
Hardwired Networks on Chip in FPGAs

to Unify Functional and Configuration Interconnects

Kees Goossens1,2, Martijn Bennebroek3, Jae Young Hur2, and Muhammad Aqeel Wahlah2

1 Research, NXP Semiconductors, Eindhoven, The Netherlands, kees.goossens@nxp.com
2 Computer Engineering Laboratory, Delft University of Technology, Delft, The Netherlands

3 Research, Philips, Eindhoven, The Netherlands

Abstract

We propose that networks on chip (NOC) are hard-

wired in Field-Programmable Gate Arrays (FPGA). Al-

though some area of the FPGA then has a fixed function,

this loss of flexibility is outweighed by the following bene-

fits. First, implementation cost is much reduced. Second,

a hardwired NOC solves physical problems such as timing

closure and high cost of global wiring. Third, dynamic par-

tial reconfiguration can be better exploited. Compared to

current soft or firm interconnects, a hardwired NOC poses

fewer restrictions on the (re)placement of IP blocks in the

FPGA. Finally, we also propose that the hardwired NOC

is used for both the functional interconnect between the IP

blocks and the configuration interconnect that transports

the bitstreams. We give a detailed overview of our NOC

architecture, and its configuration and programming. The

proposed scheme enhances the on-line generation of bit-

streams and the on-line verification of loaded bitstreams to

detect tampering with the device. In our experiment, a hard-

wired NOC has acceptable (≤ 10%) overhead for IP sizes

with approximately 1400 lookup tables (LUT), enabling a

fine-grained combined functional and configuration inter-

connect. A hardwired NOC offers significantly better func-

tional performance than a soft NOC. Moreover, the config-

uration and programming of the hard NoC is much faster

than when using a soft NOC.

1. Introduction

Field-programmable gate arrays (FPGA) are highly-

programmable chips at the forefront of silicon technology

scaling. Current FPGAs are divided in orthogonal configu-

ration and functional regions, each with their own intercon-

nect. In this paper we propose, first, to use a hardwired (or

just: hard) network on chip (NOC) for the functional inter-

connect. Second, we advocate to use the same hard NOC as

the configuration interconnect. In the remainder of the in-

troduction we define some terminology, list the advantages

of our approach, and give the outline of the rest of the paper.

1) Terminology: We call an intellectual property (IP) block

soft, when after synthesis it is mapped on basic FPGA el-

ements such as LUTs, before being placed and routed. A

soft IP is independent of the device it is synthesised on.

A firm IP is a soft IP that has optimised mapping, place-

ment, and routing, taking into account the particular FPGA

device implementation. An IP is hard when it is directly

implemented in silicon. Existing examples are embedded

multipliers, microprocessors, RAMs, and high-speed IO in-

terfaces [37]. We define (re)configuration as the installation

of new functionality (IPs) in the FPGA by loading reconfig-

uration regions with bitstreams. Dynamic partial reconfigu-

ration means that only part of the FPGA is reconfigured and

that this happens while part of its functionality remains op-

erational. Only soft and firm IPs need to be configured. An

IP is programmed after it is configured, if necessary, which

entails changing the state of its registers when it is in func-

tional mode. These registers are usually memory-mapped

so that they can be accessed through the functional intercon-

nect, such as a bus or a NOC. Note that in our case the NOC

unifies the configuration interconnect used to transport bit-

streams, the functional control interconnect through which

IPs are programmed, and the functional data interconnect to

transport data between IPs. The first is used when the sys-

tem is (partially) reconfigured, and the latter two are used

when the system is (partially) in functional mode. In the re-

mainder, we will not further distinguish the control and data

interconnects, calling them functional interconnect.

2) Advantages of Hard NOCs: Hard interconnects use the

native silicon technology rather than configurable elements

of the FPGA. They are reported to occupy 35 times less

area, operate 3.5 times faster, and also use less energy [21].

However, the FPGA is less flexible because some silicon

area is committed to a fixed function [37]. We argue that

the cost:performance gain far outweighs the loss of flexibil-

ity. Modern FPGAs are complex embedded systems on chip

that are not monolithic functions, but composed of many

reconfigurable blocks. The IPs communicate using stan-

dard communication protocols, e.g. AXI [3], OCP [25],

and DTL [27] implemented by a functional interconnect,

such as busses, switches, and NOCs. Hence, a functional

interconnect is required, whether it is soft, firm, or hard. A

hard interconnect must be dimensioned for the worst-case,

whereas a soft interconnect can be tailored to the running

application. However, the performance:cost ratio of the

hard interconnect is much better than of the soft intercon-

nect. Thus the hard interconnect can be “over-dimensioned”

significantly before we lose flexibility. Also, in contrast to

soft interconnects, hard interconnects are not configured,

which saves configuration footprint (bits) as well as config-

uration time. We refer to Section 4 for the entire analysis.

When a system is dynamically partially reconfigured,

the functional interconnect must be updated, i.e. reconfig-

ured and/or reprogrammed. This requires that IPs and in-

terconnect are decoupled in several senses: physically (e.g.

to avoid glitches), in placement (reconfiguration and func-

tional regions of IP and interconnect must be disjoint), and

logically (there should be no communication to/from IPs

that are reconfigured, and communication between other IPs

should not be affected). Hard interconnects are per defi-

nition disjoint from soft IPs and reduce layout restrictions.

Programmable interconnects such as busses and NOCs only

require reprogramming. Hence, communications between

IPs that are not reconfigured are not disturbed during par-

tial reconfiguration from a physical and placement point

of view, and from a logical point of view too, if the inter-

connect offers guaranteed communication services. More-

over, programming is faster than reconfiguration, which is

required by e.g. dedicated through-routed point-to-point

wires. By virtue of their better performance, hard busses

and NOCs are also reprogrammed quicker than the soft

counterparts (see Section 4.3).

Busses and switches are single-hop interconnects, i.e.

their arbitration does not scale with the number of attached

IPs, unlike NOCs. Moreover, interconnects are physically

distributed over the chip and deep-submicron problems re-

lated to long wires (such as low speed, signal degradation,

etc.) complicate timing closure between IPs. NOCs can

address these issues by a globally-asynchronous locally-

synchronous design style and by replacing long global wires

with optimised segmented wires between routers [31]. This

is only possible when the NOC is hard (and to a lesser

extent when firm). Finally, multi-hop interconnects, such

as NOCs, are mandatory to offer transparent multi-chip or

multi-board communication.

3) Unified Interconnects: We advocate merging configura-

tion and functional interconnects because the configuration

interconnect can benefit from the higher performance of

the hard NOC. However, the NOC should support real-time

streaming of bitstreams, i.e. avoid interference from other

(functional) traffic. Unifying the configuration and func-

tional NOCs allows configuration bitstreams to be treated

like normal data. This allows many new applications. For

example, bitstreams can be generated at run-time, e.g. for

run-time tuning of IP configuration. Bitstreams can also

be encrypted, decrypted, and check-summed to detect bit-

stream tampering. In addition, IP can be relocated from one

part of the FPGA to another, rather than reloading from the

configuration memory (flash). For example, we can load

and relocate embedded built-in-self-test (BIST) engines to

structurally test the FPGA, by generating test patterns on

the FPGA itself and by using the hard functional NOC as a

test-access mechanism (TAM) [2][1].

The remainder of this paper is structured as follows. The

contributions of this paper are described when we review

related work. In Section 3, we explain our NOC archi-

tecture. After describing how a system is configured and

programmed, we combine all elements in a complete sys-

tem. Various possible extensions and new applications of

the hard NOC are then discussed. In Section 4, we com-

pare a soft, firm, and hard implementation of the Æthereal

NOC [12]. Finally, conclusions are drawn in Section 5.

2. Related Work

Scores of soft interconnects ranging from point-

to-point [19], busses [5][30], cross-bars [24][34], to

NOCs [22][20][28] have been presented in the litera-

ture. They implement different cost:performance trade-offs.

Larger and faster FPGAs can contain many IPs and multi-

hop network solutions are sure to gain popularity. Fewer

firm interconnects have been presented [5][18][6], where

the interconnect is implemented using native on-chip re-

sources. This increases the performance and lowers the cost

of the interconnect compared to soft interconnects, but their

implementations are dedicated to particular FPGA architec-

tures. [5] presents four communication schemes, includ-

ing bus macros, shared memories, linear array multiple bus,

and external crossbars that used for different communica-

tion modes. In [18], a reprogrammable interconnect is im-

plemented based on a LUT-based bus macro and is used to

dynamically reconfigure the attached IPs. In [6], a large

(928 × 928 bits) crossbar using native programmable in-

terconnects and LUTs is presented. However, standard IP

communication protocols such as AXI [3] contain several

hundred of wires per IP. Few IPs can therefore be connected

to a single switch.

For dynamic partial reconfiguration of IPs, the func-

tional interconnect and IPs must be disjoint, otherwise

they must be reconfigured simultaneously. By repro-

gramming the functional interconnect, IPs can be dynam-

ically added and removed through partial reconfiguration,

e.g. [5][30][22][18]. Only few works reconfigure the soft

interconnect itself. [19] dynamically reconfigures a point-

to-point soft interconnect and [28] shows how a soft NOC

can be partially reconfigured by adding or removing router

modules at run time. A hard NOC is only (re)programmed.

The cost of the hard interconnect is much lower than a soft

functional interconnect, lowering the need for dynamically

changing the topology. Moreover, because the hard NOC is

per definition disjoint from soft IP, eliminating any interfer-

ence during programming and/or reconfiguration.

Only two groups have reported on hard NOCs in FP-

GAs [17][16][8][11]. In [17][16], a system model is ex-

plored with SystemC simulation, and no hardware archi-

tecture is presented. In addition, the configuration and pro-

gramming of the NOC are not defined in [17][16]. The work

of [8][11] proposes to use a hard NOC as the functional in-

terconnect. Although the basic idea of a hard NOC is intro-

duced, no architecture details are provided. Our work dif-

fers from [8][11] in the following. Foremost, we combine

the configuration and data interconnects in the hard NOC,

which has not been proposed by any prior work. Further-

more, our partitioning of the network interface (NI) in hard

and soft regions draws the distinction more clearly at the

network versus transport layer (see Section 3.2). For ex-

ample, we firmly place routing in the hard NI kernel do-

main. Moreover, in [16] the architecture is based on tiles

(functional regions), which can communicate only through

the NOC. As explained in Section 3.3, we do not partition

the FPGA in distinct functional regions and also keep them

orthogonal to the configuration regions. Next, we define

the (re)configuration and (re)programming steps required to

boot a system. The requirement for guaranteed communi-

cation services (GS) to support real-time streaming of bit-

streams is not met by their NOC. Also, we support arbitrary

topologies without inducing any extra (routing) complex-

ity [15], which is useful, as shown in Section 3.4. Finally,

we present a comprehensive analysis of cost, performance,

and programming footprint, based on experimental results

on a Xilinx Virtex-4, which is lacking in [17][11].

NOCs are also (naturally) emerging to deal with inter-

chip communication due to their intrinsic multi-hop na-

ture [32][26][7]. [32] motivates extending the function-

ality of an ASIC by connecting the (hard) NOC on the

ASIC to a soft NOC on an FPGA companion chip. [26]

goes one step further and introduces a three-level hierar-

chical network. Intra-FPGA point-to-point links are im-

plemented with Fast Simplex Links, inter-FPGA communi-

cation uses Rocket IO, and an ethernet switch implements

inter-board communication. The Berkeley Emulation En-

gine [7] employs a parallel bus for the inter-FPGA commu-

nications. They use three types of global communication

networks, a low-latency global communication tree, a high-

bandwidth nonblocking crossbar, and a 10/100 Base-T Eth-

ernet. Multi-gigabit transceivers (MGTs) also were used

for 2D-mesh inter-FPGA communications. Inter-chip and

inter-board NOC are extensions of the work presented here,

as discussed in Section 3.4.

3. Hard NOC Architecture

3.1. Overview

Figure 1 shows the differences between the FPGA archi-

tectures with conventional (a) and new (b) interconnects in a

system context. Figure 1(a) illustrates a conventional FPGA

with orthogonal configuration (thin lines, dark grey blocks)

and functional (fat lines, light grey blocks) interconnects.

The minimum coherent reconfiguration region is the mini-

mum number of reconfiguration and functional regions that

coincide. For example, in the case of Virtex4, it is equal to

22 frames, which cover 16 CLBs [36]. Figure 1(b) shows

Figure 1. (a) Conventional and (b) new configura-

tion and programming.

an example instance of the proposed architecture, where the

configuration and functional IO are connected to the same

hard NOC, which now has two shades of grey. For sim-

plicity, the configuration and functional regions (frames and

CLBs) have been drawn together as a CFR (configuration

and functional region). However, just as in the conventional

FPGA, they can be orthogonal. The local configuration in-

terconnect/region (drawn as a chain of configuration regis-

ters) connects to the NOC to receive bitstreams. CLBs are

connected to their neighbouring CLBs in the same or dif-

ferent functional regions, as usual, but a functional region

(containing a number of CLBs, BRAMs, etc.) is also con-

nected to the NOC. The configuration IO, usually connected

to external flash memory, is shown at the bottom right. The

boot module (Section 3.3) bootstraps the system by config-

uring and programming it through the unified interconnect.

We describe NOCs generally, before detailing network

interfaces (Section 3.2), and their essential role in sys-

tem configuration and programming (Section 3.3). Sec-

tion 3.4 combines all these elements in our proposed unified

hard configuration and data interconnect. NOCs contain

two kinds of components: routers that move data around

(usually packets), and network interfaces (NI) that convert

the NOC-internal data format (e.g. packets) to the proto-

col required by the NOC clients (e.g. AXI, OCP, DTL).

Direct mesh topologies, where every router is connected

to a NI, are popular. However, it makes sense to adapt

the NOC topology to the resources of the particular plat-

form FPGA to provide ample bandwidth to high-speed off-

chip IO links, configuration IO, external memory interfaces,

or large shared on-chip memories. As illustrated in Fig-

ure 1(b), NI kernels and shells can be hard or soft. One or

more NIs may be attached to one IP, such as functional IO.

Real-time applications often require communication

with a guaranteed minimum bandwidth, and maximum or

even fixed latency. A number of NOCs offer these guar-

anteed communication services (GS, often also called qual-

ity of service) [12][23][4], and almost all NOCs offer basic

lossless communication but without real-time guarantees

(best effort, or BE). Most NOCs implement transaction-

based protocols, such as AXI and OCP, and some also

implement streaming data protocols, such as DTL’s peer-

to-peer streaming data (PPSD) [27]. The former uses a

distributed-shared-memory communication model requir-

ing read/write commands, data, and address, each of which

uses a valid/ready handshake. The latter is a much simpler

basic data pipe, containing only the write data group, usu-

ally with a valid/ready handshake. This has consequences

for which part of a NI is hard or soft (see Section 3.4).

Bitstreams are delivered to the region being reconfig-

ured as a continuous data stream that should not be inter-

rupted. However, during a dynamic partial reconfiguration

the NOC may be in use by an application which may in-

terfere with the bitstream’s timing. Hence, the FPGA re-

configuration interconnect should offer a GS (fixed latency)

communication between the bitstream source (e.g. off-chip

flash) and the reconfigured region. Similarly, NOCs with

GS have been proposed to replace SOC test access mech-

anisms (TAM) that transport test patterns and responses to

test the IP for errors for manufacturing test or for field test-

ing [1]. The alternative, stalling the test or configuration bit-

stream when the BE communication is interrupted, requires

expensive holdable state elements.

3.2. Network Interface Architecture

The details of router architectures are not relevant here,

details can be found in e.g. [4][12]. NIs are often split in two

parts, see Figure 2: the kernel (performing network layer

functions) and the shell (for transport layer functions) [29].

NOCs with GS communication require resource reserva-

Figure 2. IP that cannot reprogram/reconfigure,

and NI.

tions, in the form of channels, to move data from a source

NI to a destination NI. Two IPs communicate using a re-

quest channel and a response channel. Each channel has its

own quality of service (QoS), i.e. the allocated bandwidth

and latency. The NI kernel is responsible for receiving

packets from the router on link L1 and depacketising them.

Conversely, it packetises data and sends them to the router

on link L2, according to the channel’s QoS. Our example

NOC, Æthereal [12] uses a virtual-circuit TDMA scheme to

offer strict GS bandwidth and latency guarantees, and also

offers BE communication. The kernel therefore contains a

programmable TDMA table, credit counters for end-to-end

flow control, and per channel the programmable path that its

packets take through the NOC. The kernel contains a MMIO

port through which these registers are programmed. In fact,

the kernels are programmed using the NOC itself [14], by

looping an output port to the programming MMIO port, as

shown at the bottom of Figure 2. Note that the loop-back

and NI shell are omitted from Figure 1, for lack of space.

More details on programming follow in Section 3.3.

The ports on the NI kernel are streaming data ports

(PPSD), i.e. a fixed word-width with valid/ready handshake

to cross from NOC to IP clock domains. The response is

optional. Streaming IP can connect directly to these ports.

It is the job of the NI shell to convert the data stream to

a distributed-shared-memory protocol, such as AXI. The

three FSMs implement the valid/ready handshakes per com-

mand, read/write data groups, and their serialization to/from

the NI kernel ports, etc.

The IP shown in Figure 2 has a master data port, on

which it sends read/write requests to a slave somewhere on

the NOC, and a slave MMIO programming port, like the

NI kernel, over which read/write requests are received. The

slave configuration port is a new addition proposed in this

paper. Because configuration data is streaming data and not

shared memory communication, the IP configuration port is

connected directly to the NI kernel. From the NOC perspec-

tive, it is just another port, over which data is communicated

with fixed latency. This is achieved by programming suffi-

cient bandwidth allocation in the kernel’s TDMA slot table

and by sizing the buffers in the NI kernel/shell to absorb any

jitter from unevenly-spaced TDMA slots [9].

Figure 3. Boot module able to reprogram/-

reconfigure and its NI shell & kernel.

The IP in Figure 2 can neither program its NI nor in-

fluence the configuration data that it receives. Figure 3 il-

lustrates a boot module that can do this. It can communi-

cate with the local NI and four remote NIs or IP ports using

distributed-shared-memory transactions. The address look-

up table demultiplexes requests to one of the four channels,

based on the address. The FIFO between the request demul-

tiplexer “d” and the response multiplexer “i” ensures that

split pipelined transactions to different slaves are presented

in the right order to the master (for details see [29]). Us-

ing the top three channels in Figure 3, the boot module can

exchange data with IPs. However, they can also be used

to program remote NIs and IPs (functional regions), and to

configure a configuration region that is attached to a remote

NI. Hence, the importance of the demultiplexer “d” is its

type conversion role, i.e. that the data produced by the boot

module in functional mode is interpreted as “normal” data,

MMIO programming data, or as a configuration bitstream,

depending on which port the channel is connected to at the

receiving side. The next section describes how a system is

programmed and configured.

3.3. System Configuration & Programming

The key to system programming is the channel at the bot-

tom of Figure 3 that is hardwired to the NI kernel’s MMIO

programming port. Unlike the IP in Figure 2, the boot mod-

ule can bootstrap the system by programming the NOC and

by configuring and programming other IPs. Normally, a

CPU or a hard (secure) boot module boots the system [10].

First, the local NI is programmed with a channel to a remote

NI. The new channel is used to program the remote NI. In

this manner, the whole NOC can be programmed, i.e. pro-

gramming and data channels are set up. Following this, the

IPs are programmed (initialised and started) on their MMIO

ports[29][14][13]. At this point the application runs.

1) Soft or Firm NOC: The scenario sketched above is suffi-

cient for a hard ASIC. But for chips with configurable com-

ponents (FPGAs, but also ASICs with embedded FPGA)

a configuration phase is required. Figure 4 shows how

an FPGA application is bootstrapped conventionally. First

(dot-dashed lines), the boot module (if not a hard processor,

such as a PowerPC), interconnect, and IP are all configured

by copying a bitstream from a configuration memory (e.g.

flash) using the conventional configuration IO and intercon-

nect. After a functional reset, the boot module programs the

NOC and then the IP. A solid line indicates that the compo-

nent is functionally active, and a dashed line that it is being

programmed. Finally, the application runs.

(Partial) reconfiguration of the system, shown after the

vertical bar, operates identically. However, care must be

taken that those parts of the system that continue to oper-

ate are shielded from parts that are reconfigured [28]. As

shown in grey text, the interconnect is reconfigured too.

The IP and NOC must occupy different reconfiguration re-

gions (e.g. CLB columns). In fact, one of the reasons for

using a programmable soft or firm interconnect, such as

a NOC, instead of a non-programmable soft interconnect

(e.g. point-to-point wires) is that it can be left in place,

and reprogrammed only, before IP are reconfigured and re-

programmed. The configuration interconnect is marked as

pervasive because it reaches all configurable elements in the

FPGA from the configuration IO connected to the (off-chip)

bitstream memory.

2) Hard NOC with GS: Figure 5 shows how to configure a

system when a hard NOC is used as the configuration inter-

connect. First, notice that the NOC is no longer configured

(no dot-dashed line). Second, IPs are configured only af-

ter the NOC has been programmed (dashed line) because

the bitstreams are transported using the NOC in functional

mode. For a (partial) reconfiguration, the following steps

are required. First, the IPs to be reconfigured are stopped by

programming their MMIO ports. Then, via the NOC they

Figure 4. Current configuration & programming.

Figure 5. New configuration & programming.

receive new bitstreams and are reset on their MMIO ports.

The NOC may be reprogrammed with the new application

mode as well. Recall that bitstreams are streaming data

and are usually not interruptable during their transport from

bitstream memory to the IP (reconfiguration region). The

fixed-latency GS communication service of the NOC is es-

sential to avoid any (temporal) interference, because during

the partial reconfiguration other IPs continue to operate and

communicate using the NOC. Thus, our hard NOC offers

two essential qualities: reprogramming instead of reconfig-

uration and guaranteed (fixed-latency) communication.

The configuration interconnect is now split in two parts.

First, the single link between configuration IO and the boot

module (Figure 3 and arrow 3a in Figure 5). The boot mod-

ule connects to the hard NOC. Second, once the bitstream

arrives on the other side of the NI (e.g. the CFR of Fig-

ure 2) it enters the local conventional configuration inter-

connect, to configure the configuration region (e.g. one or

more frames) connected to the NI port (arrow 3b in Fig-

ure 5).1 The FPGA is divided in configuration regions, each

of which is reachable only via a single NI kernel of the

hard NOC. But our functional regions are connected to each

other, like CLBs are, and are also connected to the NOC’s

hard NI kernels. We do not divide the FPGA in functional

regions (also called tiles) that can communicate only via

the NOC, as advocated by [5][16][11]. This unnecessarily

causes problems, such as optimally packing multiple IP in

multiple regions, or restricting the IP size to that of a region.

3.4. Proposed FPGA Overview

In this section, we discuss Figure 1(b) in more de-

tail. The configuration IO is connected to the boot mod-

ule, which may be a simple hardwired DMA and/or secure

1In a first instance we only upload bitstreams from boot processor to

IPs, and the response channels are then absent. i.e. we omit the dashed

channels at the boot module’s NI (Figure 3), and the slave IP NI (Figure 2).

We re-introduce the response channel and alternative 3a’ in Section 3.4.

programmable processor. The boot module shown in Fig-

ure 1(b) is attached to the hard NI shown in Figure 3. The

functional IO is connected to a hard NI kernel because it

produces and/or consumes streaming data. This is not the

case for all hard functional blocks. For example, the em-

bedded memories, memory controllers, and hard processors

(not shown) connect to a hard NI kernel and shell because

they use distributed-shared-memory transactions. The local

configuration interconnect/region (drawn as a chain of con-

figuration registers) connects to a hard NI kernel to receive

bitstreams. CLBs are, as usual, connected to their neigh-

bouring CLBs in the same or different functional regions;

but a functional region (containing a number of CLBs,

BRAMs, etc.) is also connected to the NOC with a hard

NI kernel. The NI shell is soft and will be implemented in

the functional region. The two CFRs illustrate that configu-

ration and functional regions may share the same NI kernel,

and that the number of NIs and their number of ports may

vary. The sizes of configuration and functional regions are

discussed in Section 4.

1) Hard versus Soft: In Figure 1(b), we discuss which parts

of the NOC can be hard, soft or firm. Routers are best

implemented hard. NI kernels (cf. Figures 2 and 3) have

fixed hardware, such as (de)packetisation hardware. Chan-

nel FIFOs, per-channel administration (paths, credit coun-

ters, etc.), and TDMA slot tables can all be implemented

soft. This makes no sense for FIFOs because the cost of

LUT-based FIFOs is prohibitive, compared to BRAM-based

FIFOs. Given that a number of hard FIFOs within reason-

able distance of the hard (de)packetisation will be fixed, it

is best to dimension the TDMA and channel administration

tables for this worst case, to hardwire the entire NI kernel.

The NI shell, however, is soft for the following reasons.

First, the port protocol depends on the IP and a single sys-

tem often contains a number of different port protocols.

Second, the depth of a channel FIFO depends on the re-

quired bandwidth and latency (e.g. it must hide jitter due to

the distribution of TDMA slots and the round-trip latency of

end-to-end flow control), which depends on the application.

The channel FIFO is for a small part in the NI kernel, where

it has a fixed size, and for the remainder in the NI shell. The

only NI shells that are hard are the following. First, those

connected to the NI kernel’s MMIO programming port, be-

cause it is always required and uses a fixed protocol. Those

NI shells that connect to hard IPs that use shared-memory

protocols, such as the boot module, embedded memories,

memory controllers, hard embedded processors, etc.

2) Hard NOC Extensions: The first extension is to allow

the hard NOC to be expanded by soft routers and NIs. This

is useful when functional regions are large and more NI ker-

nel ports are required than are present on the hard NI ker-

nels near the region. This is implemented by the fat dashed

line from the hard router network to the lower CFR in Fig-

ure 1(b). However, because the hard NOC will be running

at higher frequencies than can be achieved with a soft NOC,

it passes through the bridge marked “B,” which implements

a clock domain crossing between hard NOC and the func-

tional region. The bridge must be hardwired. When the

soft extension is not used, the link from the functional re-

gion to the bridge can easily be “tied off” by setting the

packet-type side-band signal to “empty” [29]. In the oppo-

site direction, towards the functional region, no connection

will be programmed along the unused link. A related exten-

sion is the use of the functional IO to connect the NOCs on

multiple FPGAs, to create a multi-FPGA NOC [32][26][7].

The NI kernel on one NOC converts packets to streaming

data which is transported over the functional IO to the other

FPGA, where it is repacketised by the NI kernel on the other

NOC, which can be soft, firm, hard.

3) Dynamic Bitstreams: The proposed architecture al-

ready allows dynamic embedded bitstream generation, in

the sense that any IP can functionally generate a bitstream at

run time. Modern FPGAs support the on-line partial config-

uration, for example using Xilinx ICAP(internal reconfigu-

ration access port). However, these conventional configu-

ration interconnects constitute dedicated physical point-to-

point networks, which suffer from scalability problems and

increased wire delays. To upload the bitstream to a con-

figuration region, the boot module must program the NOC

to connect the data port of the IP to the configuration port

of the configuration region. (As briefly discussed in Sec-

tions 3.2 and 3.3; cf. arrow 3a’ in Figure 5.) We envisage

computing or modifying a hardware accelerator. For exam-

ple, optimising a FIR filter by configuring multipliers opti-

mised for the coefficients instead of generic (larger, slower)

multipliers and programming the coefficients via MMIO. In

fact, bitstreams are normal data and can, for example, be

loaded in encrypted form from the configuration IO, be sent

to a (hard) decryption engine on the NOC, before being sent

to a configuration region.

The proposed extension goes one step further, by allow-

ing bitstreams to be read or downloaded from as well as up-

loaded to configuration regions. This is implemented by the

dashed arrows from the reconfiguration regions to the NOC

in Figures 2, 3, and 1(b). Apart from speculative applica-

tions, such as embedded genetic algorithms operating on

bitstreams [33], it allows dynamic relocation of IPs by mov-

ing the bitstreams, in conjunction with techniques like those

of [22] where bitstreams are reloaded rather than moved.

As an example, we can load and relocate embedded built-

in-self-test (BIST) engines that generate test patterns on the

FPGA that are distributed to functional regions (e.g. using

multicast). We use the hard NOC as a test access mecha-

nism (TAM), which requires adaptations to the normal test

shells, described in [1]. In Figure 2 this would entail adding

a streaming data port on the CFR for test data. The BIST en-

gines check the test responses that are streamed back over

the hard NOC. In this way, the costly test time is reduced

by testing at higher (functional) speed, and by reducing the

amount of data that must be streamed to and from the auto-

mated test equipment (ATE) over limited IO [2].

Functionally operating on bitstreams also can be used to

check if IP configurations have been tampered with since

they were installed. This can be achieved by streaming the

bitstream to a (hard) encryption or CRC IP and compar-

ing the output with the original encrypted bitstream or a

smaller checksum. The use of a functional interconnect for

decrypted bitstreams is in general not safe, because it allows

a malicious IP to capture secret information. However, first

note that a NOC is a (virtual) point-to-point and not a broad-

cast interconnect. Second, all channels are either hardwired

(i.e. the path between source-destination pair is fixed), in

which case only the source and destination IP have access

to the data. Or, the channel is programmed at run time. By

bootstrapping from a (single) secure boot module, no IP can

communicate (send or listen) until the boot module creates

a channel to another IP [10]. Moreover, NOCs with guar-

anteed communication services also decouple the temporal

behaviours of communicating IP. This removes the possi-

bility to obtain secret information either from the timing of

communication (events), or from a malfunctioning system

after injecting spurious data.

4. Results

We now compare various implementations of Æthereal

NOC instances in terms of area, functional speed, foot-

print size, configuration throughput, programming speed,

and general flexibility. The automated Æthereal design flow

generates application-specific NOCs, based on the speci-

fied communication requirements of multi-mode applica-

tions [13]. The topology, TDMA table size, and FIFO sizes

are all tailored to the application. The flow output includes

the technology-independent RTL VHDL of the NOC, test

bench, traffic generators, embedded C code to program the

NOC, scripts for gate-level synthesis, and scripts for scan-

chain insertion. It is also possible to specify a topology and

generate the NOC programming code at a later stage, which

is required for our purposes. We specified a simple system,

consisting of two masters and three slaves, where each mas-

ter can communicate to all slaves simultaneously. One mas-

ter is the boot module. The NOC contains one router and

five NIs, where the NI kernels/shells are shown in Figures 2

and 3. Each IP has its own NI and the single router has five

bidirectional links. The NOC components use optimised

hardware FIFOs [35] for high speed and small area. NI and

router FIFOs contain 16, resp. 24 words.

4.1. Area

Several router and NI instances have been implemented

to timing back-annotated layout [12]. Based on these lay-

out instances, our design flow accurately estimates the area

of any generated NOC instance in 130nm CMOS technol-

ogy. The area results for the router and NI instances are

shown in “hard” rows of Table 1. We also synthesised,

placed, and routed (to the pads) the NOC onto a Virtex-4

XC4VLX200ff1513-11, for which we used Xilinx ISE 8.2.

The Virtex-4 contains 178176 LUTs in total. The Virtex-

4 is fabricated in CMOS technology with a 90nm Copper

CMOS process [36]. We used two versions of the NOC: one

uses LUTs for all FIFOs and the other uses BRAMs. These

are referred to as “soft” and “firm” in Table 1. We mapped a

whole NOC and extracted the number of LUTs for a single

router-NI pair, to take into account routing overhead, etc.

Table 1. Area of NOC Components. Note the area

of firm components does not include BRAMs.

LUTs mm
2

mm
2

mm
2

130nm 90nm 90nm

hard router - 0.13 0.065 -

NI - 0.33 0.167 -

soft router 2658 - 2.28 5.48

NI kernel 3470 - 3.58 7.16

NI shell 2171 - 2.24 4.48

firm router 1988 - 1.70 4.10

NI kernel 1524 - 1.57 3.15

NI shell 1501 - 1.55 3.09

In Table 1, the bold numbers are used to derive the re-

maining data in the following manner. We derived the

90nm-equivalent area of the 130nm hard NOC compo-

nents by dividing by two. For the fifth column, the area

of soft router was computed by multiplying the area of the

hard router by a factor 35, reported to be the cost ratio be-

tween ASIC and FPGA in [21]. The hard NI area is sim-

ilarly scaled and divided over the soft NI kernel and shell

in the ratio of their number of LUTs. The same holds for

the firm router and NI, except that the BRAM area (used

for the FIFOs) is omitted. Moreover, the RTL has not been

optimised to minimise the LUT area. Hence we underesti-

mate the area of the firm components. We ensured that all

calculations, here and below, are conservative, i.e. under-

estimate cost of the soft and firm NOCs, and overestimate

cost of hard NOCs. As an example, an alternative calcula-

tion of soft / firm router and NI area, shown in italics in the

right-most column of Table 1, uses the area per LUT. The

area is computed by dividing the number of required LUTs

by the die size of the Virtex-4 device (735mm2, estimated

from www.fpga-faq.org). We divide the die size by 2,

considering that the device contains embedded blocks (such

as I/O pins, DSP, memories). In this case, the area ratio of

soft:hard is above 70. Our analyses remain within the same

order of magnitude. Note that the area for the soft/firm NOC

does not include the area of the configuration interconnect,

which the hard NOC also implements. Our estimates are

therefore conservative.

0%

1%

10%

100%

1000%

10000%

100 5100 10100 15100 20100

CFR size (number of LUTs)

N
O

C
 c

o
st

 a
s

%
 o

f
C

F
R

 s
iz

e soft
firm
hard

1

10

100

1000

100 2100 4100 6100 8100 10100
CFR size (number of LUTs)

m
a
x
.

n
u

m
b

er
 o

f
C

F
R

+
R

+
N

I

soft
firm
hard

(a) Percentage overhead for varying CFR sizes.

(b) Number of IPs on a Virtex-4 for varying CFR sizes.

Figure 6. NOC cost for varying CFR sizes.

In Figure 6(a), the cost of a router and NI is plotted

against the size of the CFR. As an example, for soft, firm,

and hard NOCs, the overhead reaches 830%, 500%, and

14% for a CFR size of 1000 LUTs, respectively. This means

that the area overhead of hard NOC is acceptable for typical

IP size, while the area overhead of soft/firm NOC is unac-

ceptably large. Figure 6(b) depicts the number of (equal-

sized) IPs that can be mapped on a Virtex-4. As an exam-

ple, for soft, firm, and hard NOCs, the maximum number

of IPs are 19, 30, and 144 for a CFR size of 1000 LUTs,

respectively. This means that sufficiently many IPs can be

mapped when the hard NOC is accommodated, while only

small number of IPs can be mapped when the soft/firm NOC

is utilized. Hence a soft NOC has less than 10% area cost

only for a small number of large (≈ 80, 000 LUTs) CFR,

for which a NOC is not attractive to use. A hard NOC is

already attractive for small CFRs (≥ 1400 LUTs), allowing

over a hundred of CFRs on a Virtex-4. Firm NOCs score in

between, but it is difficult to state when they are attractive,

given the current data.

4.2 Functional Performance

In this section, we compare the speed of the NOCs.

The hard implementation of Æthereal operates at (worst-

case) 500MHz in 130nm [12]. The soft NOC operates at

118MHz (the NI) and 124MHz (the router) in the 90nm
Virtex-4 device. Although the speed of the soft NOC can

undoubtedly be improved, a speed improvement of a factor

5, which ignores the speed increase from ASIC 130nm to

FPGA 90nm, is a conservative estimate. For a fair bench-

mark of soft and hard NOCs, the performance:cost ratio

(bit/sec/mm
2
) should be compared. With equal topolo-

gies and architectures, we need to only compare the raw

link bandwidths (32 bits × operating frequency) per area:

soft 32bits × 118MHz/8.10mm2 = 466 1

firm 32bits × 122MHz/4.83mm2 = 808 1.7
hard 32bits × 500MHz/0.23mm2 = 69565 149

Thus, the performance of firm NOC is 1.7 times better than

a soft NOC and a hard NOC is 149 times better.

4.3. Configuration and Programming

In this section, we quantitatively compare the number of

bits and the required time for configuration & programming.

1) Conventional Configuration: The configuration unit of

a Virtex-4 device is a frame, containing 41 32-bit con-

figuration words [36]. SelectMAP provides configuration

at a rate of 1.9Gb/s (32-bit interface at 60MHz [36]).

Therefore, a frame can ideally be configured in 41word ×

32bit/1.9Gbit/sec = 0.7µs. A CLB column is the small-

est coherent reconfiguration unit, which, containing 22

frames, takes 0.7 × 22 = 15µs to configure.

2) NOC Programming: A NOC, whether soft or hard, must

be programmed as described in Section 3.3. Each connec-

tion (a pair of request-response channels) in Æthereal has

between 832 and 2096 state bits [14]. This requires 2.5µs
to program in a hard NOC [14]. An ARM processor is used

as the boot module, and it uses optimised MMIO read and

write transactions to configure the NIs. (Routers are not

programmed.) The boot time of the ARM processor is not

taken into account here.

3) Soft NOC: We consider a conventional configuration in-

terconnect with a soft NOC. The soft NOC requires 8300

LUTs per router-NI pair (Table 1). Therefore, at least
8300 LUTs × 22 frames per column

8 LUTs per CLB × 16 CLBs per column
= 1427 frames are

required to configure a single router-NI pair. This is equiv-

alent to a bitstream of 1427 frames × 41 words × 32b =
1.8Mb. It takes at least 1427 frames × 0.7µs = 998µs
configure the router-NI pair. However, the soft NOC is

distributed over the FPGA and is likely to occupy more

frames. Moreover, the soft NOC frames must be disjoint

from CFR frames, otherwise they cannot be reconfigured

independently. Both increase the NOC configuration time.

Therefore, both the configuration time and bitstream size

are optimistic estimates. The time to program a connection

in the soft NOC for the functional data communication can

be derived by 2.5µs × 500/118 = 10.6µs (converting the

hard NOC frequency to the slower soft NOC speed).

4) Hard NOC: The second scenario uses a hard NOC to

configure the FPGA. First, the hard NOC must be pro-

grammed. For each NI, two connections must be pro-

grammed (one to program the NI, and one to configure the

Table 2. Configuration and Programming
phase soft NOC hard NOC Fig.4 Fig.5

configuration mode

conf. NOC 998µs/NI - 1 -

prog. conf. interc. - 5µs/NI - 2

conf. CFRs 1.9Gb/s 8Gb/s 1 3

functional mode

prog. NOC & CFR 10.6µs/conn. 2.5µs/conn. 2-3 4

CFR), or 2×2.5 = 5µs per NI. Second, the bitstreams must

be loaded in the CFRs. The NOC transports the config-

uration data at, say, 8Gb/s (conservative conversion from

16Gb/s raw bandwidth to nett bandwidth), and is then a

factor four faster than the conventional FPGA at 1.9Gb/s.

5) Overall: Recall Figures 4 and 5 where the phases of boot-

ing a system were depicted. For each of the soft and hard

NOC Table 2 the time spent on the following phases: pro-

gramming the configuration interconnect, configuring the

functional interconnect, programming the functional inter-

connect, and configuring the CFRs. A hard NOC requires

programming per NI, whereas the soft NOC requires con-

figuration per router-NI. Since programming requires fewer

bits and is faster too, a system with a hard NOC is ready for

functional operation 998µs/5µs = 200 times faster. The

gain of (10.6 − 2.5)µs to program each functional connec-

tion does not significantly improve this number. The config-

uration footprint of the hard NOC is also smaller. The foot-

print size for a single soft router-NI pair is 1.8Mb, whereas

only 8.4Kb is required for the hard NI with 4 connections

(routers are not programmed) [14].

For configuration regions equal to those of a current

Virtex-4 device (16 CLB columns of 128 LUTs each, i.e.

2048 LUTs), a hard NOC has a 7% area overhead versus

405% for a soft NOC. Note that our analyses are inde-

pendent from the particular NOC because they essentially

depend on three factors: the ASIC:FPGA area ratio, the

ASIC:FPGA operating frequency ratio, and the configu-

ration:programming footprint (bitstream versus number of

MMIO bits) ratio. For example, using a GS-only instead of

BE+GS router [12] reduces the area cost of both soft and

hard NOC by a factor four and increases their speed by a

factor two, but the ASIC:FPGA area and speed ratios re-

main the same.

5. Conclusions

We proposed to replace the current FPGA configuration

interconnect by a hard network on chip (NOC) and to use

it also as the functional interconnect. The configuration

and functional regions (CFR) are independent, as in cur-

rent interconnects, but both connect to the hard NOC. The

proposed architecture reduces timing closure problems in

the functional interconnect because it is hardwired and pre-

verified. A hard NOC is disjoint from soft IPs, eliminating

an interference during dynamic partial reconfiguration. For

example, this reduces the placement and layout of restric-

tions of soft IPs, which otherwise have to be e.g. in separate

CLBs from a soft NOC.

A number of novel applications are possible in the new

architecture. First, the hard NOC can be extended with

soft network components (routers, NIs) implemented in the

functional regions, by adding a simple bridge. This al-

lows dynamic addition of soft routers and NIs. Second, bit-

streams can be generated and/or modified at run time by IPs.

For example, they can be optimised at run time, encrypted,

etc. Bitstreams can also be moved from one configuration

region to another, allowing, for example, dynamic reloca-

tion of IPs and embedded built-in self test.

We compared a conventional FPGA and soft NOC with

our proposed architecture on area, functional speed, con-

figuration footprint and speed, and general flexibility. 10%

area cost is achieved by a soft NOC only for large CFRs

(80, 000 LUTs), but already for small CFRs (≥ 1400
LUTs), allowing a maximum of 109 such CFRs on a Virtex-

4. The hard NOC has a bandwidth:area performance advan-

tage of a factor 150 or more over a soft NOC. Because a

hard NOC operates at a higher speed, and is programmed

rather than configured like a soft NOC, the configuration of

the FPGA is 200 times faster when using a hard NOC, and

its configuration footprint of the hard NOC is also smaller

than that of a soft NOC. This suggests that our unified hard

NOC outperforms the conventional configuration intercon-

nect and soft NOC, at acceptable cost.

References

[1] A. M. Amory, et al. Wrapper design for the reuse of a bus,

network-on-chip, or ther functional interconnect as test ac-

cess mechanism. IET Comp. & Dig. Tech., 1(3), 2007.
[2] A. M. Amory, et al. Software-based test for non-

programmable cores in bus-based system-on-chip architec-

tures. In VLSI-SoC, 2003.
[3] ARM. AMBA AXI Protocol Specification, June 2003.
[4] T. Bjerregaard. The MANGO clockless network-on-chip:

Concepts and implementation. PhD thesis, DTU, 2006.
[5] C. Bobda, et al. The Erlangen Slot Machine: Increasing Flex-

ibility in FPGA-based Reconfigurable Platforms. In FPT,

2005.
[6] G. Brebner and D. Levi. Networking on chip with platform

FPGAs. In FPT, 2003.
[7] C. Chang, et al. BEE2: a high-end reconfigurable computing

system. IEEE Design & Test of Computers, 22(2), 2005.
[8] I. Cidon, et al. Network and transport layers in networks on

chip. In G. De Micheli and L. Benini, editors, Networks on

Chips: Technology and Tools. Morgan Kaufmann, 2006.
[9] M. Coenen, et al. A buffer-sizing algorithm for networks on

chip using TDMA and credit-based end-to-end flow control.

In CODES+ISSS, 2006.
[10] J.-P. Diguet, et al. NOC-centric security of reconfigurable

SoC. In NOCS, 2007.
[11] R. Gindin, et al. NoC-Based FPGA: Architecture and Rout-

ing. In NOCS, 2007.

[12] K. Goossens, et al. The Æthereal network on chip: Concepts,

architectures, and implementations. IEEE Design and Test of

Computers, 22(5):414–421, Sept-Oct 2005.
[13] A. Hansson, et al. Undisrupted quality-of-service during re-

configuration of multiple applications in networks on chip. In

DATE, 2007.
[14] A. Hansson, et al. Trade-offs in the configuration of a net-

work on chip for multiple use-cases. In NOCS, 2007.
[15] A. Hansson, et al. A unified approach to mapping and rout-

ing on a network on chip for both best-effort and guaranteed

service traffic. VLSI Design, 2007. Hindawi Publishing Corp.
[16] R. Hecht, et al. Dynamic Reconfiguration with hardwired

Networks-on-Chip on future FPGAs. In FPL, 2005.
[17] R. Hecht, et al. Network-on-chip basierende laufzeitsysteme

für dynamisch rekonfigurierbare hardware. In Dynamisch

Rekonfigurierbare Systemen at Conf. on Arch. of Comp. Sys.,

Mar. 2004.
[18] M. Huebner, et al. Scalable Application-Dependent Network

on Chip Adaptivity for Dynamical Reconfigurable Real-Time

Systems. In FPL, 2004.
[19] J. Hur, et al. Partially reconfigurable point-to-point intercon-

nects in Virtex-II Pro FPGAs. In ARC, 2007.
[20] N. Kapre, et al. Packet switched vs time multiplexed FPGA

overlay networks. In FCCM, 2006.
[21] I. Kuon, et al. Measuring the gap between FPGAs and

ASICs. IEEE Trans. on CAD of Int. Circ. and Sys.,

26(2):203–215, Feb. 2007.
[22] T. Marescaux, et al. Networks on chip as hardware compo-

nents of an OS for reconfigurable systems. In FPL, 2003.
[23] M. Millberg, et al. Guaranteed bandwidth using looped con-

tainers in temporally disjoint networks within the Nostrum

network on chip. In DATE, 2004.
[24] H. Nikolov, et al. Efficient automated synthesis, program-

ming, and implementation of multi-processor platforms on

FPGA chips. In FPL, 2006.
[25] OCP Int. Partnership. Open core protocol specification,

2001.
[26] A. Patel, et al. A scalable FPGA-based multiprocessor. In

FCCM, 2006.
[27] Philips Semiconductors. Device Transaction Level (DTL)

Protocol Specification. Version 2.2, July 2002.
[28] T. Pionteck, et al. Applying partial reconfiguration to

networks-on-chips. In FPL, 2006.
[29] A. Rădulescu, et al. An efficient on-chip network inter-

face offering guaranteed services, shared-memory abstrac-

tion, and flexible network programming. IEEE Trans. on

CAD of Int. Circ. and Sys., 24(1):4–17, Jan. 2005.
[30] P. Sedcole, et al. Modular dynamic reconfiguration in Virtex

FPGAs. IEE Proc. Comp. and Dig. Tech., 153(3), 2006.
[31] M. Sgroi, et al. Addressing the system-on-a-chip intercon-

nect woes through communication-based design. In DAC,

2001.
[32] F. Steenhof, et al. Networks on chips for high-end consumer-

electronics TV system architectures. In DATE, 2006.
[33] A. Thompson. Silicon evolution. In Proc. of Genetic Pro-

gramming, pages 444–452. MIT Press, 1996.
[34] S. Wee, et al. A Practical FPGA based Framework for Novel

CMP Research. In FPGA, 2007.
[35] P. Wielage, et al. Design and DFT of a high-speed area-

efficient embedded asynchronous FIFO. In DATE, 2007.
[36] Xilinx. Virtex-4 Configuration Guide, UG071 (v1.8), 2007.
[37] P. S. Zuchowski, et al. A hybrid ASIC and FPGA architec-

ture. In ICCAD, 2002.

