
Real-Time Scheduling Using Credit-Controlled
Static-Priority Arbitration

Benny Akesson1, Liesbeth Steffens2, Eelke Strooisma3, and Kees Goossens2,3

1Technische Universiteit Eindhoven, The Netherlands
2NXP Semiconductors Research, Eindhoven, The Netherlands

3Delft University of Technology, The Netherlands
k.b.akesson@tue.nl

Abstract—The convergence of application domains in new
systems-on-chip (SoC) results in systems with many applications
with a mix of soft and hard real-time requirements. To reduce
cost, resources, such as memories and interconnect, are shared
between applications. However, resource sharing introduces in-
terference between the sharing applications, making it difficult
to satisfy their real-time requirements. Existing arbiters do not
efficiently satisfy the requirements of applications in SoCs, as
they either couple rate or allocation granularity to latency, or
cannot run at sufficiently high speeds in hardware with a low-cost
implementation.

The contribution of this paper is an arbiter called Credit-
Controlled Static-Priority (CCSP), consisting of a rate regulator
and a static-priority scheduler. The rate regulator isolates appli-
cations by regulating the amount of provided service in a way that
decouples allocation granularity and latency. The static-priority
scheduler decouples latency and rate, such that low latency can
be provided to any application, regardless of the allocated rate.
We show that CCSP belongs to the class of latency-rate servers
and guarantees the allocated service rate within a maximum
latency, required by hard real-time applications. We present a
hardware implementation of the arbiter in the context of a DDR2
SDRAM controller. An instance with six ports runs at 250 MHz
and requires 0.0175 mm2 in a 90 nm CMOS process.

I. I NTRODUCTION

A contemporary multi-processor system-on-chip (SoC) con-
sists of a large number of intellectual property components
(IP), such as streaming hardware accelerators and processors
with caches, running many applications. Resources, such as
memories and interconnect, are shared between applications
to reduce system cost. However, resource sharing introduces
interference between applications, making it difficult to satisfy
their real-time requirements. We refer to users of the resources
as requestors, corresponding to processes in the context of
CPUs, or communication channels in case of a memory or
an interconnect, that act on behalf of an application. Resource
access is provided by arbiters that require a low-cost hardware
implementation and run at high speeds. A low-cost implemen-
tation allows multiple instances to fit in a limited area and
high speed is required to schedule access on a fine level of
granularity, reducing latency and buffers.

We consider resource scheduling inhybrid systems[1]
that contain applications with both soft and hard real-time
requirements. Hard real-time applications, such as audio post-
processing, typically have predictable and regular request
patterns. Their deadlines are not very tight, but must always
be met in order to guarantee the functional correctness of

the SoC [1], [2]. To satisfy these requirements, hard real-time
requestors require aguaranteed minimum service rate and a
bounded maximum latencythat can be analytically verified
at design time. In contrast, a soft real-time application, such
as software video decoding, is typically very bursty and has
tight deadlines on a much coarser grain than their hard real-
time counterparts. These deadlines may span thousands of
requests, making the worst-case latency of a single request
less interesting. Missing a soft deadline reduces the quality of
the application output, such as causing a frame skip in video
playback, which may be acceptable as long as it does not
occur too frequently [1]. Soft real-time requestors require a
guaranteed minimum service rate and a low average latency
to minimize deadline misses.

Existing arbiters fail to cater to the above-mentioned re-
quirements for at least one of the following three reasons: 1)
allocation granularity is coupled to latency, resulting inlong
latencies or over-allocation due to discretization, 2) latency is
coupled to rate, preventing low latency from being providedto
requestors with low rate requirements without over-allocating,
or 3) they cannot run at sufficiently high speeds in hardware
with a low-cost implementation.

The contribution of this paper is a novel arbiter called
Credit-Controlled Static-Priority (CCSP), consisting ofa rate
regulator and a static-priority scheduler. The rate regulator iso-
lates requestors by regulating the amount of provided service
in a way that decouples allocation granularity and latency.The
static-priority scheduler decouples latency and rate, such that
low latency can be provided to any requestor, regardless of
the allocated rate.

This paper is organized as follows. In Section II, we review
related work and discuss why existing arbiters do not satisfy
the requirements of hybrid systems in SoCs. We introduce
a formal model in Section III and show how service curves
are used to describe the interaction between requestors and
the arbiter. We introduce the CCSP arbiter in Section IV and
explain the operation of the rate regulator and static-priority
scheduler. In Section V, we show that CCSP belongs to the
class of latency-rate (LR) servers and provides a minimum
amount of service within a maximum latency, required by hard
real-time requestors. An efficient hardware implementation is
presented in Section VI in the context of a DDR2 SDRAM
controller. We study experimental results for a hybrid system
running an H.264 decoder in Section VII, before finishing with



conclusions in Section VIII.

II. RELATED WORK

Many arbiters have been proposed in the context of commu-
nication networks. Several of these are based on the Round-
Robin algorithm because it is simple and starvation-free.
Weighted Round-Robin [3] and Deficit Round-Robin [4] are
extensions that guarantee each requestor a minimum service,
proportional to an allocated rate, in a frame of fixed size.
This type of frame-basedarbitration suffers from a coupling
between allocation granularity and latency, where the alloca-
tion granularity is inversely proportional to the frame size [5].
Larger frame sizes result in finer allocation granularities,
reducing over-allocation, at the cost of increased latencies
for all requestors. This granularity issue is addressed in [6]–
[8] with hierarchical framing strategies and in [9], where
tracking debits and credits accomplishes exact allocationover
multiple frames. The above-mentioned algorithms, as well
as the family of Fair Queuing algorithms [5], are unable to
efficiently distinguish different latency requirements, as the
rate is the only parameter affecting scheduling. This results in
an unwanted coupling between latency and rate, where latency
is inversely proportional to the allocated rate. Requestors with
low rate requirements hence suffer from high latency unless
their rates are increased, reducing resource utilization.

Much work has been carried out in the real-time community
concerning server-based scheduling of aperiodic and sporadic
requestors [10]. However, many of these assume that there
is only a single server serving all aperiodic and sporadic
requests and are hence unable to distinguish the requirements
of multiple requestors. They furthermore often couple latency
and rate since they use the server period and allocated budget
as a base for computing latencies, similarly to most frame-
based arbiters. Hard real-time requestors are scheduled in[1]
by an earliest-deadline-first (EDF) scheduler, while a constant-
bandwidth server is used for soft real-time requestors. This
approach is not applicable to resource arbiters in SoCs, as it
is difficult to provide a low-cost hardware implementation of
an EDF scheduler that runs at sufficiently high speeds. The
implementation of an EDF scheduler in [11] uses a tree of
multiple-bit comparators to compare deadlines in the priority
queue, which is too slow for SoC resources, such as memories
and interconnect. A more scalable implementation is provided
in [12]. However, this implementation requires double-ported
SRAM memory, which is too expensive for many arbiters
in a SoC. Among the work in this community, our work is
most similar to a sporadic server with incremental replenish-
ment [10], [13], although with an accounting mechanism that
is simple enough to implement in hardware.

The scheduling approaches in [14], [15] employ static-
priority arbiters, where high priority is assigned to soft real-
time requestors to achieve low average latency. The approach
of scheduling hybrid systems using a static-priority arbiter
has the benefit of being cheap to implement in hardware.
However, the proposed arbiters have significant short-comings,
as the rate regulators are frame-based and couples allocation
granularity, latency and rate, despite the use of priorities.

Rate-Controlled Static-Priority [16] is an arbiter with a static-
priority scheduler that decouples latency, rate and allocation
granularity. It controls rate by holding requests until certain
constraints on minimum and average inter-arrival times be-
tween requests from a requestor are satisfied. However, this
requires a potentially large number of time-stamps to be stored
in the arbiter, which is not feasible for a resource arbiter in a
SoC.

We propose Credit-Controlled Static-Priority arbitration for
scheduling access to SoC resources. CCSP resembles an ar-
biter with a rate regulator that enforces a(σ, ρ) constraint [17]
on requested service together with a static-priority scheduler, a
combination we refer to as Sigma-Rho Static-Priority (SRSP)
in this paper. Similarly to SRSP, the CCSP rate regulator
replenishes the service available to a requestor incrementally,
instead of basing it on frames, decoupling allocation gran-
ularity and latency. Both arbiters furthermore use priorities
to decouple latency and rate. However, instead of enforcing
a (σ, ρ) constraint onrequested service, like SRSP, CCSP
enforces it onprovided service. Regulating provided service
reduces the complexity of the implementation, and allows a
preemptive arbiter to efficiently handle requests with unknown
sizes. We furthermore show that CCSP has a low-cost hard-
ware implementation that runs at high speeds.

III. F ORMAL MODEL

In this section, we introduce the formal model used in
this paper. We explain how service curves are used to model
the interaction between the requestors and the resource in
Section III-A. We proceed by discussing the models used to
boundrequested serviceandprovided servicein Section III-B
and Section III-C, respectively.

Throughout this paper, we use capital letters (A) to denote
sets, hats to denote upper bounds (â), and checks to denote
lower bounds (̌a). Subscripts are used to disambiguate between
variables belonging to different requestors, although forclarity
these subscripts are omitted when they are not required. To
emphasize the generality of our approach, and its applicability
to a wide range of resources, we abstract from a particular
target resource, such as memories or (multi-hop) interconnects.
We adopt an abstract resource view, where a service unit
corresponds to the access granularity of the resource. Time
is discrete and a time unit, referred to as acycle, is defined as
the time required to serve such a service unit. We use closed
discrete time intervals and[τ, t] hence includes all cycles in
the sequence〈τ, τ + 1, ..., t − 1, t〉.

A. Service curves

We use service curves [18] to model the interaction between
the resource and the requestors. These service curves are typ-
ically cumulative and monotonically non-decreasing in time.
We start by defining two operators for working with service
curves in Definition 1 and Definition 2.

Definition 1. ξ(t) denotes the value of a service curveξ at
the beginning of a cyclet.



Definition 2. ξ(τ, t) denotes the difference in values between
the endpoints of the closed interval[τ, t], wheret ≥ τ , and is
defined asξ(τ, t) = ξ(t + 1) − ξ(τ).

The resource is shared between a set of requestors, as stated
in Definition 3. A requestor generates requests of variable but
bounded size, as defined in Definition 4.

Definition 3 (Set of requestors). The set of requestors sharing
the resource is denotedR.

Definition 4 (Request). The k:th request (k ∈ N) from a
requestorr ∈ R is denotedωk

r ∈ Ωr. The size ofωk
r in service

units is denoteds(ωk
r ) : Ωr → N+.

Requests arrive in separate buffers per requestor at the
resource according to Definition 5. For clarity, it is assumed
that only a single request arrives per requestor in a particular
cycle, although this is easy to generalize. A request is consid-
ered to arrive as an impulse when it has completely arrived,
which for instance in the case of a memory controller is upon
arrival of the last bit of the request. This is captured by the
requested service curve,w, defined in Definition 6. Note that
Definitions 5 and 6 state that a requested service curve at time
t + 1 accounts for a request with arrival timet + 1.

Definition 5 (Arrival time). The arrival time of a requestωk
r

from a requestorr ∈ R is denotedta(ωk
r ) : Ωr → N+, and

corresponds to the cycle in whichωk
r has completely arrived.

Definition 6 (Requested service curve). The requested service
curve of a requestorr ∈ R is denotedwr(t) : N → N, where
wr(0) = 0 and

wr(t + 1) =

{

wr(t) + s(ωk
r ) ∃ωk

r : ta(ωk
r ) = t + 1

wr(t) ∄ωk
r : ta(ωk

r ) = t + 1

The scheduler in the resource arbiter attempts to schedule a
requestor every cycle according to its particular scheduling
policy, according to Definition 7. The first cycle in which
a requestωk is scheduled is referred to as its starting time,
ts(ω

k), defined in Definition 8.

A
cc

um
ul

at
ed

se
rv

ic
e

Time [cycles]

w

w′

q(tf(ω
k))

s(ωk) tf(ω
k)

ta(ωk) ts(ω
k)

Fig. 1. A requested service curve, a provided service curve and representa-
tions of the surrounding concepts.

Definition 7 (Scheduled requestor). The scheduled requestor
at a timet is denotedγ(t) : N → R ∪ {∅}.

Definition 8 (Starting time of a request). The starting time of
a requestωk

r is denotedts(ωk
r ) : Ωr → N, and is defined as

the smallestt at whichωk
r is scheduled.

The provided service curve,w′, defined in Definition 9,
reflects the amount of service units provided by the resource
to a requestor. A service unit takes one cycle to serve. The
provided service is hence increased att + 1, if a requestor is
scheduled att. A request leaves the resource when the last
service unit of the request has been served, corresponding
to when the last bit is read or written in case of a memory
controller. An illustration of a requested service curve and a
provided service curve is provided in Figure 1.

Definition 9 (Provided service curve). The provided service
curve of a requestorr ∈ R is denotedw′

r(t) : N → N, where
w′

r(0) = 0 and

w′
r(t + 1) =

{

w′
r(t) + 1 γ(t) = r

w′
r(t) γ(t) 6= r

The finishing time of a request corresponds to the first
cycle in which a request is completely served, as defined in
Definition 10. The amount of requested service that has not
been served at a particular time is referred to as the backlog
of a requestor and is defined in Definition 11.

Definition 10 (Finishing time of a request). The finishing time
of a requestωk

r is denotedtf(ω
k
r ) : Ωr → N, and is defined

as tf(ω
k
r ) = min({t | t ∈ N∧w′

r(t) = w′
r(ts(ω

k
r )) + s(ωk

r )}).

Definition 11 (Backlog). The backlog of a requestorr ∈ R
at a time t is denotedqr(t) : N → N, and is defined as
qr(t) = wr(t) − w′

r(t).

Definition 12 (Set of backlogged requestors). The set of
requestors that are backlogged att is defined asRq

t =
{r | ∀r ∈ R ∧ qr(t) > 0}.

To work with service curves analytically, traffic models
are used to characterize the behavior of the curves. This
abstraction has the benefit that analytical results can be derived
without exact knowledge of a service curve [5]. Characteriza-
tions that bound the requested and provided service curves
are required to provide an upper bound on latency, which is
needed to satisfy the requirements of hard real-time requestors.

B. Requested service model

We use the(σ, ρ) model [17] to characterize the requested
service curve. The model uses a linear function to express a
burstiness constraint, and is frequently used to upper bound the
requested service curve in an interval. The bounding function
is determined by two parameters,σ and ρ, corresponding to
burstiness and average request rate, respectively. Definition 13
defines a(σ, ρ)-constrained service curve, and its graphical
interpretation is shown in Figure 2.

Definition 13 ((σ, ρ) constraint). A service curve,ξ, is
defined to be(σ, ρ) constrained in an interval[τ, t] if
ξ̂(τ, t) = σ + ρ · (t − τ + 1). σ, ρ ∈ R+ and ρ ≤ 1.



A
cc

um
ul

at
ed

se
rv

ic
e

Time [cycles]

w

Θ

σ = σ′

w′

ρ = ρ′

w̌′

ŵ
ŵ′

Fig. 2. A requested service curve and a provided service curve along with
their corresponding bounds.

Hard real-time requestors typically correspond to hardware
IPs with regular and predictable access patterns that lend them-
selves to characterization. Soft real-time requestors, however,
are typically burstier than their hard real-time counterparts,
and may hence have aσ that is very large. Soft real-time
requestors may additionally be very difficult to characterize,
as applications become more dynamic and input dependent.
However, in this paper, we assume that all requestors have
been accurately characterized, according to Definition 14.

Definition 14 (Requestor). A requestorr ∈ R is characterized
by (σr, ρr), which is a(σ, ρ) constraint onwr.

C. Provided service model

The purpose of the provided service model is to give a
lower bound on the provided service curve based on the
service allocation of a requestor. The service allocated toa
requestor in our model depends on two parameters, as defined
in Definition 15. These are the allocated service rate,ρ′, and
allocated burstiness,σ′, respectively. The definition states three
constraints that must be satisfied in order for a configuration to
be valid: 1) the allocated service rate must be at least equalto
the average request rate,ρ, to satisfy the service requirement
of the requestor, and to maintain finite buffers, 2) it is not
possible to allocate more service to the requestors than what
is offered by the resource, and 3) the allocated burstiness
must be sufficiently large to accommodate a service unit. The
last condition is required for the latency bound derived in
Section V to be valid.

Definition 15 (Allocated service). The service allocation of a
requestorr ∈ R is defined as(σ′

r, ρ
′
r) ∈ R+×R+. For a valid

allocation it holds that∀r ∈ R : ρ′r ≥ ρr,
∑

∀r∈R ρ′r ≤ 1,
and ∀r ∈ R : σ′

r ≥ 1.

Our provided service model is based on the notion ofactive
periods. Definition 16 states that a requestor is active att if
it is either live att (Definition 17), backlogged att, or both.
Definition 17 states that a requestor must on average have
requested service according to its allocated rate since thestart
of the latest active period to be considered live at a timet.

Definition 16 (Active period). An active period of a requestor
r ∈ R is defined as the maximum interval[τ1, τ2], such that
∀t ∈ [τ1, τ2] : wr(τ1−1, t−1) ≥ ρ′r · (t−τ1 +1) ∨ qr(t) > 0.
Requestorr is active∀t ∈ [τ1, τ2].

Definition 17 (Live requestor). A requestorr ∈ R is de-
fined as live at a timet during an active period[τ1, τ2] if
wr(τ1 − 1, t − 1) ≥ ρ′r · (t − τ1 + 1).

Definition 18 (Set of active requestors). The set
of requestors that are active att is defined as
Ra

t = {r | ∀r ∈ R ∧ r active att}.

Definition 19 (Set of live requestors). The set
of requestors that are live at t is defined as
Rl

t = {r | ∀r ∈ R ∧ r live at t}.

Figure 3 illustrates the relation between being live, back-
logged and active. Three requests arrive starting fromτ1,
keeping the requestor live untilτ3. The requestor is initially
both live and backlogged, but the provided service curve
catches up with the requested service curve atτ2. This puts
the requestor in a live and not backlogged state untilτ3. The
requestor is neither live nor backlogged betweenτ3 and τ4,
as no additional requests arrive at the resource. The requestor
becomes live and backlogged again atτ4, since two additional
requests arrive within a small period of time. The requestor
stays in this state untilτ5, since not enough service is provided
to remove the backlog. The requestor is hence backlogged but
not live at τ5, and remains such untilτ6. The requestor in
Figure 3 is active betweenτ1 and τ3 and betweenτ4 and τ6,
according to Definition 16. Note from this example that a live
requestor is not necessarily backlogged, nor vice versa.

A
cc

um
ul

at
ed

se
rv

ic
e

live

backlogged

active

x x x

x x x

x x xx

Time [cycles]

τ1 τ3 τ4 τ5τ2

w

τ6

w′

Fig. 3. Example service curves illustrating the relation between being live,
backlogged, and active.

The service provided to a requestor is defined by two param-
etersΘ andρ′, being latency and allocated rate, respectively.
To disambiguate, we refer toΘ, defined in Definition 20, as
service latencythroughout this paper. The definition states that
service is provided to an active requestor according to the
allocated rate,ρ′, after the service latency,Θ. This means that
ρ′ and Θ define a lower bound,̌w′, on the provided service
curve during an active period, as shown in Figure 2.



Definition 20 (Service latency). The service latency of a
requestorr ∈ R is defined as the minimumΘr ∈ N, such that
during any active period[τ1, τ2] it holds that∀t ∈ [τ1, τ2] :
w̌′

r(τ1, t) = max(0, ρ′r · (t − τ1 + 1 − Θr)).

We show in Section V that CCSP belongs to the class of
LR servers [19], which is a general frame-work for analyzing
scheduling algorithms. The lower bound on provided service
in Definition 20 is a key characteristic ofLR servers. The
authors of [19] use this bound to derive general bounds on
buffering and latency that are valid for any combination ofLR
servers in sequence. It is furthermore shown in [20] that aLR
server can be modeled as a cyclo-static data-flow graph with
two tasks. This allowsLR servers to be used also in data-flow
analysis, which has the added benefits that the presence of flow
control can be accurately modeled and that application-level
throughput constraints can be satisfied.

IV. CREDIT-CONTROLLED STATIC-PRIORITY

A CCSP arbiter consists of a rate regulator and a sched-
uler, following the decomposition from [16]. We start in
Section IV-A by providing an overview of the main idea,
before discussing the rate regulator and scheduler separately
in Sections IV-B and IV-C, respectively.

A. Overview

A rate regulator providesaccountingand enforcementand
thus determines which requests that areeligible for scheduling
at a particular time, considering their allocated service.There
are two types of enforcement. Awork-conserving arbiteris
never idle when there is a backlogged requestor. In contrast,
a rate regulator in anon-work-conserving arbiterdoes not
schedule a request until it becomes eligible, even though the
resource may be idle. To conserve space, we only discuss the
non-work-conserving case in this paper. The work-conserving
case is covered in [21].

The purpose of a rate regulator is to isolate requestors
from each other and to protect requestors that do not ask
for more service than they are allocated from those that
do. This form of protection is a key property in providing
guaranteed service to requestors with timing constraints [5].
A rate regulator protects requestors by enforcing burstiness
constraints on either requested service or provided service.

A rate regulator that enforces an upper bound on provided
service, such as those in [3], [4], [14], [15] and the CCSP
rate regulator, is shown in Figure 4. As seen in the figure,
the rate regulator is positioned after the request buffers.It is
hence only aware of requests at the heads of the buffers, and
cannot constrain arrival of requests in any way. The scheduler
communicates the id of the scheduled requestor,γ(t), back
to the rate regulator every cycle. The regulator uses this
information to update the accounting mechanism. This type
of rate regulator operates by simply determining if the request
at the head of each request buffer is eligible for scheduling.

Enforcing an upper bound on provided service as opposed
to requested service has two benefits: 1) the implementation
of the regulator is less complex, and 2) the amount of work

buffers
Request

regulator
Rate

Scheduler

γ(t)

wr0
(t)

wr1
(t)

w′
r0

(t)

w′
r1

(t)

Fig. 4. An arbiter with a rate regulator that enforces an upper bound on
provided service.

associated with a particular request does not have to be known.
We discuss these benefits in more detail.

A regulator that enforces an upper bound on provided
service only requires knowledge about the request at the head
of each request queue. Conversely, regulators that enforcean
upper bound on requested service, such as [16], [17], need
information about all requests that arrive during a cycle. This
incurs additional complexity in a hardware implementation,
especially if requests can arrive with higher frequency than
with which they are parsed.

A difficulty in arbitration is that the amount of work
associated with a particular request is not always known before
it has been served. For instance, the amount of time required
to decode a video frame on a processor is not known when
the work is scheduled. This situation cannot be handled if
requested service is regulated, unless worst-case assumptions
are used to estimate the amount of work, which is very
inefficient if the variance in the amount of work is large.
This is efficiently handled when regulating provided service
by charging for a single service unit at a time. This allows a
preemptive scheduler to interrupt a requestor that runs outof
budget and schedule another one.

Unlike SRSP, CCSP enjoys the aforementioned benefits.
CCSP’s incremental replenishment of service furthermore de-
couples allocation granularity and latency, in contrast tothe
frame-based provided service regulators in [3], [4], [14],[15].

B. Rate regulator

The CCSP rate regulator enforces an upper bound on
provided service, as explained in Section IV-A. We regulate
provided service based on active periods, and define the upper
bound on provided service according to Definition 21. The
intuition behind the definition is that the upper bound on
provided service of an active requestor increases according
to the allocated rate every cycle. Conversely, for an inactive
requestor, the bound is limited tow′(t) + σ′, a value that
depends on the allocated burstiness. This prevents that a
requestor that has been inactive for an extended period of time
increases its bound, possibly resulting in starvation of other
requestors once it becomes active again. Note that this implies
that the upper bound on provided service is not necessarily
monotonically non-decreasing in time, as shown in Figure 5.
The requestor in the figure is live untilτ1, but remains active
until τ2 wherew′ catches up tow. According to Definition 21,
this results inŵ′(τ2+1) < ŵ′(τ2), sinceŵ′(τ2) > w′(τ2)+σ′.



A
cc

um
ul

at
ed

se
rv

ic
e

Time [cycles]τ2τ1

ŵ′

w̌′

σ′

τ3

Fig. 5. The upper bound on provided service is not necessarily monotonically
non-decreasing.

The requestor starts a new active period atτ3, causingŵ′ to
increase again.

Definition 21 (Provided service bound). The enforced upper
bound on provided service of a requestorr ∈ R is denoted
ŵ′

r(t) : N → R+, whereŵ′
r(0) = σ′

r and

ŵ′
r(t + 1) =

{

ŵ′
r(t) + ρ′r r ∈ Ra

t

w′
r(t) + σ′

r r /∈ Ra
t

(1)

It is not possible to perform accounting and enforcement in
hardware based on̂w′, sincelimt→∞ ŵ′(t) = ∞, resulting in
overflow of finite counters. Instead, the accounting mechanism
in the rate regulator is based on the potential of a requestor,
as defined in Definition 22. The potential of a requestor is
bounded since the arbiter guarantees a lower bound on pro-
vided service, as we will show in Section V. The accounting
used by the CCSP rate regulator is defined according to Defi-
nition 23. It is shown in [21] that the accounting mechanism in
Definition 23 corresponds to a recursive definition of potential,
and hence that∀t ∈ N : π(t) = π∗(t).

Definition 22 (Potential). The potential of a requestor
r ∈ R is denotedπr(t) : N → R, and is defined as
πr(t) = ŵ′

r(t) − w′
r(t).

Definition 23 (Accounting). The accounted potential of a
requestorr ∈ R is denotedπ∗

r (t) : N → R, whereπ∗
r (0) = σ′

r

and

π∗
r (t + 1) =











π∗
r (t) + ρ′r − 1 r ∈ Ra

t ∧ γ(t) = r

π∗
r (t) + ρ′r r ∈ Ra

t ∧ γ(t) 6= r

σ′
r r /∈ Ra

t ∧ γ(t) 6= r

(2)

Enforcement in the rate regulator takes place before the
accounting is updated, and is performed by determining if a
request from a requestor is eligible for scheduling. A request
becomes eligible at its eligibility time. Definition 24 states
three conditions that must be satisfied for a request at this
time: 1) all previous requests from the requestor must have
been served, 2) the requestor must be backlogged, and 3) the
requestor must have at least enough potential to serve one
service unit, including the service earned when the accounting
is updated. The eligibility criterion for a requestor is formally
defined in Definition 25.

Definition 24 (Eligibility time). The eligibility time of a
requestωk

r from a requestorr ∈ R is denotedte(ω
k
r ), and

is defined as the smallestt at which: 1)∀i < k : t ≥ tf(ω
i
r),

and 2)wr(t) > w′
r(t), and 3)πr(t) ≥ 1 − ρ′r(t).

Definition 25 (Eligible requestor). Requestorr is defined as
eligible at t if ∃k ∈ N : t ∈ [te(ω

k
r ), tf(ω

k
r ) − 1] ∧ πr(t) ≥

1 − ρ′r(t) ∧ wr(t) > w′
r(t).

Definition 26 (Set of eligible requestors). The set of re-
questors that are eligible for scheduling att is defined as
Re

t = {r | ∀r ∈ R ∧ r eligible at t}.

C. Scheduler

The CCSP arbiter uses a static-priority scheduler, as it
decouples latency and rate and is cheap to implement in
hardware. Each requestor is assigned a priority level,p, as
stated in Definition 27, where a lower level indicates higher
priority. We do not allow requestors to share priority levels.
Sharing priorities, as done in [16], results in a situation where
equal priority requestors must assume that they all have to wait
for each other in the worst-case, resulting in less tight bounds.
In this paper, we consider a scheduler that is preemptive on
the granularity of a single service unit. A preemptive non-
work-conserving static-priority scheduler schedules thehighest
priority eligible requestor, as defined in Definition 29. Thecase
of a non-preemptive scheduler is covered in [21].

Definition 27 (Priority level). A requestorr ∈ R has a priority
level pr, such that∀ri, rj ∈ R, ri 6= rj : pri

6= prj
.

Definition 28 (Set of higher priority requestors). The set of
requestors with higher priority thanri ∈ R is defined asR+

ri
=

{rj | ∀rj ∈ R ∧ pri
> prj

}.

Definition 29 (Static-priority scheduler). The scheduled re-
questor at a timet in a preemptive non-work-conserving static-
priority scheduler is defined as

γ(t) =

{

ri s.t.ri ∈ Re
t ∧ ∄rj ∈ Re

t : prj
< pri

Re
t 6= ∅

∅ Re
t = ∅

V. A RBITER ANALYSIS

In this section, we derive analytical properties of the CCSP
arbiter. First, we define and upper bound the interference
experienced by a requestor during an interval. We then use this
bound to derive the service guarantee of CCSP, and to prove
that it belongs to the class ofLR servers. Lastly, we upper
bound the finishing time of a request, based on the derived
service guarantee.

Definition 30 states that the interference experienced by a
requestor in an interval consists of two parts. The first part
is concerned with the potential of higher priority requestors
at the start of the interval and the second with the increase
of their provided service bounds during the interval. Together,
these parts determine how much an interfering requestor can
maximally be scheduled before being throttled by the rate
regulator.



Definition 30 (Interference). The interference from higher
priority requestors experienced by a requestorr ∈ R during
an interval [τ1, τ2] is denotedir(τ1, τ2) : N × N → R, and is
defined as

ir(τ1, τ2) =
∑

∀rj∈R
+
ri

(πrj
(τ1) + ŵ′

rj
(τ1, τ2)) (3)

To compute the upper bound on interference, we will bound
the two parts of Equation (3) separately. First, we introduce
two lemmas proven in [21]. Lemma 1 shows some important
relations between the requested service curve and the provided
service curve at the start of an active period and Lemma 2
establishes a relation between potential and eligibility for
active requestors. We then proceed in Lemma 3 by bounding
the increase in the upper bound on provided service during an
interval, corresponding to the second part of Equation (3).

Lemma 1. If τ1 is the start of an active period then
w(τ1) > w(τ1 − 1) = w′(τ1) = w′(τ1 − 1).

Lemma 2. ∀r ∈ Ra
t : πr(t) > σ′

r − ρ′r ⇒ r ∈ Re
t .

Lemma 3. ŵ′
r(τ, t) ≤ ρ′ · (t − τ + 1).

Proof: We prove the lemma by showing that the in-
equality holds whenŵ′

r(τ, t) is maximal. This occurs when
τ, t ∈ [τ1, τ2], where[τ1, τ2] is an active period. This in turn
is proved by showing that the first rule of Equation (1)
implies ŵ′

r(t + 1) > ŵ′
r(t), while the second rule implies

ŵ′
r(t + 1) ≤ ŵ′

r(t).
The first rule in Equation (1) implies that

ŵ′
r(t + 1) > ŵ′

r(t), since it follows from Definition 13
and Definition 15 thatρ′r ≥ 0.

We split the analysis of the second rule in Equation (1) into
two cases. In the first case, the requestor is inactive at both
t − 1 and t, corresponding to multiple cycles of inactivity. In
the second case, the requestor is active att − 1 and inactive
at t, meaning it is ending its active period.

Case 1:r /∈ Ra
t−1 ∧ r /∈ Ra

t

From the second rule in Equation (1), we get that
ŵ′

r(t + 1) = w′
r(t) + σ′

r. Since an inactive requestor
cannot be scheduled, it must hold thatw′

r(t) = w′
r(t − 1). It

hence follows that̂w′
r(t + 1) = ŵ′

r(t) if r /∈ Ra
t−1 ∧ r /∈ Ra

t .

Case 2:r ∈ Ra
t−1 ∧ r /∈ Ra

t

We proceed by showing that this case implies
ŵ′

r(t + 1) < ŵ′
r(t). Let t = τ2 + 1, where [τ1, τ2]

defines an active period. We must hence show that

ŵ′
r(τ2 + 2) < ŵ′

r(τ2 + 1) (4)

According to Definition 2,ŵ′
r(τ2 + 1) = ŵ′

r(τ1) + ŵ′
r(τ1, τ2).

From Lemma 1 and the second rule in Equation (1), we get
thatŵ′

r(τ1) = w′
r(τ1−1)+σ′

r = w′
r(τ1)+σ′

r, sincer /∈ Ra
τ1−1.

We furthermore know from the first rule in Equation (1) that
ŵ′

r(τ1, τ2) = ρ′r · (τ2 − τ1 + 1), since∀t ∈ [τ1, τ2] : r ∈ Ra
t .

This results in

ŵ′
r(τ2 + 1) = w′

r(τ1) + σ′
r + ρ′r · (τ2 − τ1 + 1) (5)

The second rule in Equation (1) states thatŵ′
r(τ2 + 2) =

w′
r(τ2 + 1) + σ′ since r /∈ Ra

τ2+1. Rewriting this using
Definition 2 results inŵ′

r(τ2+2) = w′
r(τ1) + w′

r(τ1, τ2) + σ′
r.

From Definition 16 and Lemma 1, we know thatr /∈ Ra
τ2+1 ⇒

w′
r(τ1 − 1, τ2) = wr(τ1 − 1, τ2) < ρ′r · (τ2 − τ1 + 1), as the

requestor is neither live nor backlogged atτ2+1. Putting these
results together gives us

ŵ′
r(τ2 + 2) < w′

r(τ1) + σ′
r + ρ′r · (τ2 − τ1 + 1) (6)

By substituting Equation (5) and Equation (6) into Equa-
tion (4), we see that̂w′

r(τ2 + 2) < ŵ′
r(τ2 + 1).

We hence conclude that̂w′
r(τ, t) is maximal whenτ, t ∈

[τ1, τ2], where[τ1, τ2] is an active period. According to Def-
inition 22 and the first rule of Equation (2), this implies that
ŵ′

r(τ, t) ≤ ρ′ · (t − τ + 1).
We define the concept of aggregate potential of a set of

requestors in Definition 31 and show in Lemma 4 that it
cannot increase, as long as a requestor in the set is scheduled
every cycle. This is a key result that bounds the first part of
Equation (3) in Lemma 5 and leads to an upper bound on
interference in Lemma 6.

Definition 31 (Aggregate potential). The aggregate potential
of a set of requestorsR′ ⊆ R is defined according to
∑

∀r∈R′ πr(t) =
∑

∀r∈R′ ŵ′
r(t) −

∑

∀r∈R′ w′
r(t).

Lemma 4. For a set of requestorsR′ ⊆ R, it holds that
∀t ∈ N : (∃rk ∈ R′ : γ(t) = rk) ⇒

∑

∀r∈R′ πr(t + 1) ≤
∑

∀r∈R′ πr(t).

Proof: According to Definition 2 and the definition of
aggregate potential in Definition 31
∑

∀r∈R′

πr(t+1) =
∑

∀r∈R′

πr(t)+
∑

∀r∈R′

ŵ′
r(t, t)−

∑

∀r∈R′

w′
r(t, t)

According to Lemma 3,
∑

∀r∈R′ ŵ′(t, t) ≤
∑

∀r∈R′ ρ′r, where
equality is reached if all requestors are active att. From
Definition 9, we also get that

∑

∀r∈R′ w′
r(t, t) = 1 if a

requestor inR′ is scheduled att. Hence, if∀r ∈ R′ : r ∈ Ra
t

and∃rk ∈ R′ : γ(t) = rk, then
∑

∀r∈R′

πr(t + 1) ≤
∑

∀r∈R′

πr(t) +
∑

∀r∈R′

ρ′r − 1

Finally,
∑

∀r∈R′ ρ′r ≤ 1, according to Definition 15, which
concludes the proof.

Lemma 5. For a requestorri ∈ R, it holds that∀t ∈ N :
∑

∀rj∈R
+
ri

πrj
(t) ≤

∑

∀rj∈R
+
ri

σ′
rj

. The equality occurs at any

time t for which ∀rj ∈ R+
ri

: rj /∈ Ra
t−1.

Proof: We prove the lemma by induction on t.
Base case:The lemma holds att = 0, since Definition 23
states that∀r ∈ R : πr(0) = σ′

r.

Inductive step:At t + 1, we examine two different cases for
the premise att. In the first case there exists a higher priority
eligible requestor, and in the second case there does not.
Case 1:(R+

ri
∩ Re

t ) 6= ∅
Picking rk ∈ (R+

ri
∩ Re

t ), according to Definition 29



and applying Lemma 4 results in the first inequality in
Equation (7). The second inequality follows from the
induction hypothesis.

∑

∀rj∈R
+
ri

πrj
(t + 1) ≤

∑

∀rj∈R
+
ri

πrj
(t) ≤

∑

∀rj∈R
+
ri

σ′
rj

(7)

Case 2:(R+
ri
∩ Re

t ) = ∅
No higher priority requestor is eligible in this case. We will
show that this implies thatπ(t + 1) ≤ σ′ both for requestors
with π(t) > σ′ − ρ′ andπ(t) ≤ σ′ − ρ′.

According to Lemma 2, it must hold that∀rj ∈ R+
ri
∧

rj /∈ Re
t : πrj

(t) > σ′
rj

− ρ′rj
⇒ rj /∈ Ra

t . The
third rule of Equation (2) hence states that∀rj ∈ R+

ri
:

πrj
(t) > σ′

rj
− ρ′rj

⇒ πrj
(t + 1) = σ′

rj
. For the other

case by Definition 23,∀rj ∈ R+
ri

: πrj
(t) ≤ σ′

rj
− ρ′rj

⇒
πrj

(t + 1) ≤ σ′
rj

. Hence,∀rj ∈ R+
ri

: πrj
(t + 1) ≤ σ′

rj
.

This means that
∑

∀rj∈R
+
ri

πrj
(t+1) ≤

∑

∀rj∈R
+
ri

σ′
rj

, which
proves the second case.

The aggregate potential of higher priority requestors is
maximal when∀rj ∈ R+

ri
: πrj

(t) = σ′
rj

, which occurs at
any timet for which ∀rj ∈ R+

ri
: rj /∈ Ra

t−1.

Lemma 6 (Maximum interference). The maximum interfer-
ence from higher priority requestors experienced by a re-
questorri ∈ R during an interval [τ1, τ2] occurs when all
higher priority requestors start an active period atτ1 and
remain active∀t ∈ [τ1, τ2], and equals

îri
(τ1, τ2) =

∑

∀rj∈R
+
ri

σ′
rj

+ ρ′rj
· (τ2 − τ1 + 1) (8)

Proof: We know from Equation (3) that interference is
defined asiri

(τ1, τ2) =
∑

∀rj∈R
+
ri

(πrj
(τ1) + ŵ′

rj
(τ1, τ2)).

Lemma 5 states that
∑

∀rj∈R
+
ri

πrj
(τ1) ≤

∑

∀rj∈R
+
ri

σ′
rj

,
which is maximal when all higher priority requestors are
inactive at τ1 − 1. We furthermore know from Lemma 3
that

∑

∀rj∈R
+
ri

ŵ′
rj

(τ1, τ2) ≤
∑

∀rj∈R
+
ri

ρ′rj
· (τ2 − τ1 + 1),

which is maximal when∀t ∈ [τ1, τ2] : rj ∈ Ra
t . Hence,

îri
(τ1, τ2) =

∑

∀rj∈R
+
ri

σ′
rj

+ρ′rj
·(τ2−τ1+1) when all higher

priority requestors start an active period atτ1, and remain
active∀t ∈ [τ1, τ2].

We continue in Theorem 1 by deriving the service guarantee
of a CCSP arbiter, and to compute its service latency. We then
prove in Theorem 2 that CCSP belongs to the class ofLR
servers. These theorems hold only for requestors that are eli-
gible during backlogged periods, i.e. whenr ∈ Rq

t ⇒ r ∈ Re
t .

This is accomplished by configuringρ′ ≥ ρ, according to
Definition 15, and lettingσ′ ≥ σ. We configureσ′ = σ for
hard real-time requestors, since there is no benefit in allocating
higher burstiness than requested. Configuringσ′ < σ causes
the regulator to limit the burstiness of a requestor, resulting in
that the bound on service latency is increased. This is useful
to protect hard real-time requestors from bursty soft real-time
requestors that are not interested in bounds on service latency.

Theorem 1 (Service guarantee). An active requestorri ∈ R,
for which σ′

ri
≥ σri

, is guaranteed a minimum service

during an active period[τ1, τ2] according to∀t ∈ [τ1, τ2] :
w̌′

ri
(τ1, t) = max(0, ρ′ri

· (t − τ1 + 1 − Θri
)), where

Θri
=

∑

∀rj∈R
+
ri

σ′
rj

1 −
∑

∀rj∈R
+
ri

ρ′rj

(9)

Proof: It suffices to show that the theorem holds for
intervals whereτ2 − τ1 + 1 > Θri

, as these are the only
intervals for whichw̌′

ri
(τ1, τ2) > 0. For these intervals, we

must show that

∀t ∈ [τ1, τ2] : w̌′
ri

(τ1, t) = ρ′ri
· (t − τ1 + 1 − Θri

) (10)

We prove the theorem by splitting the active period in two
cases. In the first case, we look at the behavior ofri during
backlogged periods within the active period, where the k:th
backlogged period is denoted[αk, βk]. It is assumed that
∀t ∈ [αk, βk] : ri ∈ Re

t . In the second case, the requestor is
in a live and not backlogged state.

Case 1:∀t ∈ [αk, βk] : ri ∈ Rq
t

The requestor is eligible in the interval since
σ′

ri
≥ σri

;∧ r ∈ Rq
t ⇒ r ∈ Re

t . There are(βk − αk + 1)
units of service available in the backlogged interval. An
eligible requestor in a static-priority scheduler cannot
access the resource whenever it is used by higher
priority requestors. The minimum service available to
ri, denoted w̌a

ri
, can hence be expressed according to

w̌a
ri

(αk, βk) = βk − αk + 1 − îri
(αk, βk). Since ri is

continuously backlogged and eligible in the interval, it
follows thatw̌′

ri
(αk, βk) = w̌a

ri
(αk, βk). We proceed by using

the result from Lemma 6 to bound the maximum possible
interference.

w̌′
ri

(αk, βk) = βk − αk + 1−
∑

∀rj∈R
+
ri

σ′
rj

−
∑

∀rj∈R
+
ri

ρ′rj
· (βk − αk + 1) (11)

Combining Equation (10) and Equation (11) results in

ρ′ri
· (βk − αk + 1 − Θri

) =

βk − αk + 1 −
∑

∀rj∈R
+
ri

σ′
rj

−
∑

∀rj∈R
+
ri

ρ′rj
· (βk − αk + 1)

We replaceρ′ri
by 1 −

∑

∀rj∈R
+
ri

ρ′rj
, which is valid since

1 −
∑

∀rj∈R
+
ri

ρ′rj
≥ ρ′ri

, according to Definition 15. Solving
for Θri

results in Equation (9), proving the first case.

Case 2:ri ∈ Rl
t ∧ ri /∈ Rq

t

According to Definition 17, ri ∈ Rl
t implies that

w̌ri
(τ1 − 1, t − 1) = ρ′ri

· (t − τ1 + 1). On the other hand,
Definition 11 states thatri /∈ Rq

t means thatwri
(t) = w′

ri
(t).

By combining these results we get that

w̌′
ri

(τ1 − 1, t − 1) = ρ′ri
· (t − τ1 + 1) (12)

We know from Lemma 1 thatw′
ri

(τ1 − 1) = w′
ri

(τ1).
We also know from Definition 9 thatw′

ri
(t, t) ≥ 0.



Substituting these results into Equation (12) gives us
w̌ri

(τ1, t) = ρ′ri
· (t − τ1 + 1), proving the second case.

Theorem 2 (LR server). A CCSP arbiter belongs to the class
of LR servers, and the service latency of an active requestor
ri ∈ R, for which σ′

ri
≥ σri

, is equal to Equation(9).

Proof: According to [19], it is sufficient to show that
∀t ∈ [τ1, τ2] : r ∈ Re

t ⇒ w̌′
ri

(τ1, τ2) = max(0, ρ′ri
· (τ2 −

τ1 + 1−Θri
)). This is shown in the first case of the proof of

Theorem 1.
Theorem 2 proves that CCSP belongs to the class ofLR

servers. Our derived service latency is furthermore the same as
that of SRSP, derived in [22]. Note in Equation (9) that latency
and rate are decoupled by the priority level of a requestor. We
conclude this section by using the service guarantee to derive
a bound on the finishing time of a request in Theorem 3.

Theorem 3 (Finishing time). The finishing time of a re-
questωk

r from a requestorr ∈ R, for which it holds that
∀t ∈ [te(ω

k
r ), tf(ω

k
r ) − 1] : r ∈ Ra

t , is bounded according to

tf(ω
k
r ) ≤ te(ω

k
r ) + Θr +

s(ωk
r )

ρ′r

Proof: We know from Theorem 1 that a requestor in
an active period[τ1, τ2] receives service according to∀t ∈
[τ1, τ2] : w̌′

ri
(τ1, t) = ρ′r · (t − τ1 + 1 − Θr). The maximum

finishing time of ωk
r equals t + 1 for the minimum t for

which it holds thatw̌′
ri

(te(ω
k
r ), t) = s(ωk

r ). We hence get
that ρ′r · (t − te(ω

k
r ) + 1 − Θr) ≥ s(ωk

r ). Solving for t

results int ≥ te(ω
k
r ) + Θr +

s(ωk
r )

ρ′

r
− 1, which implies that

tf(ω
k
r ) ≤ te(ω

k
r ) + Θr +

s(ωk
r )

ρ′

r
.

VI. H ARDWARE IMPLEMENTATION

The proposed arbiter, shown in Figure 6, has been im-
plemented in VHDL and integrated into the Predator DDR2
SDRAM controller [23]. This controller is used in the context
of a multi-processor SoC that is interconnected using the
Æthereal NoC [24]. Requests arrive at a network interface
(NI) on the edge of the network, where they are stored in
separate buffers per requestor.

cfg

Rate regulator

request
buffers

SchedulerNI

bank
R

egister

Update
state

E
ligibility test 

LUT

P
riority sw

itch

qr(t)

πr(t)

γ(t)

Fig. 6. A CCSP arbiter supporting three requestors.

A register bank contains a discrete representation of the
service allocation and accounted potential for every requestor.
These registers are programmable using memory mapped IO
for run-time (re)configuration via the NoC. It is shown in [21]
that the amount of over-allocation can be made arbitrarily

small by increasing the precision of this representation without
affecting the latency of a requestor. The static-priority sched-
uler is implemented by a tree of multiplexers that simply grants
access to the highest priority requestor that is eligible, an
operation that is faster than comparing multiple-bit deadlines,
as done in [11]. The scheduled requestor is output from the
arbiter, but also fed back to a unit that updates the registerbank
to reflect changes in potential, as discussed in Section IV-A.
Configurable priorities are implemented with a programmable
priority switch that maps the request buffers according to their
priority levels. The switch is combined with a look-up table
(LUT) that remaps the index of the scheduled requestor, as
shown in Figure 6.

Synthesis of the arbiter in a 90 nm CMOS process with six
ports results in a cell area of 0.0223 mm2 at a frequency of
250 MHz, which is above 200 MHz required for a DDR2-
400 SDRAM device. Figure 7 illustrates the scalability of
the implementation by showing the area of the arbiter for an
increasing number of ports. The speed target of 200 MHz is
satisfied for up to ten requestors and the figure suggests that
the area increases rather linearly in this range.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

2 4 6 8 10

A
re

a 
[m

m
2 ]

Ports

Fig. 7. The area of the arbiter for a different number of ports

VII. E XPERIMENTAL RESULTS

We have used CCSP as a DDR2 memory controller arbiter
in a SystemC simulation of a use-case involving an H.264
video decoder. The H.264 decoder contains a number of
requestors communicating through external memory. Access
to a DDR2-400 SDRAM is provided by a Predator SDRAM
controller [23]. A benefit of this controller is that the arbiter
schedules memory accesses of 64 byte (B) to the requestors, as
opposed to scheduling time, which means that the amount of
work associated with a request is always known. This allows
us to use the same setup to experiment with both CCSP and
SRSP. The time required by the memory controller to serve a
service unit corresponds to approximately 80 ns.

The use-case contains a file reader (FR) that reads an
encoded image and stores it in external memory. This requestor
issues requests of 64 B each and is extremely bursty. The
decoder software is running on a TriMedia 3270 [25]. The
TriMedia uses separate read and write connections (TMrd,
TMwr) to communicate with external memory through an L1
cache with a line size of 128 B. Finally, a display controller



TABLE I
REQUESTOR CONFIGURATION AND RESULTS.

Requestor σ
′

ρ
′

p avg.Θ max Θ Θ

TMrd 8.0 0.106 0 3.19 9 N/A
TMwr 4.0 0.061 1 8.60 18 N/A
DC 2.0 0.047 2 0.10 2 N/A
FR 2.0 0.017 3 55.67 63 N/A

HRT1 4.4 0.340 4 0.17 10 20
HRT2 3.4 0.340 5 2.23 23 47

(DC) reads the decoded image in blocks of 128 B and shows
it on a display. For the purpose of this paper, the application is
considered as soft real-time with deadlines at the granularity
of decoded frames. We add two hard real-time requestors,
(HRT1, HRT2), mimicked by traffic generators, to create a
hybrid system. These issue read and write requests of 128
B to external memory. High priority is assigned to the soft
real-time requestors and lower priorities to the hard real-time
requestors, according to the assignment strategy in [14].

We simulated the system with a number of different service
allocations. The allocation parameters (σ′ andρ′) of the hard
real-time requestors were chosen such that the rate regulator
never slowed them down and violated their bounds on service
latency. For the soft real-time requestors,ρ′ was chosen based
on measurements such thatρ′ ≥ ρ and σ′ < σ. Table I lists
one of the simulated configurations. A total of 600 MB/s is
allocated to the requestors, corresponding to a load of 90.7%
of the capacity offered by the memory controller for a 16-bit
DDR2-400 device after taking unavoidable access overhead
into account [23]. Table I presents average service latencies
and the maximum measured service latencies for all requestors
after2·108 ns of simulation. The corresponding service latency
bounds, obtained using Equation (9), are also listed for hard
real-time requestors. Note that the average service latency of
the soft real-time requestors includes the time required to
build up sufficient potential, sinceσ′ < σ. The maximum
measured service latencies are lower than the bounds for both
hard real-time requestors, as expected. However, we note that
the difference between the maximum measured value and the
bound increases with lower priorities. A reason for this is that
the risk of simultaneous maximum interference from all higher
priority requestors becomes increasingly unlikely with lower
priorities. As a comparison, we inverted the priorities of all
requestors in the use-case, resulting in maximum measured
service latencies of 4 and 0 and bounds of 5 and 0 for HRT1

and HRT2, respectively.
All simulations have been repeated with an SRSP arbiter,

and the latency results proved to be identical for every single
request for all configurations. This result, suggests that CCSP,
unlike SRSP, has the benefits of regulating provided service,
mentioned in Section IV-A, without introducing additional
latency. It is furthermore shown in [21] that the buffering
requirements and burstiness at the output of the two arbiters
are the same since they have identical service latencies.

VIII. C ONCLUSIONS

We present a Credit-Controlled Static-Priority (CCSP) ar-
biter to schedule access to resources, such as interconnect

and memories in systems-on-chip. CCSP is an arbiter with a
rate regulator that enforces a burstiness constraint on provided
service together with a static-priority scheduler. Regulating
provided service, as opposed to regulatingrequestedservice
has two benefits: the implementation of the regulator is less
complex, and the amount of work associated with a particular
request does not have to be known. We show that CCSP
enjoys these benefits, without increasing latency, compared to
an arbiter regulating requested service. We show that CCSP
belongs to the class of latency-rate (LR) servers and guar-
antees the allocated service rate within a maximum latency,
required by hard real-time applications. CCSP decouples rate
and allocation granularity from latency and has a low-cost
implementation. An instance with six ports runs at 250 MHz
and requires 0.0175 mm2 in a 90 nm CMOS process.

REFERENCES

[1] L. Abeni and G. Buttazzo, “Resource Reservation in Dynamic Real-Time Sys-
tems,” Real-Time Systems, vol. 27, no. 2, 2004.

[2] K. Goossenset al., “Interconnect and memory organization in SOCs for advanced
set-top boxes and TV — Evolution, analysis, and trends,” inInterconnect-Centric
Design for Advanced SoC and NoC, 2004, ch. 15.

[3] M. Kateveniset al., “Weighted round-robin cell multiplexing in a general-purpose
ATM switch chip,” IEEE J. Sel. Areas Commun., vol. 9, no. 8, Oct. 1991.

[4] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,”
in Proc. SIGCOMM, 1995.

[5] H. Zhang, “Service disciplines for guaranteed performance service in packet-
switching networks,”Proceedings of the IEEE, vol. 83, no. 10, Oct. 1995.

[6] C. R. Kalmanek and H. Kanakia, “Rate controlled servers for very high-speed
networks,”Proc. GLOBECOM, 1990.

[7] S. J. Golestani, “A stop-and-go queueing framework for congestion management,”
in Proc. SIGCOMM, 1990.

[8] S. S. Kanhere and H. Sethu, “Fair, efficient and low-latency packet scheduling
using nested deficit round robin,”High Performance Switching and Routing, 2001
IEEE Workshop on, 2001.

[9] D. Sahaet al., “Carry-over round robin: a simple cell scheduling mechanism for
ATM networks,” IEEE/ACM Trans. Netw., vol. 6, no. 6, 1998.

[10] G. Buttazzo,Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Springer, 2004.

[11] J. Rexfordet al., “A router architecture for real-time point-to-point networks,” in
Proc. ISCA, 1996.

[12] B. Kim and K. Shin, “Scalable Hardware Earliest-Deadline-First Scheduler for
ATM Switching Networks,”Proc. RTSS, 1997.

[13] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-real-time
systems,”The Journal of Real-Time Systems, no. 1, 1989.

[14] S. Hosseini-Khayat and A. Bovopoulos, “A simple and efficient bus management
scheme that supports continuous streams,”ACM TOCS, vol. 13, no. 2, 1995.

[15] S. Heithecker and R. Ernst, “Traffic shaping for an FPGA based SDRAM controller
with complex QoS requirements,” inProc. DAC, 2005.

[16] H. Zhang and D. Ferrari, “Rate-controlled service disciplines,”Journal of High-
Speed Networks, vol. 3, no. 4, 1994.

[17] R. Cruz, “A calculus for network delay. I. Network elements in isolation,”IEEE
Trans. Inf. Theory, vol. 37, no. 1, 1991.

[18] J.-Y. L. Boudec and P. Thiran,Network calculus: a theory of deterministic queuing
systems for the internet. Springer-Verlag New York, Inc., 2001.

[19] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for analysis of
traffic scheduling algorithms,”IEEE/ACM Trans. Netw., vol. 6, no. 5, 1998.

[20] M. H. Wiggerset al., “Modelling run-time arbitration by latency-rate servers in
dataflow graphs,” inProc. SCOPES, 2007.

[21] B. Akesson et al., “Real-Time Scheduling of Hybrid Systems using Credit-
Controlled Static-Priority Arbitration ,” NXP Semiconductors, Tech. Rep., 2007,
http://www.es.ele.tue.nl/˜kakesson/publications/pdf/NXP-TN-2007-00119.pdf.

[22] R. Agrawal and R. Rajan, “Performance bounds for guaranteed and adaptive
services,” IBM Research, Tech. Rep. RC20649 (91385), May 1996.

[23] B. Akessonet al., “Predator: a predictable SDRAM memory controller,” inProc.
CODES+ISSS, 2007.

[24] K. Goossenset al., “The Æthereal network on chip: Concepts, architectures, and
implementations,”IEEE Des. Test. Comput., vol. 22, no. 5, Sep. 2005.

[25] J.-W. van de Waerdtet al., “The TM3270 Media-Processor,” inProc. MICRO 38,
2005.


