
Impact of Power-Management Granularity on The
Energy-Quality Trade-off for Soft And Hard Real-Time

Applications
Aleksandar Milutinović

University of Twente,
The Netherlands

Email: a.milutinovic@utwente.nl

Kees Goossens
NXP Semiconductors & Delft University of Technology

The Netherlands,
Email: kees.goossens@nxp.com

Gerard J.M. Smit
University of Twente,

The Netherlands,
Email: g.j.m.smit@utwente.nl

Abstract— In this paper we introduce the concepts of work of tokens
(e.g. video frames) in an application, and slack arising from variations
in work. Slack is used for dynamic voltage and frequency scaling in
combination with a conservative power-management policy that never
misses deadlines, for hard real-time applications, and with a non-
conservative policy for soft real-time applications. We evaluate both
policies for a number of different granularities (frequency of activation
of the power manager) on an MPEG4 application, on energy and quality
(deadline misses).

We conclude that for soft real-time applications, there is a clear
optimum in the energy, which depends on the work histogram of the
application. The conservative policy has no deadline misses, and is only
negligibly more expensive in terms of energy than the non-conservative
policy. Finally, the granularity of both policies can be very coarse (128
frames) to reduce the power manager activation frequency, which has
an insignificant energy cost.

I. INTRODUCTION AND SCOPE

Power management (here, energy minimisation) is imperative to
increase the battery life time of nomadic devices such as mobile
phones, but also for tethered devices such as set-top boxes to increase
their life time e.g. through reduced thermal stress.

In this paper we perform an analytical study of slack (spare capac-
ity) in a SOC, and how it can be used by several dynamic-voltage-
and-frequency-based power-management policies. In addition, we
vary the granularity (frequency) of power management. We consider
the energy and quality (number of deadline misses) impact of the
policies on soft and hard real-time applications, through an evaluation
using an MPEG4 decoder mapped on an ARM processor.

In Section II, we introduce the applications of interest, work
and slack, our energy model, and power management (policies).
Section III introduces conservativeness of a policy (when it is safe
to use for hard real-time applications) and its granularity. Section IV
describes our experiments and their results, in particular the impact
of the policies and their granularities on the energy-quality trade-off.
After reviewing related work in Section V, we conclude in Section VI.

II. MODEL

A. Application model

In this paper we focus on power management of a single tile,
consisting of a programmable processor with local memories and
peripherals. Although our power management policies are compatible
with multiple such tiles in a multi-processor SOC, we will not further
consider inter-tile power management in the remainder. Each tile has
its own frequency and voltage domain that can be set independently
to a voltage-frequency operating point at run time. The benefits and
costs of scaling are discussed below.

We consider soft and hard real-time streaming applications. In
general, such applications operate on sequences of tokens that each

 0

 2000000

 4000000

 6000000

 8000000

10000000

12000000

14000000

 800 1000 1200 1400 1600 1800

w
or

k
[c

yc
le

s]

frame number

Fig. 1. Work per frame for part of an MPEG4 sequence.

have a deadline by which they should be produced. Hard real-
time applications do not allow deadline misses (late production of
tokens), whereas soft real-time applications allow a limited number
of deadline misses, but at the cost of a quality degradation. In
our case, tokens are compressed video frames, and the deadlines
define when they should be displayed. The frame rate fFR determines
the regular spacing T = 1/fFR of deadlines in time. We assume
that the input data and output space of the application are always
available. In Section IV we comment on the buffer utilisation within
the application.

B. Work and slack

The work wi of a frame i is the number of processor cycles
required to fetch, process, and store it. The total work of a sequence
of frames is the sum of work of the individual frames. We assume
that work depends only on the input token(s), and is independent of
the operating point of the processor. This holds when the input and
output tokens of task, as well as its instructions, are stored in the
local memories of the tile [1].

Work for different input tokens may vary, e.g. the work for a frame
depends on the complexity of its decoding, which strongly depends
on whether it is an MPEG I or P frame. I frames require considerably
more work than B and P frames, as we shall see later. The worst-
case work of a sequence of frames is wcw = Max∞j=0wj . The time
to finish the work of frame i at a frequency fi is the actual-case
execution time aceti = wi/fi. Figure 1 shows work per frame of
part of an MPEG4 sequency, further discussed in Section IV.

In order not to miss any deadline, fi should be high enough. In
fact, there are two different kinds of deadlines. A relative deadline
requires that the actual execution time of a frame i is less than
required by frame rate. With a regular execution, it must be less than
the frame rate: aceti ≤ T = 1/fFR . Relative slack r is the difference

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450

po
w

er
 [m

W
]

freqency [MHz]

 ARM926E
 ARM946

Fig. 2. Power Model: a) ARM 926E, b) ARM 946.

of the worst-case and the actual-case execution time of frame i at the
maximum operating frequency fMax: ri = T − aceti. The absolute
deadline of a frame fi is the absolute time at which it must be
produced (displayed). The absolute slack is defined correspondingly:
si = (i + 1)T −

Pi

j=0
acetj .

When a deadline is not met, it is a miss. There are fewer relative
than absolute misses because a single hard frame can cause several
successive frames to miss their absolute deadlines, even though they
do not miss their relative deadlines. We focus on absolute deadlines
in the sequel, because they are important for the user (e.g. frame
rate), and are harder to ensure.

C. Energy model

In common with many other power management strategies, we
use slack to reduce the operating point (frequency and voltage) of
the processor, and thus save energy. In this paper we assume that the
process technology used is optimised to minimise leakage, and we
can only affect the dynamic energy, which is dominant in SOCs.

Dynamic power is given by Pdyn = αCV 2f = αCV 2w/t, where
α is the switching activity, C is the switched capacitance, and V
and f define the voltage-frequency operating point. Alternatively, w
is the work performed in time t. The energy spent is then Edyn =
Pdynt = αCV 2w. To minimise energy, the voltage must be scaled to
the lowest value supporting the frequency required to meet a deadline.

A processor can run at a minimum (maximum) frequency fMin

(fMax), requiring a minimum (maximum) voltage v(fMin) (v(fMax)).
The power model P (f) used in this paper, related to the function
v(f) is computed as follows. Our starting point is frequency-power
measurements of an ARM926E board, which are shown in Figure 2.
The ARM926E is not powerful enough to execute our application
in real time. The ARM946 is, but the public data on its power
characteristics are insufficient. For this reason, we correlated the
maximum operating point (peak power) of the ARM926E with the
maximum operating point of an ARM946 as given in [2].

D. Dynamic power management and policies

We assume that the SOC under consideration has been dimensioned
at design time to minimise the energy consumption, and focus
on dynamic power management. Dynamic voltage and frequency
scaling (DVFS) power management defines voltage-frequency op-
erating points at run time according to a policy to trade processor
performance for energy. A transition occurs whenever the operating
point is changed, to increase the performance and energy, or decrease
them, as required.

Dynamic power management, and DVFS in particular, has several
costs, in terms of area of the DVFS infrastructure, and reduced pro-
cessor performance (assuming the policy is implemented in software).

Both result in a power cost. In some implementations, processors
must be idle during transitions, again lowering the processor per-
formance. Additionally, it takes time to change the voltage of a
processor due to its capacitance, which means that transitions are not
instantaneous, resulting a minor loss of performance or energy. Our
experiments take these costs into account, as described in Section IV.

III. POLICY CONSERVATIVENESS AND GRANULARITY

A policy is conservative if it does not introduce any deadline
misses (i.e. lowers the quality of the result) compared to operating
at fMax, and non-conservative otherwise. Conservative policies are
required for hard real-time applications, whereas soft real-time ap-
plications can tolerate occasional deadline misses and could use non-
conservative policies. We use DVFS with policies based on run-time
observation of already available slack or prediction of future slack to
reduce energy. The proven slack of a frame i is the cumulative slack
of the frames before it, i.e. the absolute slack of frame i− 1. Proven
slack can be detected at run time. There may be future slack that is
unproven at the start of frame i’s work. We will use a (hypothetical)
perfect predictor to compute future unproven slack for frame i before
it is executed. This is a useful baseline for later comparisons because
no real predictors can do any better.

We define the granularity of a policy as the shortest time between
successive transitions. The aim of this paper is to investigate the
impact of the granularity of the policy on the energy reduction, taking
into account the transition overhead. We will scale the granularity
from 1 frame to the length of the entire sequence of frames. Given
a certain granularity N we use two policies: perfect predictor and
proven slack. The former accurately predicts the cumulative amount
of work of the next N frames and scales the performance of
the processor to the average frequency for those frames (favg

i
=

(ΣN−1

j=0 wi∗N+j)/(NT) for group i). In other words, the last of the
N frames will never miss its deadline, but preceding frames might.
For N > 1 this policy is not conservative, therefore allowed for soft
real-time applications, but not for hard real-time applications. The
proven-slack policy assumes that the next N frames all require the
worst-case work, but uses all the proven slack of previous group to
reduce the frequency of the processor (but never scaling below fMin):
fmaxi

= (NMax∞j=0wj)/(NT +si−1) for group i. The first N frames
have no proven slack, and hence run at the frequency required for
the worst-case of the entire sequence. Hence, all frames will meet
their deadline, and this policy is always conservative, and suitable
for both soft and hard real-time applications.

For N = ∞ (i.e. the length of the input sequence), the processor
operates at favg with the perfect-predictor policy, and at fmax using the
proven-slack policy. The former is the traditional minimum energy
operating point, when deadlines are ignored (running a best-effort
application at its average requirement). The latter is our baseline (no
misses, no power management, no overhead) for later comparisons.
The final point of interest is the lowest frequency fmin, the maximal
frequency at which all deadlines are missed. When varying the
granularity N for both policies, the total energy will vary, as will
the number of misses. This is an instance of an energy-quality or
cost-performance plot. In the results section we shall present this
plot, and draw some conclusions on the relative performance of the
policies.

When N > 1, frames may be produced early, in which case
they are stored in memory. We do not increase the energy for the
policy because only the time at which data (frames) are produced
changes, but not their number (or size). Hence the energy consumed
by the interconnect between processor and memories is unchanged.

 0

 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000

81
92

40
96

20
48

10
2451

2

25
6

12
86432168421

en
er

gy
 [m

J]

granularity [number of frames]

proven slack
proven-slack overhead
perfect predictor
perfect-predictor overhead

Fig. 3. Application & power-management energies, for different granularities.

Regarding the impact on memories, we assume that data is stored
in sufficiently large buffers in either SRAM or DRAM. For DRAM
we assume that unused banks are not switched off. As a result, the
buffer filling (due to early or late data production) does not change
the energy consumed by the memory.

IV. EXPERIMENTAL RESULTS

Our application is an MPEG4 decoder running on an ARM946
running at 86 MHz. It decodes an input stream of 207 seconds, with
I and P frames, at 25 frames per second, and a resolution of 176x144
pixels. The measured number of cycles per frame were measured,
and define the work per frame. On the basis of this, we analytically
evaluate our two policies for a number of different granularities. A
transition results in a 20 µsec inactive period, and a 1 msec execution
of the power manager, with the associated energy cost.

Figure 3 shows the energy consumed by the application and the
power manager for different granularities, for both policies. The
rightmost bar corresponds to the entire sequence, i.e. favg for the
perfect-predictor policy and fmax for the proven-slack policy. The
energy savings w.r.t. operating at fmax are around 30% for 1-128
frames, at a cost of 2% for the power manager. Above 128 frames
the proven-slack policy uses linearly more energy. The energy used
by the perfect-predictor policy decreases lightly, but at the cost of
increasingly missing deadlines, as we shall see below.

0.001

0.01

0.1

1

10

100

 8
19

2

 4
09

6

 2
04

8

 1
02

4

 5
12

 2
56

 1
28 6
4

 3
2

 1
6 8 4 2 1

sl
ac

k
[s

ec
]

granularity [number of frames]

proven-slack max
proven-slack avg
perfect-predictor max
perfect-predictor avg

Fig. 4. Remained slack versus granularity.

Figure 4 shows the average slack ((ΣS−1

i=0 si)/S, for a sequence of
S frames) and worst-case slack (MaxS−1

i=0 si) for different granulari-
ties, for both policies. For the proven-slack policy the average slack
saturates at the difference between worst-case work and average-case

 0

 20

 40

 60

 80

 100

 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

re
la

tiv
e

qu
al

ity
 (u

nm
is

se
d

fr
am

es
) [

%
]

energy [mJ]

fmax

fmin

favg

proven slack
perfect predictor
constant frequency

Fig. 5. Energy-quality trade-off for different policies and granularities.

work, while maximum slack keeps increasing. This indicates that the
policy cannot always exploit the accumulated slack (e.g. because the
processor cannot be scaled below fMin), which therefore reaches large
values. The perfect-predictor policy, on the other hand, uses slack
effectively because it never accumulates to large values.

However, the perfect-predictor policy obtains its lower energy at
the cost of deadline misses. Figure 5 shows the energy versus the
relative quality (number of frames that are produced on time). Both
policies are plotted for various granularities. The three reference
points are also indicated: the baseline fmax (always running at
the frequency of the worst-case frame, i.e. no, misses, no power
management, no overhead), fmin (the maximal frequency at which
all deadlines are missed), favg (the frequency for minimum energy,
when only the global deadline is met). The constant-frequency policy,
which has no power management (overhead), connects these three
points.

Note that the proven-slack policy is indeed conservative, because
it provides 100% quality (no misses) for all energies (operating
points). The perfect predictor, however, starts missing deadlines
around 13000 mJ, and drops to 0% quality (fmin) at 11600 mJ. The
transition from good to bad takes place in a very narrow band: a
95% quality improvement costs only 3% additional energy. This is
positive, because it is clear where the optimum is (13000 mJ). In
fact, this results from the distribution of work, as shown in the work
histogram in Figure 6. Many frames can be processed in the range of
240-250 MHz, with a relatively small number of much larger frames.
Hence the operating point for soft real-time applications can be close
to the transition, but hard real-time applications must have a much
higher operating frequency, when using the perfect-predictor policy.

For this reason, we compare the perfect-predictor and proven-slack
policies in the transition range, shown in more detail in Figure 7.
The 1-frame proven-slack policy is conservative, i.e. offers 100%
quality, and uses only 0.3% more energy than the perfect predictor.
Furthermore, increasing the granularity from 1 to 128 increases the
energy of the proven-slack policy by only 2%. This is a positive
result because it allows the power manager to run very infrequently,
lowering its overhead.

Figure 8 shows that the buffer filling increases linearly with the
granularity. As argued in Section III, however, storing data early does
not cost any extra energy. If buffers are smaller than shown or data
are always available at the input, then the application will stall, and
restart when data arrive, like the race-to-idle policy. The result is a

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

14
68

01
61

14
34

38
35

14
00

75
09

13
67

11
83

13
33

48
57

12
99

85
31

12
66

22
05

12
32

58
79

11
98

95
53

11
65

32
27

11
31

69
01

10
98

05
75

10
64

42
49

10
30

79
23

 9
97

15
97

 9
63

52
71

 9
29

89
45

 8
96

26
19

 8
62

62
93

fr
am

es

work [cycles]

Fig. 6. Work histogram.

 50

 60

 70

 80

 90

 100

 12600 12800 13000 13200 13400 13600 13800 14000

re
la

tiv
e

qu
al

ity
 (u

nm
is

se
d

fr
am

es
) [

%
]

energy [mJ]

favg

proven slack
perfect predictor
constant frequency

Fig. 7. Energy-quality trade-off for different policies and granularities.

conservative policy, although less energy efficient.

V. RELATED WORK

The speed of DVFS infrastructure is increasing [3], enabling
power management at very fine granularity. This was the motivation
for the study that we present. Azavedo [4] uses the compiler to
place the checkpoints in program code at the boundaries of basic
blocks, which represents fine granularity solution that uses variable
granularity but in a limited range. AbouGhazaleh [5] presents the
collaboration between compiler and operating system and by inserting
instrumentation code into the program code to achieve to vary
the granularity. The same authors propose theoretical solution for
choosing the optimal granularity in [6]. Choi [7] presents DVFS
technique for an MPEG decoder with sub-frame granularity by
differentiating between invariable and variable parts of a decoder.

VI. CONCLUSIONS

In this paper we introduce the concepts of work of tokens in an
application, and the difference between the worst case and actual
case work (slack). We use slack for dynamic voltage and frequency
scaling in combination with two policies: the perfect predictor and
proven slack. The proven-slack policy is conservative, which means
that it never misses deadlines (late completion of work), as required
for hard real-time applications. The perfect-predictor policy, on the

 0

 1

 10

 100

 1000

10000

81
92

40
96

20
48

10
2451

2

25
6

12
86432168421

bu
ff

er
 fi

lli
ng

 [f
ra

m
es

]

granularity [number of frames]

proven-slack max
proven-slack avg
perfect-predictor max
perfect-predictor avg

Fig. 8. Buffer fillings for different policies and granularities.

other hand, may occasionally miss a deadline, which is allowed for
soft real-time applications. Both policies have been evaluated on
an MPEG4 application, for a number of different granularities, i.e.
frequency of operating point changes (power manager activations).

From the experiments we draw the following conclusions. 1) A
long tail in the work distribution results in a steep quality improve-
ment: from almost 0% to almost 100% at an additional energy cost
of only 3%. This means that for soft real-time applications, there is a
clear optimum in the energy-quality trade-off. The work distribution
of many applications exhibits such a long tail, which is why hard
real-time guarantees are usually considered expensive to offer. 2) The
proven-slack policy offers 100% quality at only 0.3% more energy
than the perfect-predictor policy, which is theoretical upper bound and
hard to achieve in practice. Hence, conservative power management
for hard real-time guarantees, is only negligibly more expensive than
non-conservative power management for soft real-time guarantees. 3)
The energy of the policies increases by only 2% when increasing the
granularity to 128 frames. Hence, the power manager can run very
infrequently, at an insignificant energy cost.

ACKNOWLEDGEMENTS

We would like to thank Albert Molderink of the University of
Twente for the MPEG4 traces on which this work is based.

REFERENCES

[1] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak, and
J. van Meerbergen, “Predictable embedded multiprocessor system design,”
Lecture notes in computer science, vol. 3199, pp. 77–91, 2004.

[2] [Online]. Available: http://www.arm.com/products/CPUs/ARM946E-
S.html

[3] M. Meijer, J. Pineda de Gyvez, and R. Otten, “On-chip digital power
supply control for system-on-chip applications,” in ISLPED ’05: Pro-
ceedings of the 2005 international symposium on Low power electronics
and design. New York: ACM Press, 2005, pp. 311–314.

[4] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum,
and A. Nicolau, “Profile-based dynamic voltage scheduling using program
checkpoints,” Design, Automation and Test in Europe Conference and
Exhibition, 2002. Proceedings, pp. 168–175, 2002.

[5] N. AbouGhazaleh, D. Mossé, B. Childers, and R. Melhem, “Collaborative
operating system and compiler power management for real-time appli-
cations,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 5, no. 1, pp. 82–115, 2006.

[6] N. AbouGhazaleh, D. Mosse, B. Childers, and R. Melhem, “Toward
the placement of power management points in real-time applications,”
Compilers and operating systems for low power table of contents, pp.
37–52, 2003.

[7] K. Choi, K. Dantu, W. Cheng, and M. Pedram, “Frame-based dynamic
voltage and frequency scaling for a MPEG decoder,” Digest of technical
papers- IEEE/ACM International Conference on Computer-Aided Design,
pp. 732–737, 2002.

