Real-Time Scheduling Using Credit-Controlled
Static-Priority Arbitration

Benny Akessoh Liesbeth Stefferfs Eelke Strooismg and Kees Goossehs
ITechnische Universiteit Eindhoven, The Netherlands
2NXP Semiconductors Research, Eindhoven, The Netherlands
3Delft University of Technology, The Netherlands
k.b.akesson@tue.nl

Abstract—The convergence of application domains in new the SoC [1], [2]. To satisfy these requirements, hard rigad-t
systems-on-chip (SoC) results in systems with many applications requestors require guaranteed minimum service rate and a
with a mix of soft and hard real-time requirements. To reduce bounded maximum latendfiat can be analytically verified

cost, resources, such as memories and interconnect, are shdre t desian time. In ntrast ft real-tim licatiarchs
between applications. However, resource sharing introduces in- &t d€SI9 €. In contrast, a soit real-ime applicatiarg

terference between the sharing applications, making it difficult as software video decoding, is typically very bursty and has

to satisfy their real-time requirements. Existing arbiters do not tight deadlines on a much coarser grain than their hard real-
efficiently satisfy the requirements of applications in SoCs, as time counterparts. These deadlines may span thousands of
they either couple rate or allocation granularity to latency, or requests, making the worst-case latency of a single request

cannot run at sufficiently high speeds in hardware with a low-cost . . L . .
implementation. yhigh sp less interesting. Missing a soft deadline reduces the tyuatli

The contribution of this paper is an arbiter called Credit- the application output, such as causing a frame skip in video
Controlled Static-Priority (CCSP), consisting of a rate regulator playback, which may be acceptable as long as it does not
and a static-priority scheduler. The rate regulator isolates appli- occur too frequently [1]. Soft real-time requestors reeuar

cations by regulating the amount of provided service in a way that - g,aranteed minimum service rate and a low average latency
decouples allocation granularity and latency. The static-priority P . -
to minimize deadline misses.

scheduler decouples latency and rate, such that low latency can o 3 :)
be provided to any application, regardless of the allocated rate. ~ EXisting arbiters fail to cater to the above-mentioned re-
We show that CCSP belongs to the class of latency-rate serversquirements for at least one of the following three reasops: 1
and guarantees the allocated service rate within a maximum allocation granularity is coupled to latency, resultinglamg
latency, required by hard real-time applications. We present a |5tancies or over-allocation due to discretization, 23y is

hardware implementation of the arbiter in the context of a DDR2 - . .
SDRAM controller. An instance with six ports runs at 250 MHz coupled to rate, preventing low latency from being provited

and requires 0.0175 mm in a 90 nm CMOS process. requestors with low rate requirements without over-afiimca
or 3) they cannot run at sufficiently high speeds in hardware
. INTRODUCTION with a low-cost implementation.

A contemporary multi-processor system-on-chip (SoC) con-The contribution of this paper is a novel arbiter called
sists of a large number of intellectual property componen@redit-Controlled Static-Priority (CCSP), consistingafate
(IP), such as streaming hardware accelerators and prasessegulator and a static-priority scheduler. The rate reguliso-
with caches, running many applications. Resources, suchl@®gs requestors by regulating the amount of provided servi
memories and interconnect, are shared between applisationa way that decouples allocation granularity and lateiibg
to reduce system cost. However, resource sharing intreduseatic-priority scheduler decouples latency and rateh shat
interference between applications, making it difficult atisfy low latency can be provided to any requestor, regardless of
their real-time requirements. We refer to users of the nessu the allocated rate.
as requestors corresponding to processes in the context of This paper is organized as follows. In Section Il, we review
CPUs, or communication channels in case of a memory i@lated work and discuss why existing arbiters do not satisf
an interconnect, that act on behalf of an application. Resouthe requirements of hybrid systems in SoCs. We introduce
access is provided by arbiters that require a low-cost harelwa formal model in Section Ill and show how service curves
implementation and run at high speeds. A low-cost implemeare used to describe the interaction between requestors and
tation allows multiple instances to fit in a limited area anthe arbiter. We introduce the CCSP arbiter in Section IV and
high speed is required to schedule access on a fine levelegplain the operation of the rate regulator and staticripyio
granularity, reducing latency and buffers. scheduler. In Section V, we show that CCSP belongs to the

We consider resource scheduling hybrid systemg1] class of latency-rate{R) servers and provides a minimum
that contain applications with both soft and hard real-timemount of service within a maximum latency, required by hard
requirements. Hard real-time applications, such as audlt- p real-time requestors. An efficient hardware implementaito
processing, typically have predictable and regular requgsesented in Section VI in the context of a DDR2 SDRAM
patterns. Their deadlines are not very tight, but must adwagontroller. We study experimental results for a hybrid eyst
be met in order to guarantee the functional correctness rohning an H.264 decoder in Section VII, before finishingwit

conclusions in Section VIII. Rate-Controlled Static-Priority [16] is an arbiter with tatsc-
priority scheduler that decouples latency, rate and diloca
Il. RELATED WORK granularity. It controls rate by holding requests untilta@r
Many arbiters have been proposed in the context of commgenstraints on minimum and average inter-arrival times be-
nication networks. Several of these are based on the Rouiwleen requests from a requestor are satisfied. However, this
Robin algorithm because it is simple and starvation-freegquires a potentially large number of time-stamps to besdto
Weighted Round-Robin [3] and Deficit Round-Robin [4] aré the arbiter, which is not feasible for a resource arbitea i
extensions that guarantee each requestor a minimum servigeC.
proportional to an allocated rate, in a frame of fixed size. We propose Credit-Controlled Static-Priority arbitratifor
This type offrame-basedarbitration suffers from a coupling scheduling access to SoC resources. CCSP resembles an ar-
between allocation granularity and latency, where thecalo biter with a rate regulator that enforce$® p) constraint [17]
tion granularity is inversely proportional to the framees[s]. on requested service together with a static-priority salerda
Larger frame sizes result in finer allocation granularjtiesombination we refer to as Sigma-Rho Static-Priority (SRSP
reducing over-allocation, at the cost of increased latciin this paper. Similarly to SRSP, the CCSP rate regulator
for all requestors. This granularity issue is addressedjn [replenishes the service available to a requestor incregnt
[8] with hierarchical framing strategies and in [9], wherénstead of basing it on frames, decoupling allocation gran-
tracking debits and credits accomplishes exact allocati@r ularity and latency. Both arbiters furthermore use priesit
multiple frames. The above-mentioned algorithms, as wéti decouple latency and rate. However, instead of enforcing
as the family of Fair Queuing algorithms [5], are unable ta (o, p) constraint onrequested servicelike SRSP, CCSP
efficiently distinguish different latency requirements, #he enforces it onprovided serviceRegulating provided service
rate is the only parameter affecting scheduling. This tesol reduces the complexity of the implementation, and allows a
an unwanted coupling between latency and rate, where katepceemptive arbiter to efficiently handle requests with wvin
is inversely proportional to the allocated rate. Requestith — sizes. We furthermore show that CCSP has a low-cost hard-
low rate requirements hence suffer from high latency unlegsre implementation that runs at high speeds.
their rates are increased, reducing resource utilization.
Much work has been carried out in the real-time community [1l. FORMAL MODEL

concerning server-based scheduling of aperiodic and djmora In this section, we introduce the formal model used in

requmelstors [10}' However, many olfl thesg 3_ssum3 that th?ﬁ% paper. We explain how service curves are used to model
IS only a single Server serving all aperiodic an sporad{ﬁe interaction between the requestors and the resource in

requesfcs and are hence unable to distinguish the requitsm%?.a(:tion IlI-A. We proceed by discussing the models used to
of multlple_ requestors. They furthermore often coupleriaye oundrequested servicand provided serviceén Section IlI-B
and rate since they use the server period and allocated bu Section I1I-C, respectively

g:\sz def;t;?; Cl?'g]rgurt'en? tliiqtenrcles, stln;narlry to r:nc&stl fra.me'Throughout this paper, we use capital letters (A) to denote
b i t-d adiin -ﬁr ¢ EeDFeques %SI are icl edulsd 'nsets, hats to denote upper bound$}, @nd checks to denote
by a0r|1 e.jtrh'es eadiine j f()fsc el uler, while a tm"BTAower bounds). Subscripts are used to disambiguate between
andwiath Server 1S used for soft rea 't'm(_e rquestorss Variables belonging to different requestors, althougtcfarity
approach is not applicable to resource arbiters in SoCg, as, |

N . thkse subscripts are omitted when they are not required. To
is difficult to provide a low-cost hardware implementation o P y q .

an EDF scheduler that runs at sufficiently high speeds. TFimphasue the generality of our approach, and its applitabi

e L .
) . . a wide range of resources, we abstract from a particular
'mp'_eme”Fa“O” of an EDF scheduler in [11] uses a tree 9rget resource, such as memories or (multi-hop) interectsn
multiple-bit comparators to compare deadlines in the fiyior j

We adopt an abstract resource view, where a service unit

queue, which is too slow for SoC resources, Su‘?h as mem.oré%§responds to the access granularity of the resource. Time
and interconnect. A more scalable implementation is pexyid.

in [12]. However, this implementation requires doubletpdr is discrete and a time unit, referred to asyale is defined as
' , this Imp €quires doubletpar .o time required to serve such a service unit. We use closed
SRAM memory, which is too expensive for many arbiter

; discrete time intervals anf, {] hence includes all cycles in
in a SoC. Among the work in this community, our work i, . sequencér, 7 + 1 t%l} £) yeles

most similar to a sporadic server with incremental repkenis

ment [10], [13], although with an accounting mechanism thgt

is simple enough to implement in hardware. ') .)
The scheduling approaches in [14], [15] employ static- We use service curves [18] to model the interaction between

priority arbiters, where high priority is assigned to seak the resource and the requestors. These service curvespare ty

time requestors to achieve low average latency. The approég@lly cumulative and monotonically non-decreasing inetim

of scheduling hybrid systems using a static-priority abit We start by defining two operators for working with service

has the benefit of being cheap to implement in hardwaf@!rves in Definition 1 and Definition 2.

However, the proposed arbiters have significant short-69&)i pefinition 1. ¢(t) denotes the value of a service curgeat

as the rate regulators are frame-based and couples aliocafj,o beginning of a cycle.

granularity, latency and rate, despite the use of prigitie

Service curves

Definition 2. £(r,t) denotes the difference in values betweebefinition 8 (Starting time of a request)The starting time of
the endpoints of the closed intenval t|, wheret > 7, and is a requestw” is denotedt,(w¥) : Q, — N, and is defined as
defined asf(r,t) = &(t + 1) — &(7). the smallest at whichw” is scheduled.

The resource is shared between a set of requestors, as stat@the provided service curvey’, defined in Definition 9,
in Definition 3. A requestor generates requests of variabte lreflects the amount of service units provided by the resource
bounded size, as defined in Definition 4. to a requestor. A service unit takes one cycle to serve. The
provided service is hence increased at 1, if a requestor is
scheduled at. A request leaves the resource when the last
service unit of the request has been served, corresponding
Definition 4 (Request) The k:th requesti € N) from a to when the last bit is read or written in case of a memory
requestorr € R is denotedv® € €,.. The size ofo¥ in service controller. An illustration of a requested service curvel @n
units is denoteds(wk) : Q, — N*. provided service curve is provided in Figure 1.

Definition 3 (Set of requestors)The set of requestors sharing
the resource is denoteR.

Requests arrive in separate buffers per requestor at iefinition 9 (Provided service curve)The provided service
resource according to Definition 5. For clarity, it is assdmecurve of a requestor € R is denotedw!.(¢) : N — N, where
that only a single request arrives per requestor in a péaticuw’.(0) = 0 and
cycle, although this is easy to generalize. A request isidens
ered to arrive as an impulse when it has completely arrived, W4 1) = w(t)+1 ~y(t)=r
which for instance in the case of a memory controller is upon " w! (t) y(t) #r
arrival of the last bit of the request. This is captured by the
requested service curve, defined in Definition 6. Note that The finishing time of a request corresponds to the first
Definitions 5 and 6 state that a requested service curve at tigycle in which a request is completely served, as defined in
t + 1 accounts for a request with arrival timer 1. Definition 10. The amount of requested service that has not
been served at a particular time is referred to as the backlog

Definition 5 (Arrival time). The arrival time of a request, of a requestor and is defined in Definition 11.

from a requestor € R is denotedt, (w¥) : Q, — N*, and
corresponds to the cycle in whichf® has completely arrived. Definition 10 (Finishing time of a request)The finishing time

i . . of a requestw! is denotedts(w¥) : Q, — N, and is defined
Definition 6 (Requested service curvejhe requested service 4o ti(wh) = min({t | t € NAw(t) = wl(t, () + s(wF)})
curve of a requestor € R is denotedw, (¢) : N — N, where " " rae rees
w,.(0) = 0 and Definition 11 (Backlog) The backlog of a requestor € R

at a timet is denotedg,.(t) : N — N, and is defined as
!/
wye(t) + s(WF) 3wkt (WF) =t +1 4r(t) = wr(t) = wr(t).

we(t+1) = {wr(t) fwk : to(wh) =t +1 Definition 12 (Set of backlogged requestorsjhe set of
T requestors that are backlogged atis defined asR! =
The scheduler in the resource arbiter attempts to schedulg-g vr € R A ¢,.(t) > 0}.
requestor every cycle according to its particular scheduli) .))
policy, according to Definition 7. The first cycle in which To work with service curves analytically, traffic models

a requesto® is scheduled is referred to as its starting timeif® Used to characterize the behavior of the curves. This
t,(w*), defined in Definition 8. abstraction has the benefit that analytical results can thecde

without exact knowledge of a service curve [5]. Characteriz
tions that bound the requested and provided service curves

A — w are required to provide an upper bound on latency, which is
:Ej, needed to satisfy the requirements of hard real-time reégrges
©c @ /
£ 3 w
E’ % . B. Requested service model
§ @ alti(w7) We use the(o, p) model [17] to characterize the requested
service curve. The model uses a linear function to express a
s(wh) I Ce(wh) burstiness cons_traint, ano_l is fre_quently used to upp_erdbmm _
, L - - requested service curve in an interval. The bounding fancti
ta@k) ts((;uk) Time [cycles] is determined by two parameters,and p, corresponding to

burstiness and average request rate, respectively. Dafirdi8
Fig. 1. A requested service curve, a provided service cunderapresenta- defines a(o, p)-constrained service curve, and its graphical
tions of the surrounding concepts. interpretation is shown in Figure 2.

o Definition 13 ((o,p) constraint) A service curve,, is
Definition 7 (Scheduled requestor)The scheduled requestordefined to be(o,p) constrained in an intervallr,t] if

at a timet is denotedh(t) : N — RU {@}. Ert)=c+p-(t—7+1).0,peRT andp < 1.

A e “:f' Definition 16 (Active period) An active period of a requestor
T w r € R is defined as the maximum interval, 2], such that
s w Vi€ [m, 1) i we (i —1,6=1) > pl-(t—11+1) V ¢.(¢t) > 0.
% o) Requestor is activeVt € [, 1.
g § g/ Definition 17 (Live requestor) A requestorr € R is de-
a3 fined as live at a time during an active periodr, o] if
< _ wp(m — 1,6 —1) > pl- (t — 71 +1).
o=0a $ P Definition 18 (Set of active requestors) The set
- > of requestors that are active att is defined as
o Time [cycles] Ry = {r | ¥r € R Ar active att}.

Definition 19 (Set of live requestors) The set
of requestors that are live att is defined as
Rl ={r|Vre R A rlive att}.

Fig. 2. A requested service curve and a provided serviceecalong with
their corresponding bounds.

Figure 3 illustrates the relation between being live, back-

Hard real-time requestors typically correspond to haréwalogged and active. Three requests arrive starting fram
IPs with regular and predictable access patterns that lerd+t keeping the requestor live untiy. The requestor is initially
selves to characterization. Soft real-time requestorgiekier, both live and backlogged, but the provided service curve
are typically burstier than their hard real-time countetfga catches up with the requested service curve,atThis puts
and may hence have @ that is very large. Soft real-time the requestor in a live and not backlogged state ugtilThe
requestors may additionally be very difficult to charaateri requestor is neither live nor backlogged betwegnand 74,
as applications become more dynamic and input dependext.no additional requests arrive at the resource. The remues
However, in this paper, we assume that all requestors hdaecomes live and backlogged agairratsince two additional
been accurately characterized, according to Definition 14. requests arrive within a small period of time. The requestor
stays in this state untit;, since not enough service is provided
to remove the backlog. The requestor is hence backlogged but
not live at 75, and remains such untit;. The requestor in
Figure 3 is active between, andr; and between, and g,
according to Definition 16. Note from this example that a live

The purpose of the provided service model is to give rgduestor is not necessarily backlogged, nor vice versa.
lower bound on the provided service curve based on the

Definition 14 (Requestor) A requeston- € R is characterized
by (o, pr), Which is a(e, p) constraint onw,..

C. Provided service model

service allocation of a requestor. The service allocated to live | X [x] | []
requestor in our model depends on two parameters, as defined backlogged | X [] IEEEES

in Definition 15. These are the allocated service rateand active | X [X] [x [X |
allocated burstiness;, respectively. The definition states three

constraints that must be satisfied in order for a configunatio 3

be valid: 1) the allocated service rate must be at least dqual T o P W,
the average request raig, to satisfy the service requirement g “;’ -7 :w
of the requestor, and to maintain finite buffers, 2) it is not S5 @ S :
possible to allocate more service to the requestors than wha g ¢ S :

is offered by the resource, and 3) the allocated burstiness < o

must be sulfficiently large to accommodate a service unit. The el To T3 ' T4 s Te
last condition is required for the latency bound derived in

Section V to be valid. Time [cycles]

Definition 15 (Allocated service) The service allocation of a Fig. 3. Example service curves illustrating the relationateein being live,
; . o + + ; backlogged, and active.
requestorr € R is defined ago., p.) € R* xR*. For a valid

allocation it holds thatvr € R : p,. > pr, D yrenpr < 1, . . , ,
andvr e R: ol > 1. The service provided to a requestor is defined by two param-

eters® andp’, being latency and allocated rate, respectively.
Our provided service model is based on the notioaciive To disambiguate, we refer t©, defined in Definition 20, as
periods Definition 16 states that a requestor is active #t service latencyhroughout this paper. The definition states that
it is either live att (Definition 17), backlogged at, or both. service is provided to an active requestor according to the
Definition 17 states that a requestor must on average hal®cated ratep’, after the service latencg. This means that
requested service according to its allocated rate sincetélie p’ and © define a lower boundy’, on the provided service
of the latest active period to be considered live at a time curve during an active period, as shown in Figure 2.

Definition 20 (Service latency) The service latency of a Wro(t) I (N o[
requestorr € R is defined as the minimuf,. € N, such that Request -~ o
during any active periodry, 2] it holds thatVt € |1y, 7] : buffers regulator Scheduler
W (1, 1) = max(0, - (f— 71 + 1 - ©,)). ol T - .

We show in Section V that CCSP belongs to the class of b T g h
LR servers [19], which is a general frame-work for analyzing ~()

scheduling algorithms. The lower bound on provided service

in Definition 20 is a key characteristic afR servers. The Fig. 4. An arbiter with a rate regulator that enforces an uggrind on

authors of [19] use this bound to derive general bounds orevided service.

buffering and latency that are valid for any combinationC@®

servers in sequence. It is furthermore shown in [20] thafa

server can be modeled as a cyclo-static data-flow graph witbsociated with a particular request does not have to berknow

two tasks. This allow€£R servers to be used also in data-flowVe discuss these benefits in more detail.

analysis, which has the added benefits that the presencewvof flo A regulator that enforces an upper bound on provided

control can be accurately modeled and that applicatioaetlewservice only requires knowledge about the request at theé hea

throughput constraints can be satisfied. of each request queue. Conversely, regulators that enéorce

upper bound on requested service, such as [16], [17], need

IV. CREDIT-CONTROLLED STATIC-PRIORITY information about all requests that arrive during a cycleisT

A CCSP arbiter consists of a rate regulator and a schdg¢urs additional complexity in a hardware implementation
uler, following the decomposition from [16]. We start in€SPecially if requests can arrive with higher frequencyntha
Section IV-A by providing an overview of the main ideaith which they are parsed.

before discussing the rate regulator and scheduler separat A difficulty in arbitration is that the amount of work
in Sections IV-B and IV-C, respectively. associated with a particular request is not always knowarbef

it has been served. For instance, the amount of time required
to decode a video frame on a processor is not known when
the work is scheduled. This situation cannot be handled if

A. Overview

A rate regulator provideaccountingand enforcementand
thus determines which requests that eligible for scheduling
at a particular time, considering their allocated servideere
are two types of enforcement. work-conserving arbiteris
never idle when there is a backlogged requestor. In contr
a rate regulator in aon-work-conserving arbitedoes not

requested service is regulated, unless worst-case assuspt
are used to estimate the amount of work, which is very
inefficient if the variance in the amount of work is large.
Ts@is is efficiently handled when regulating provided sesvic

aby charging for a single service unit at a time. This allows a

reemptive scheduler to interrupt a requestor that runsobut

schedule a request until it becomes eligible, even though
resource may be idle. To conserve space, we only discuss

non-work-conserving case in this paper. The work-conagrvi . ! .
case is covered in [9211 pap ° CCSP’s incremental replenishment of service furthermere d
: crguples allocation granularity and latency, in contrasthie

The purpose of a rate regulator is to isolate request)) .
from each other and to protect requestors that do not ;%gime-based provided service regulators in [3], [4], [12B].

for more service than they are allocated from those that
do. This form of protection is a key property in providing™"
guaranteed service to requestors with timing constraiits [The CCSP rate regulator enforces an upper bound on
A rate regulator protects requestors by enforcing burssineprovided service, as explained in Section IV-A. We regulate
constraints on either requested service or provided servic provided service based on active periods, and define ther uppe
A rate regulator that enforces an upper bound on providedund on provided service according to Definition 21. The
service, such as those in [3], [4], [14], [15] and the CCSHhtuition behind the definition is that the upper bound on
rate regulator, is shown in Figure 4. As seen in the figurprovided service of an active requestor increases acaprdin
the rate regulator is positioned after the request bufiéiis. to the allocated rate every cycle. Conversely, for an imacti
hence only aware of requests at the heads of the buffers, aaduestor, the bound is limited te’(¢) + ¢/, a value that
cannot constrain arrival of requests in any way. The scleedutlepends on the allocated burstiness. This prevents that a
communicates the id of the scheduled requestét), back requestor that has been inactive for an extended periodhef ti
to the rate regulator every cycle. The regulator uses thigreases its bound, possibly resulting in starvation bfeot
information to update the accounting mechanism. This typequestors once it becomes active again. Note that thisémpl
of rate regulator operates by simply determining if the B=fu that the upper bound on provided service is not necessarily
at the head of each request buffer is eligible for schedulingnonotonically non-decreasing in time, as shown in Figure 5.
Enforcing an upper bound on provided service as oppos€de requestor in the figure is live until, but remains active
to requested service has two benefits: 1) the implementatiomtil 7> wherew’ catches up tav. According to Definition 21,
of the regulator is less complex, and 2) the amount of wotkis results ind’(mo+1) < @' (72), sincew’ (2) > w'(72)+o’.

gget and schedule another one.
nlike SRSP, CCSP enjoys the aforementioned benefits.

Rate regulator

A - Definition 24 (Eligibility time). The eligibility time of a
:8 _ W requestw® from a requestorr € R is denotedt,(w”), and
f_35 3 -7 - is defined as the smallestat which: 1)Vi < k : ¢ > t(w?),
E 2 7 L“‘r‘ = and 2)w,.(t) > wk(t), and 3)7,.(t) > 1 — pl.(1).
- S !
§ ® P —= —— e - = T v Definition 25 (Eligible requestor) Requestor- is defined as
, A P 5 eligible att if 3k € N : t € [to(wk), tr(wk) —1] A m.(t) >
TNl PSS _ 1— pl(t) Awe(t) > wl(2).
T T2 T3 Time [cycles] Definition 26 (Set of eligible requestors)The set of re-

questors that are eligible for scheduling atis defined as
Fig. 5. The upper bound on provided service is not necegsadhotonically pe — {r | Vr e RAT eligible att}.
non-decreasing. t

C. Scheduler
The requestor starts a new active period-atcausingi’ to ~ The CCSP arbiter uses a static-priority scheduler, as it
increase again. decouples latency and rate and is cheap to implement in

o)) hardware. Each requestor is assigned a priority leyvelas
Definition 21 (Provided service bound)The enforced upper giaied in Definition 27, where a lower level indicates higher

bound on provided service of a requestore 1 is denoted igrity. We do not allow requestors to share priority level

W (t) : N — RT, whered;.(0) = ;. and Sharing priorities, as done in [16], results in a situatidreve
y . . equal priority requestors must assume that they all haveato w
Wt 1) = {w:.(t) to TER (1) for each other in the worst-case, resulting in less tightniosu
! wh.(t)+ ol ré¢ R In this paper, we consider a scheduler that is preemptive on

It iol ¢ . d enf the granularity of a single service unit. A preemptive non-
tis not possible to perform accounting and enforcement Work-conserving static-priority scheduler scheduleghighest

LA s e
hardlylvare ??S.?d o, f"ncelhnit—“’do ﬁ](t) — o tr.esultlng N priority eligible requestor, as defined in Definition 29. Tdese
overflow of finite counters. Instead, the accounting medmani ¢ o non-preemptive scheduler is covered in [21].

in the rate regulator is based on the potential of a requestor

as defined in Definition 22. The potential of a requestor [Befinition 27 (Priority level). A requestorr € R has a priority
bounded since the arbiter guarantees a lower bound on pexelp,, such thatvr;,r; € R,r; # r; : pr, # pr;.

vided service, as we will show in Section V. The accounting

used by the CCSP rate regulator is defined according to De i-flnltlon 28 (Set of higher priority requestorsyhe set of

nition 23. It is shown in [21] that the accounting mechanism irequestors with higher priority than; € R is defined ast, =
Definition 23 corresponds to a recursive definition of patnt {ry [Vr; € RApr > pry}s

and hence thatt € N: 7 (t) = 7*(¢). Definition 29 (Static-priority scheduler) The scheduled re-
questor at a time in a preemptive non-work-conserving static-

Definition 22 (Potential) The potential of a requestor priority scheduler is defined as

r € R is denotedr,.(t) : N — R, and is defined as
T (t) = W () — wy.(0). = {m stri € RENPr; € RS pry, <pr, R{# @
Definition 23 (Accounting) The accounted potential of a = I} R =0
requestorr € R is denotedr(t) : N — R, wherer(0) = o,

and V. ARBITER ANALYSIS
)+ pl—1 rERIAY({) =7 In this section, we derive analytical properties of the CCSP
T+ 1) = () + 4l reRIANM) £ (2) arb|ter. First, we define and upper _bound the mterfc_erence
, R A (L) 2 experienced by a requestor during an interval. We then use th
Tr r & RNy " bound to derive the service guarantee of CCSP, and to prove

Enforcement in the rate regulator takes place before tHEat it belongs to the class @R servers. Lastly, we upper
accounting is updated, and is performed by determining if@und the finishing time of a request, based on the derived
request from a requestor is eligible for scheduling. A retjueService guarantee.
becomes eligible at its eligibility time. Definition 24 stat Definition 30 states that the interference experienced by a
three conditions that must be satisfied for a request at th@fuestor in an interval consists of two parts. The first part
time: 1) all previous requests from the requestor must haiieconcerned with the potential of higher priority requesto
been served, 2) the requestor must be backlogged, and 3)@héhe start of the interval and the second with the increase
requestor must have at least enough potential to serve @iéheir provided service bounds during the interval. Toget
service unit, including the service earned when the acéogint these parts determine how much an interfering requestor can
is updated. The eligibility criterion for a requestor isrfally maximally be scheduled before being throttled by the rate
defined in Definition 25. regulator.

Definition 30 (Interference) The interference from higher The second rule in Equation (1) states thigt(m + 2) =
priority requestors experienced by a requestoe R during w,.(r2 + 1) + o’ sincer ¢ R¢ ,,. Rewriting this using
an interval [y, 72| is denotedi, (71, 72) : N x N — R, and is Definition 2 results inv/.(72+2) = wl.(m1) + w).(11, 72) + 0.

defined as From Definition 16 and Lemma 1, we know tha¥ R? ., =
wh(m —1,m) =w(m — 1,7) < pl.- (2 — 71 + 1), as the
1 (T1,T2) = Z (7, (1) + u?;j (11,72)) (3) requestor is neither live nor backloggedrat 1. Putting these
Vr ERY, ' results together gives us

To compute the upper bound on interference, we will bound W (e +2) <wl.(m)+o.+p - (o—711+1) (6)
the two parts of Equation (3) separately. First, we intredu
two lemmas proven in [21]. Lemma 1 shows some importa%ty substituting Equgtlon) a“‘}‘, Equation (6) into Equa-
relations between the requested service curve and thedmubvit'on (4), we see thatl), (72 +2) < @, (r2 +1).

, k ;

service curve at the start of an active period and Lemma owe her;]ce conclud.e that’r(T.’ t) is .”"'gx'g‘a' V\éhem,ts f

establishes a relation between potential and eligibiliby f.[Tl’Tﬂ’ W ere[ﬁ’ﬁ.] IS an active period. According t_o er
on 22 and the first rule of Equation (2), this implies ttha

active requestors. We then proceed in Lemma 3 by boundipfgﬁII

the increase in the upper bound on provided service during Un(Tt) < pl - (E =T+ 1) _ -
interval, corresponding to the second part of Equation (3). We defmg the (':o'n'cept of aggregate .potentlal of a set ,Of
requestors in Definition 31 and show in Lemma 4 that it
Lemma 1. If 7, is the start of an active period thencannot increase, as long as a requestor in the set is scHedule
w(ry) >w(r —1) = w' (1) = w'(m — 1). every cycle. This is a key result that bounds the first part of
Lemma 2. Vr € R : m.(t) > o/, — pl. = 1 € R, Equation (3). in Lemma 5 and leads to an upper bound on
interference in Lemma 6.
Lemma 3. w.(7,t) < p' - (t — 7+ 1). _))
Definition 31 (Aggregate potential)The aggregate potential
Proof: We prove the lemma by showing that the inof a set of requestors?’ C R is defined according to
equality holds wheno!.(7,¢) is maximal. This occurs when Svrer T () = Yvrep WLE) — Svrer wi(t).
7,t € [T, 72|, where[r;, 2] is an active period. This in turn ,)
is proved by showing that the first rule of Equation (1}émma 4. For a S‘ft of requestorst’ C R, it holds that
implies @ (¢ + 1) > @’ (t), while the second rule implies’t € N Gru € B2 () =7k) = Dyrep mr(t +1) <
WLt + 1) < @) vrer: Tr(t)-
The first rule in Equation (1) implies that proof: According to Definition 2 and the definition of
UA};‘(t + 1) > ﬁ);(t), since it follows from Definition 13 aggregate potentia| in Definition 31
and Definition 15 thap!. > 0.
We split the analysis of the second rule in Equation (1) intod | m(t+1)= Y m(t)+ Y wl(t,t)— Y w)(t1)
two cases. In the first case, the requestor is inactive at batter’ VreR! VreR! VreR!
¢t —1 andt, corresponding to multiple cycles of inactivity. Inaccording to Lemma 3 e @' (6,1) < e g Pl Where
the second case, the requestor is active -atl and inactive equality is reached if all requestors are activetat-rom

att, meaning it is ending its active period. Definition 9, we also get thad_, . w.(t,t) = 11if a
requestor inR’ is scheduled at. Hence, ifYr € R’ : r € R

Case Lir ¢ Rf y Ar ¢ R} and3r, € R : ~(t) = ry, then

From the second rule in Equation (1), we get that

wL(t + 1) = w.(t) + o,.. Since an inactive requestor Z T (t+1) < Z () + Z o —1

cannot be scheduled, it must hold thet(t) = w/.(t — 1). It VreR’ VreR’ VreR’

hence follows thatiy (+ 1) = w;.(¢) if r & Ry Ar & RY. Einally, Svrer P < 1, according to Definition 15, which

concludes the proof. O]
Case 2:r € RY_, Ar ¢ RY .
We proceed by showing that this case impliekemma 5. For a requestorr; € R, it holds thatvt € N :

WLt + 1) < dL(t). Let t = 7 + 1, where [r, 7] Dvrert T (1) < Xy, cgr 0r,- The equality occurs at any
defines an active period. We must hence show that timet for whichvr; € R : r; ¢ Ry_,.
W) (12 4+ 2) < (12 + 1) 4) Proof: We prove the lemma by induction on t.

According to Definition 20;.(m 4+ 1) = @).(11) 4+ w].(T1, T2). S;?gsizszizeéém??o;]m? at = 0, since Definition 23

From Lemma 1 and the second rule in Equation (1), we ge

~1 Y _ Il /i a .) .
thatd; (r1) = wr.(n —1)+0; = wy(n)+oy, sincer ¢ Ry, 1. 0 oo stepAt ¢ + 1, we examine two different cases for

\é}\//e(;ur;h)erino/re. z(:oxv:ro:wlt)hesifrllrcsévrflg E: ETq]uz.itl:n)ré %21 that e premise at. In the first case there exists a higher priority
Thi 1,72 s Pro\T2 7T : bl t* eligible requestor, and in the second case there does not.
IS results in Case 1:(R: NR) # @
W+ 1) =w(n)+o.+p.-(m—7m+1) (5) Picking r, € (R5 N Ry), according to Definition 29

and applying Lemma 4 results in the first inequality imluring an active periodr, 2] according toVt € [, 72| :
Equation (7). The second inequality follows from theo; (71,t) = max(0,p;, - (t — 71 +1—6,,)), where
induction hypothesis. ,
ijeRj; Or,

oo+ Y mm< > o, () O, = , 9)
vr; ERi’. Vr; ERj’. vr; ERi’, N ZVWGR: py‘j
Case 2:(R" NRS) = @ Proof: It suffices to show that the theorem holds for
(RS ¢) =

intervals wherer, — 7 +1 > ©,,, as these are the only
intervals for whichw;. (1,72) > 0. For these intervals, we
must show that

No higher priority requestor is eligible in this case. Welwil
show that this implies that (¢t 4+ 1) < ¢’ both for requestors
with 7 (t) > o’ — p' andn(t) < o’ — p'.

According to Lemma 2, it must hold thatr; € RfA Vi€ [r, 7] W (r,t)=p. -(t—71+1-0,,) (10)
rj & Ri i om(t) > o —ph = r; ¢ Rf. The l - : o
third rule of Equation (2) hence states that; € R, : We prove the Fheorem by splitting the act|ve.per|od in two
T, (t) > ol —p. = 7. (t+1) = ol . For the other Cases. In the fII"St case, we look at the bghawomodurmg
case by Definition 23yr; € R} o, (t) < o/ —p. = backlogged periods within the active period, where the k:th
7, (t+ 1) < o) . Hence,Vr; c Rt m(t +J1) SJU;j. backlogged period is denotefdy, 3;]. It is assumed that

This means thaEvT»eRJr 7, (t+1) < S, gt o, which yt € [ak,ﬂk] . r; € R{. In the second case, the requestor is
proves the second casa IS in a live and not backlogged state.

)) . 1.Vt € [a, B - ri € R}
The aggregate potential of higher priority requestors %?se ko Pkl - T = S , .
ggreg P g P y Ted e requestor is eligible in the interval since

maximal whenvr. € Rt : =, (t) = o, which occurs at
J A i T (0) v ol > o, AT € R} = r € Ry. There are(8, — ajy + 1)

i i . a
any timet for which Vr; € R : r; & Ri_,. = Units of service available in the backlogged interval. An
Lemma 6 (Maximum interference) The maximum interfer- eligible requestor in a static-priority scheduler cannot
ence from higher priority requestors experienced by a reccess the resource whenever it is used by higher
questorr; € R during an interval [r, 2] occurs when all priority requestors. The minimum service available to
higher priority requestors start an active period at and r;, denotedwy, can hence be expressed according to
remain activevt € [y, 72, and equals W (ag, Br) = B — o + 1 — ir, (g, Br). Since r; is
- B / , continuously backlogged and eligible in the interval, it
Ui (11, 72) = Z Tp, + Py (2 =71+ 1) ®) follows thatw!. (o, Br) = W& (ay, Br). We proceed by using
vri€R, the result from Lemma 6 to bound the maximum possible
Proof: We know from Equation (3) that interference isnterference.
defined asi,,(m,72) = ZvaeRii (77 (11) + 1y, (11, 72)).

Lemma 5 states thad>,, cp+ 7, (1) < Yy, cpr oh, W), (o, Br) = B — ag + 1—
which is maximal when all higher priority requestors are ool = > b (Br—art+1) (11)
inactive atm, — 1. We furthermore know from Lemma 3 Vr, R} Vr, R}

that ZVTJ'GR;:; lz);nj(Tl,TQ) < ZVT]'GR;; p;j (g — 1 + 1),

which is maximal whenvt € [r,] : r; € R}. Hence,

in-.(ﬁ’ ™) = Yy ert, Or, v, -(T2—71+1) when all higher (e —ar+1-0,) =

priority requestors start an active period At and remain : ‘

active V¢ € [r1, 7). 0 Be—okt+l— > or— > p - (Br—ok+1)
We continue in Theorem 1 by deriving the service guarantee vr;€RY, vr€R;,

of a CCSP arbiter, and to compute its service latency. We then L L

prove in Theorem 2 that CCSpP belongs to the claiilﬁf "W replacep;, by 1 - ZWJGR; Pry which is valid since

servers. These theorems hold only for requestors that are &= 2_vr,cri. Pr; = Pr,» @ccording to Definition 15. Solving

gible during backlogged periods, i.e. wher R? = r € R¢. for ©,, results in Equation (9), proving the first case.

This is accomplished by configuring’ > p, according to

Definition 15, and lettings’ > o. We configures’ = o for Case 2:r; € Ry Ar; ¢ Rf

hard real-time requestors, since there is no benefitinatilog According to Definiton 17,7, € R; implies that

higher burstiness than requested. Configuenigc o causes Wr, (11 —1,¢ —1) = pl. - (t — 71 + 1). On the other hand,

the regulator to limit the burstiness of a requestor, resyin Définition 11 states that; ¢ R/ means thatv,, (t) = w;, (t).

that the bound on service latency is increased. This is lseRYy combining these results we get that

to protect hard real-time requestors from bursty soft tieae

requestors that are not interested in bounds on serviaeciate Wy (11— 1Lt —=1)=p) - (t—71+1) (12)

Combining Equation (10) and Equation (11) results in

Theorem 1 (Service guarantee)An active requestor; € R, We know from Lemma 1 that, (11 — 1) = wy, (11).

Ti

for which o], > o, is guaranteed a minimum serviceWe also know from Definition 9 thatw; (¢,t) > 0.

Substituting these results into Equation (12) gives snall by increasing the precision of this representatichaovit

Wy, (T1,t) = p,.. - (t — 7 + 1), proving the second case. [1 affecting the latency of a requestor. The static-prioritied-

Theorem 2 (LR server) A CCSP arbiter belongs to the classUIer 'S |mplement_ed by atrge.of multiplexers thapsmplma
X . access to the highest priority requestor that is eligible, a

of LR servers, and the service latency of an active requestor ion that is f h ; ltinle-bit

ri € R, for whicho!. > o, is equal to Equatior(9) Operation that is faster than comparing multiple-bit ,

¢ ’ Ti = T ' as done in [11]. The scheduled requestor is output from the

Proof: According to [19], it is sufficient to show that arbiter, but also fed back to a unit that updates the redistek

Vte[r,m]:r € Rf = w,, (11,72) = max(0,p,, - (1o — to reflect changes in potential, as discussed in Section.IV-A
71+1—0,,)). This is shown in the first case of the proof ofConfigurable priorities are implemented with a programraabl
Theorem 1. [0 priority switch that maps the request buffers accordindh&rt

Theorem 2 proves that CCSP belongs to the clasg®f priority levels. The switch is combined with a look-up table
servers. Our derived service latency is furthermore theesasn (LUT) that remaps the index of the scheduled requestor, as
that of SRSP, derived in [22]. Note in Equation (9) that laten shown in Figure 6.
and rate are decoupled by the priority level of a requester. W Synthesis of the arbiter in a 90 nm CMOS process with six
conclude this section by using the service guarantee tealerports results in a cell area of 0.0223 rhiat a frequency of
a bound on the finishing time of a request in Theorem 3. 250 MHz, which is above 200 MHz required for a DDR2-
400 SDRAM device. Figure 7 illustrates the scalability of
the implementation by showing the area of the arbiter for an
increasing number of ports. The speed target of 200 MHz is
satisfied for up to ten requestors and the figure suggests that

k . . . |

) . the area increases rather linearly in this range.

tH(wh) < to(wF) + 0, + s(wr) ;)
P

Theorem 3 (Finishing time) The finishing time of a re-
questw’ from a requestorr € R, for which it holds that
Vt € [te(wh), ti(wk) — 1] : € R?, is bounded according to

/
(s

Proof: We know from Theorem 1 that a requestor in 0.049

an active periodr;, 7] receives service according ttt e oo

0.035

[r1,72] « @l (71,t) = p}.- (t — 71 + 1 —O,). The maximum]

finishing time of w? equalst + 1 for the minimum¢ for 003 ¢]

which it holds thatw!. (t.(wF),t) = s(w¥). We hence get 0.025]

that o/ - (t — te(w?) + 1 — ©,) > s(wk). Solving for ¢ 002 ¢ I]
2 4 6 8 10

Area [mmz]

5 k . . . 8
results int > t.(wF) + O, + ‘*(;“/) — 1, which implies that oo

& 0.01
s(wh)

tf(wf) < te(w,]f) +0, + A
VI. HARDWARE IMPLEMENTATION

The proposed arbiter, shown in Figure 6, has been im-
plemented in VHDL and integrated into the Predator DDR2 Fig. 7. The area of the arbiter for a different number of ports
SDRAM controller [23]. This controller is used in the cortex
of a multi-processor SoC that is interconnected using the

Ol 0.005 |

Ports

£thereal NoC [24]. Requests arrive at a network interface VIl. EXPERIMENTAL RESULTS
(NI) on the edge of the network, where they are stored inWe have used CCSP as a DDR2 memory controller arbiter
separate buffers per requestor. in a SystemC simulation of a use-case involving an H.264

video decoder. The H.264 decoder contains a number of

(N Rate regulator requestors communicating through external memory. Access
request Update | to a DDR2-400 SDRAM is provided by a Predator SDRAM
itz Tﬁ@ controller [23]. A benefit of this controller is that the a#yi

{111} >

|17 () v m schedules memory accesses of 64 byte (B) to the requestors, a

[i ~2e opposed to scheduling time, which means that the amount of

w |53 B < g work associated with a request is a_lways k_nown. This allows

A s S el us to use the same setup to experiment with both CCSP and

- 7 SRSP. The time required by the memory controller to serve a

J

service unit corresponds to approximately 80 ns.
Fig. 6. A CCSP arbiter supporting three requestors. The use-case contains a file reader (FR) that reads an
encoded image and stores it in external memory. This reguest
A register bank contains a discrete representation of tlesues requests of 64 B each and is extremely bursty. The
service allocation and accounted potential for every retque decoder software is running on a TriMedia 3270 [25]. The
These registers are programmable using memory mappedTiiMedia uses separate read and write connections {;TM
for run-time (re)configuration via the NoC. It is shown in [21 TM,,) to communicate with external memory through an L1
that the amount of over-allocation can be made arbitrarigache with a line size of 128 B. Finally, a display controller

TABLE |

REQUESTOR CONFIGURATION AND RESULTS and memories in systems-on-chip. CCSP is an arbiter with a

rate regulator that enforces a burstiness constraint orided

Regquestor| o’ [plavg® [maxO© | © service together with a static-priority scheduler. Retinga
T 1 8.0 02001 01 329 A provided service, as opposed to regulatireguestedservice
wr : . .)) .)
DC 20| 0047 2| 010 2 N/A has two benefits: the implementation of the regulator is less
FR 2.0 | 0017 | 3 | 5567 63 | N/A complex, and the amount of work associated with a particular
HRT 44103400 4 017 10 20 request does not have to be known. We show that CCSP
HRT, 34| 0340| 5| 223 23 47 '

enjoys these benefits, without increasing latency, conaptare
an arbiter regulating requested service. We show that CCSP

(DC) reads the decoded image in blocks of 128 B and shofglongs to the class of latency-raté’R) servers and guar-

it on a display. For the purpose of this paper, the applicaito antees the allocated service rate within a maximum latency,

considered as soft real-time with deadlines at the graitylar
of decoded frames. We add two hard real-time requestof$!
(HRT,, HRT;), mimicked by traffic generators, to create
hybrid system. These issue read and write requests of
B to external memory. High priority is assigned to the soft
real-time requestors and lower priorities to the hard tioaé
requestors, according to the assignment strategy in [14].

We simulated the system with a number of different service?l
allocations. The allocation parametets @ndp’) of the hard
real-time requestors were chosen such that the rate regulaf?
never slowed them down and violated their bounds on servicg
latency. For the soft real-time requestagrswas chosen based 5]
on measurements such that> p ando’ < o. Table | lists
one of the simulated configurations. A total of 600 MB/s isl®
allocated to the requestors, corresponding to a load of80.7 (7]
of the capacity offered by the memory controller for a 16-bit[8
DDR2-400 device after taking unavoidable access overhead
into account [23]. Table | presents average service lagsnci -
and the maximum measured service latencies for all requgesto
after2-10% ns of simulation. The corresponding service latenci®!
bounds, obtained using Equation (9), are also listed fod hayiy
real-time requestors. Note that the average service hatehc 1
the soft real-time requestors includes the time required Eo
build up sufficient potential, since’ < o. The maximum [13]
measured service latencies are lower than the bounds for bay;
hard real-time requestors, as expected. However, we nate t
the difference between the maximum measured value and the
bound increases with lower priorities. A reason for thishigtt [16]
the risk of simultaneous maximum interference from all leigh (17
priority requestors becomes increasingly unlikely witkvéo (18]
priorities. As a comparison, we inverted the priorities df a
requestors in the use-case, resulting in maximum measuftd
service latencies of 4 and 0 and bounds of 5 and 0 for HRT2q
and HRT, respectively. 1]

All simulations have been repeated with an SRSP arbiter,
and the latency results proved to be identical for everylsing

. . - [22]

request for all configurations. This result, suggests tHasE
unlike SRSP, has the benefits of regulating provided servidés
mentioned in Section IV-A, without introducing additionaljz4
latency. It is furthermore shown in [21] that the buffering[zs]
requirements and burstiness at the output of the two asbiter
are the same since they have identical service latencies.

[1

VIIl. CONCLUSIONS
We present a Credit-Controlled Static-Priority (CCSP) ar-

biter to schedule access to resources, such as interconnect

required by hard real-time applications. CCSP decouples ra
d allocation granularity from latency and has a low-cost
ém’plementation. An instance with six ports runs at 250 MHz
B requires 0.0175 miin a 90 nm CMOS process.

REFERENCES

L. Abeni and G. Buttazzo, “Resource Reservation in Dynamic Real-Time Sys-
tems,” Real-Time Systemsol. 27, no. 2, 2004.

K. Goossengt al, “Interconnect and memory organization in SOCs for advanced
set-top boxes and TV — Evolution, analysis, and trendsfhterconnect-Centric
Design for Advanced SoC and Npog004, ch. 15.

M. Kateveniset al,, “Weighted round-robin cell multiplexing in a general-purpose
ATM switch chip,” IEEE J. Sel. Areas Commurvol. 9, no. 8, Oct. 1991.

M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round,tobin
in Proc. SIGCOMM 1995.

H. Zhang, “Service disciplines for guaranteed performance service in packet-
switching networks,Proceedings of the IEEB/ol. 83, no. 10, Oct. 1995.

C. R. Kalmanek and H. Kanakia, “Rate controlled servers for very high-speed
networks,” Proc. GLOBECOM 1990.

S. J. Golestani, “A stop-and-go queueing framework for congestion managéement
in Proc. SIGCOMM 1990.

S. S. Kanhere and H. Sethu, “Fair, efficient and low-latency packet scheduling
using nested deficit round robirkligh Performance Switching and Routing, 2001
IEEE Workshop on2001.

D. Sahaet al, “Carry-over round robin: a simple cell scheduling mechanism for
ATM networks,” IEEE/ACM Trans. Netwwvol. 6, no. 6, 1998.

G. Buttazzo,Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications Springer, 2004.

J. Rexfordet al, “A router architecture for real-time point-to-point networks,” in
Proc. ISCA 1996.

B. Kim and K. Shin, “Scalable Hardware Earliest-Deadline-First Scheduler for
ATM Switching Networks,”Proc. RTSS1997.

B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-ireal-t
systems, The Journal of Real-Time System®. 1, 1989.

S. Hosseini-Khayat and A. Bovopoulos, “A simple and efficient bus mamagt
scheme that supports continuous streartA&M TOCS vol. 13, no. 2, 1995.

S. Heithecker and R. Ernst, “Traffic shaping for an FPGA based SDRAM caattroll
with complex QoS requirements,” iAroc. DAG 2005.

H. Zhang and D. Ferrari, “Rate-controlled service disciplindsiirnal of High-
Speed Networks/ol. 3, no. 4, 1994.

R. Cruz, “A calculus for network delay. I. Network elements in isolatidEEE
Trans. Inf. Theoryvol. 37, no. 1, 1991.

J.-Y. L. Boudec and P. ThiraWetwork calculus: a theory of deterministic queuing
systems for the internet Springer-Verlag New York, Inc., 2001.

D. Stiliadis and A. Varma, “Latency-rate servers: a general model for analysis of
traffic scheduling algorithmsEEE/ACM Trans. Netw.vol. 6, no. 5, 1998.

M. H. Wiggerset al,, “Modelling run-time arbitration by latency-rate servers in
dataflow graphs,” irProc. SCOPES2007.

B. Akessonet al, “Real-Time Scheduling of Hybrid Systems using Credit-
Controlled Static-Priority Arbitration ,” NXP Semiconductors, Tech. RepQ720
http://www.es.ele.tue.nl/"kakesson/publications/pdf/NXP-TN-200719.pdf.

R. Agrawal and R. Rajan, “Performance bounds for guaranteed and adaptive
services,” IBM Research, Tech. Rep. RC20649 (91385), May 1996.

B. Akessonet al,, “Predator: a predictable SDRAM memory controller,”Rmnoc.
CODES+ISSS2007.

K. Goossengt al, “The Athereal network on chip: Concepts, architectures, and
implementations,1EEE Des. Test. Computvol. 22, no. 5, Sep. 2005.

J.-W. van de Waerdtt al, “The TM3270 Media-Processor,” iRroc. MICRO 38
2005.

