obtained from the design flow
[15]. Max Sim denotes the maximum experienced latency in
the simulation. As depicted in Figure 5(1), our analysis pro-
vides the same trend as the simulation. Second, we compared
hard and soft NoCs in the simulation. Figure 5(2) depicts an
average of connection latencies of hard and soft networks, by
changing the clock frequency in the simulation. As a result,
on average 4.2× of the latency is reduced in the hardwired
network.

(1) Average of connection latencies (2) Average of connection latencies

 in hard and soft networksin hard networks

Average of connection latency (ns)

0

20

40

60

80

100

120

2X3 1X1 1X2

AN Min_Sim Avg_Sim Max_Sim

Average of connection latency (ns)

0

50
100

150
200

250

300
350

400
450

500

2X3 1X1 1X2

Hard (clk=500MHz) Soft (clk=120MHz)

Fig. 5. Simulation results for MJPEG task graph in Figure 2.

To evaluate the area cost and the clock frequency, the
networks are synthesized in FPGAs for soft networks and in
ASICs for hardwired networks, as shown in Table I. For soft
networks, we used Xilinx ISE tool to synthesize, place and
route in Virtex-4 XC4VLX200 device with 90nm CMOS tech-
nology. For hardwired networks, we used Cadence Encounter
tool to place and route in ASIC with 130nm CMOS technol-
ogy. As a result, the clock frequency of hardwired networks
is 4.7× higher than soft networks. Though we experiment
with different technologies, the implementation results clearly
indicate that the clock frequencies of hardwired networks
are significantly better than soft networks. This means that
the hardwired networks provide much higher bandwidth. The
area overhead of hardwired networks is also significantly
smaller, compared to soft networks. As an example, the area of
the 12-port HFBAR is0.29mm2. Considering the large area
(=735mm2) in our target FPGA device2, the area overhead of
the hardwired network is small. For comparison, the soft full
crossbar FBAR with the same design occupies more than 8%
of the available logic slices in the targeted device. This means
that the soft network occupies non-negligible logic resources.

VI. CONCLUSIONS

This article conducted a performance analysis of NoC-based
systems, using the Jackson’s queuing model. We also applied
the Jackson’s model to analyze circuit-switched networks. Our
simulation results showed the same trend as that of the derived
analytical model. Hardwired NoC is promising for future
FPGAs. As our analysis and simulation results indicate, the
hardwired network is significantly better in speed, throughput
and area. To fill the gap between soft interconnects and
hardwired NoCs, we also proposed to use crossbars as built-in

2Estimated die size fromhttp://www.fpga-faq.org/

TABLE I

HARDWARE IMPLEMENTATION RESULTS

Soft (90nm CMOS FPGA Virtex-4, XC4VLX200)
Type Size Area (slices) Clock Freq. (MHz)

FBAR 8 ports 2048 97
12 ports 4182 75

CSN 2 × 3 mesh 3450 120
3 × 4 mesh 9802 120

CBAR MJPEG (Fig. 2(1a) 284 101

Hard (130 nm CMOS ASIC)
Type Size Area (mm2) Clock Freq. (MHz)

HFBAR 8 ports 0.11 446
12 ports 0.29 410

HCSN 2 × 3 mesh 0.51 500
3 × 4 mesh 1.21 500

network components in FPGAs. Our analysis and implemen-
tation results suggest that the hardwired crossbars significantly
improve the performance compared to soft interconnects at an
acceptable cost.

REFERENCES

[1] I. Kuon and J. Rose. “Measuring the gap between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203–215, Feb. 2007.

[2] K. Goossens, M. Bennebroek, J. Y. Hur, and M. A. Wahlah, “Hardwired
Networks on Chip in FPGAs to Unify Functional and Configuration
Interconnects,”IEEE Int’l Symposium on Networks-on-Chip (NOCS’08),
pp. 45–54, Apr. 2008.

[3] J. Y. Hur, T. Stefanov, S. Wong, and S. Vassiliadis, “Customizing
Reconfigurable On-Chip Crossbar Scheduler,”IEEE Int’l Conference on
Application-specific Systems, Architectures and Processors (ASAP’07),
pp. 210–215, Jul. 2007.

[4] Xilinx, Inc., http://www.xilinx.com/.
[5] R. Gindin, I. Cidon, and I. Keidar. “NoC-Based FPGA: Architecture

and Routing,”IEEE Int’l Symposium on Networks-on-Chip (NOCS’07),
pp 253–264, May 2007.

[6] R. Hecht, S. Kubisch, A. Herrholtz, and D. Timmermann. “Dynamic Re-
configuration with hardwired Networks-on-Chip on future FPGAs,”Int’l
Conference on Field Programmable Logic and Applications (FPL’05),
pp 527–530, Aug. 2005.

[7] R. O. Baldwin, N. J. David IV, S. F. Midkiff, and J.E. Kobza, “Queueing
network analysis: concepts, terminology, and methods,”Journal of
Systems and Software, vol. 66, no. 2, pp. 99–117, May 2003.

[8] J. Jackson, “Networks of waiting lines,”Operations Research, vol. 5,
no. 4, pp. 518–521, Aug. 1957.

[9] K. Goossens, J. Dielissen, and A. Rădulescu. “The Æthereal network
on chip: Concepts, architectures, and implementations,”IEEE Design
and Test of Computers, vol. 22, no. 5, pp. 414–421, Sept-Oct 2005.

[10] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and C. R. Das, “Mod-
eling and Implementation of an Output-Queuing Router for Networks-
on-Chips,” Symposium on Architecture for Networking and Communi-
cations Systems (ANCS’05), pp. 173–182, Oct. 2005.

[11] H. Elmiligi, M. W. El-Kharashi, and F. Gebali, “Modeling and
Implementation of an Output-Queuing Router for Networks-on-Chips,”
Int’l Conference on Embedded Software and Systems (ICESS’07), pp.
241–248, May 2007.

[12] H. Nikolov, T. Stefanov, and E. Deprettere, “Multi-processor System
Design with ESPAM,”Int’l Conference on HW/SW Codesign and System
Synthesis (CODES-ISSS’06), pp. 211-216, Oct. 2006.

[13] M. Coenen, S. Murali, A. R̆adulescu, K. Goossens, and G. De Micheli,
“A buffer-sizing algorithm for networks on chip using TDMA and credit-
based end-to-end flow control,”Int’l Conference on HW/SW Codesign
and System Synthesis (CODES-ISSS’06), pp. 130–135, Oct. 2006.

[14] A. Hansson and K. Goossens, “Trade-offs in the configuration of a
network on chip for multiple use-cases,”IEEE Int’l Symposium on
Networks-on-Chip (NOCS’07), pp 233–242, May 2007.

[15] K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pestana, A. Rădulescu,
and E. Rijpkema, “A Design Flow for Application-Specific Networks
on Chip with Guaranteed Performance to Accelerate SOC Design and
Verification,” Int’l Conference on Design, Automation and Test in Europe
(DATE’05), pp. 1182–1187, Mar. 2005.

