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Abstract

We present a methodology to debug a SOC by concen-
trating on its communication. Our extended communication
model includes a) multiple signal groups per interface pro-
tocol at each IP port, b) the handshakes per signal group
(e.g. for command), and c) the handshakes within a signal
group (e.g. for write and read data elements). As a result,
our debug methodology is the first to offer debug control
at three communication granularities: individual data ele-
ments in a message, messages (i.e. requests or responses),
and entire transactions.

Communication to distributed shared memories is sup-
ported in networks on chip (NOC) by transparently
(de)multiplexing different master-slave channels based on
the memory address, also called narrowcast. In this pa-
per, we extend previous work on NOC debug that allowed
per-connection debug (i.e. a master without differentiating
between its slaves) to also support per-channel (i.e. per
master-slave pair) debugging, also for narrowcast connec-
tions. This enables essential fine-grained debug control for
multi-processor SOCs that use distributed-shared-memory
communication.

The debug infrastructure consists of hardware compo-
nents, and a software API and library. We define the hard-
ware infrastructure and the required changes to a NOC.
Our architecture cleanly separates the monitoring and dis-
tribution of events from how they are interpreted and used,
in terms of hardware and programming. We define a high-
level software API for run-time user control. The debug
methodology offers run-time programmable breakpoints,
stopping, continuing, and single-stepping of distributed-
shared memory communication at three granularities, at the
cost of 2.5% NOC area increase and no speed penalty.

1. Introduction

With the emergence of complex SOCs comes the unin-
tentional but inevitable slip of some design errors (located

in hardware or software) to the product bring-up phase.
Finding these errors in a timely and cost-effective manner
is increasingly important to ensure that the product can be
released to the market on time. Traditionally the task of de-
bugging an embedded system has been made easier through
the up-front inclusion of debug support functions in the de-
sign, an activity known as Design-for-Debug (DfD). Debug
support functions included in SOCs across the industry to-
day [11] fall into two categories: real-time trace and run-
stop control. To enable real-time trace, key internal signals
are brought out, in real-time, onto chip pins. The ability to
observe these signals is a great advantage during debugging.

Run-stop control uses on-chip support to stop the func-
tional operation of the chip when a programmable condi-
tion occurs. Traditionally the response to this occurrence
is to either have the processors in the system jump to an
exception handler, and wait to be contacted by an external
debugger tool, or by gating all functional clocks, freezing
the complete system state. Afterwards, the external de-
bugger software can switch the system to a debug mode,
in which the system state can be examined, and where re-
quired, modified, before functional execution is resumed or
restarted [12]. Software debugging takes place at the appli-
cation source code level. Hardware debugging takes place
at the IP clock cycle level. A single source code line can
take many clock cycles to execute, making the system de-
bug process very time consuming, as there are no interme-
diate levels on which debugging can take place as well. In
addition, debugging at the clock cycle level is known to be
very difficult, especially in SOCs with multiple clock do-
mains, and in the presence of non-deterministic behavior
and environmental conditions [5, 4].

In this paper, we therefore establish new intermediate de-
bugging levels, address communication based on distributed
shared memories for multi-processor SOCs, implement sin-
gle stepping, and define and implement a high-level user
API for run-time debug. For this we focus on the on-chip
communication architecture, and extend the concepts and
implementations explored in [8] and [18].

Key contributions of this paper are:



• We introduce an extended communication model that
includes multiple protocol signal groups, handshaking
per group (e.g. for the command group) and within a
group (e.g. write and read data elements).

• This allows us to define intermediate levels for ef-
fective run-stop debugging of embedded systems, fo-
cussing on the on-chip communication, instead of on
the on-chip computation. These increasingly coarse
levels are: individual data elements (of write and read
data), request and response messages, and entire trans-
actions. The first level is new.

• NOCs implement distributed-shared-memory commu-
nication by demultiplexing requests from a master to
the appropriate slave, and multiplexing the responses,
called a narrowcast connection [16]. Prior work [8, 18]
allowed debugging of connections with a master and
multiple slaves, such as a narrowcast connection, only
in a limited manner. This paper defines and imple-
ments per-channel, i.e. per master-slave pair, debug
support. This significantly increases the flexibility and
applicability of the debug methodology, which is re-
quired by SOCs with multiple processors that commu-
nicate via distributed shared memories.

• We show new details of the event distribution mech-
anism, including finite state machines (FSM) and the
operation of stop event distribution.

• Single stepping, i.e. repeated stopping and continuing,
is a key feature of a debug methodology. Although
prior work introduced the concept, it did not imple-
ment it. In particular, single stepping at any of the
three debug levels introduced here, while guaranteeing
that no events are missed requires additional hardware
support to atomically continue and stop. This is more
complex than the separate stop and continue functions,
described by earlier work.

• The new features (three debug levels, narrowcast de-
bug, and single-stepping) all require changes to the
network interface (NI) shell FSMs. We show an im-
plementation for a particular protocol (DTL [14]), and
a general recipe to modify NI Shell FSMs for other
protocols.

• While prior work defined the basic steps on how to
use a debug infrastructure, this paper gives both more
low-level details of the test point registers (TPR), and
defines a generic debug interface port and software
API to abstract away from the basic, implementation-
specific operations to a more generic and user-friendly
interface.

In our examples we use a network on chip (NOC), but our
concepts and implementation can be applied equally well to
bus-based SOC architectures.

The remainder of this paper is organized as follows.
Section 2 discusses the interconnection and communication

Figure 1. Example signal groups and signals of a
DTL port.

models. In Section 3 we describe a typical session for de-
bugging a system using a communication-centric approach,
and derive debug control requirements. Section 4 describes
how these can be implemented in a NOC and made acces-
sible via a generic debug interface. Section 5 contains a
description of the high-level software API we developed to
control the SOC communication at the system level with
different granularities of stopping and single stepping. In
Section 6 we present the results of experiments we con-
ducted, including silicon area cost, and impact on the max-
imum functional network frequency. We conclude in Sec-
tion 7.

2. Interconnection & Communication Models

Communication Model

To enable their re-use, IPs communicate on their ports using
standardized transaction-based protocols, such as DTL [14],
AXI [1], and OCP [13]. A transaction is initiated by a mas-
ter port on an IP, and consists of a request message from
master to slave. The execution of a request message by the
slave can generate an optional response message.

A request message is encoded as two or more signal
groups: the command group and the write-data group. A
response message is encoded as one or more signal groups,
e.g. the read-data group. Successive data words of the write
and read data groups are called message (data) elements.
Figure 1 shows some of the signal groups of DTL, which
we use as a running example in Sections 4.3 (converting
transactions to packets) and 6 (experimental results).

A valid/accept handshake is used to transfer an element
per signal group. For example, the element of the com-
mand group comprises the command (read/write), address,
and perhaps some flags. For the command and data groups



Figure 2. Narrowcast connection, implementing
distributed shared memory communication be-
tween one master and multiple slaves.

the initiator produces data on the signal group and asserts
the group’s valid signal. The target then consumes the data
and indicates this by asserting the group’s accept signal. For
the response message the role of initiator and target are re-
versed.

We distinguish three consistent granularities of commu-
nication. Starting with the smallest, these are: elements (co-
inciding with signal group handshakes), messages (requests
or responses, consisting of one or more elements on one or
more signal groups), and transactions (consisting of a re-
quest message and optional response message). The debug
infrastructure introduced in Section 4 allows the debugging
of the communication of a SOC to take place at each of
these levels, depending on how it is configured.

Our canonical NOC [7] consists of routers and network
interfaces (NI). A master communicates with a slave using
two uni-directional channels: one for request messages and
one for response messages. Most communication proto-
cols implement distributed shared memory, where a master
communicates transparently with multiple slaves. In other
words, the master uses an address space without knowing
how it is distributed over the slaves (on-chip and external
memories, peripherals, etc.). A master communicates trans-
parently with multiple slaves using a single narrowcast con-
nection [16], see Figure 2.

NI Architecture

As illustrated in Figure 3, channels are implemented by
the NI kernel, and connections are implemented by the NI
shells [16]. After serializing the request signal groups (“s”
in Figure 3), requests of a single master are demultiplexed
to multiple slaves on a single connection in the master NI
shell (“d” in Figure 3). Split pipelined requests may be sent
to different slaves, and the responses may come back with
different delays, hence the master NI shell also interleaves
the responses in the correct order. A slave may be used by
different masters. Hence the slave NI shell multiplexes re-
quests of different masters and demultiplexes the responses.
The NI Shell FSMs implement the (de)serialization, re-
ordering, and handshaking for the particular protocol of the

Figure 3. (a) Narrowcast (Multi-Slave) Master and
(b) Multi-Master Slave, with their Shells and Ker-
nels.

port. In Section 4.3 we describe these FSMs and how they
have been modified to support our debug methodology.

3. Communication Debug

For run-stop type debugging, a debug engineer first has
to determine at what point during the functional execution
(the so-called breakpoint) the internal state of the embed-
ded system needs to be examined. This decision is typically
based on the point in time at which faulty behavior becomes
visible on the system outputs, and setting an internal break-
point prior to that moment. For communication-centric de-
bug, several choices exist for the granularity at which the
system execution can be stopped, and subsequently single-
stepped, see Figure 4.

The coarsest granularity that is useful for debugging the
on-chip communication is the connection level. This com-
prises the communication between a single master and all
of its slaves. This debug level is sufficient to determine
whether the master generates correct read and write trans-
actions and the slaves react in the correct way. This correct-
ness can be determined for example through a correlation
with a behavioral simulation of the same system. This how-
ever does not explain why (attributes of) the transactions
on a particular connection or from a particular slave are in-
correct. To determine this, a smaller granularity may be
required, for example at the level of individual slaves (i.e.
channels), messages (i.e. specific requests or responses on



Figure 4. Communication Debug Granularity.

Figure 5. Communication-centric Debug Session.

a channel), or even elements within a message. If the com-
munication infrastructure itself is suspect, debugging might
need to take place at the even lower, flit level. Finally, the
smallest granularity at which the execution of the system
can be controlled, and hence stopped, is the clock-cycle
level. Note that when stopping a system at a higher granu-
larity than clock cycles, the stopping may not be immediate,
i.e. the system may continue to execute for a certain period
of time after the breakpoint was detected, for example to
complete an active message or transaction.

Based on these additional levels of granularity, a new
flow for a communication-centric debug session can be de-
rived. It is shown in Figure 5. After programming the break-
point, the engineer can choose to functionally reset the ap-
plication, to start its execution from a well-defined start-up
state, or to let the system continue as is. The external debug-
ger software then continuously checks the execution state of
the system, to determine whether the programmed break-
point has already been hit or not. Once the breakpoint has
been hit, the debugger software also has to check whether
the system has reached a quiescent state, for example by
polling the state of the communication queues in the NI
shells. Especially with the transaction granularity, the time

between the breakpoint hit and the system communication
reaching a quiescent state may take a long time when large
transactions are used.

Either the system reaches a quiescent state by itself, or
the user has to force the subsequent switch to debug mode.
Once in debug mode, the debug engineer has access to the
contents of all internal registers and memories, via for ex-
ample the manufacturing scan-chains [10].

Once the system’s state has been inspected, it may be
required to restart and/or resume the system’s execution to
stop at another point (earlier or later) in time for more ac-
curate analysis of the error. To this end, the breakpoint can
be reprogrammed, and the execution of the system is ei-
ther restarted (by resetting the system), or resumed (by re-
enabling system execution control).

From the description of a communication-centric debug
session, we derive the following control requirements to de-
bug the on-chip communication:

• Reset: Functionally reset the system to (re)start the ex-
ecution from a well-defined, start-up state.

• Internal stop: Stop initiated by an on-chip monitor pro-
grammed to recognize and trigger on a condition or se-
quence on internal signals. When these triggers reach
the network interfaces, they may take effect at different
levels of granularity (see Figure 4).

• External stop: Stop initiated by the user from the ex-
ternal debugger tool. Due to the latency of the debug
channel through which this stop command is commu-
nicated, it is often very difficult to precisely control
the point at which the system actually stops executing,
hence the predominant use of on-chip monitors.

• Continue: Resume functional execution of the system.

The traditional single-step operation also exists for com-
munication debug, but is not explicitly mentioned as a re-
quirement, as a single-step action is the combination of a
continue action with a subsequent stop action at a user-
specified granularity. The breakpoint programmed can be
either an absolute or a relative breakpoint. For single-
stepping, a relative breakpoint is used, where the break-
point is set after the next clock cycle, flit, element, message,
or transaction, depending on the user’s granularity require-
ments.

4. On-Chip Debug Infrastructure

In this section we describe the on-chip debug infrastruc-
ture that supports a communication-centric debug session as
shown in Figure 5 and that meets our communication debug
requirements. An overview of this infrastructure is shown
in Figure 6. The components specifically added to provide
debug support are shown in light gray.



Figure 6. DfD Infrastructure for Communication
Debug.

Figure 7. (a) Monitor TPR, and (b) NI Shell TPR.

4.1. On-chip Monitors

Monitors may be added to a system to observe the
progress of the computation in the master and slaves,
and/or the communication in the communication architec-
ture. Communication monitors observe the data on the in-
terfaces at the boundaries of the network [17], and/or on
internal links [2, 3], routers, NIs, etc. Under which condi-
tions a monitor generates a trigger can be programmed via
the Debug Control Interconnect (DCI). In our case, the DCI
consists of a daisy-chain of, among others, Monitor Test
Point Registers (TPR) (see Figure 6). A Monitor TPR con-
tains a breakpoint condition, and its enable and triggered
flags (refer to Figure 7(a)). The TPR chain is accessible
from an IEEE 1149.1 Test Access Port (TAP) using a special
debug instruction (see Subsection 4.5). This access mech-
anism is identical to the DCBs in [19]. Once the monitor
detects the programmed breakpoint condition on the link or
interface it observes, it asserts its output for as long as the
breakpoint condition remains true.

Figure 8. Example Event Distribution Interconnect.

Figure 9. FSM of the Event Distribution Intercon-
nect Node.

4.2. Event Distribution Interconnect

The output signals of the monitors are connected to
the Event Distribution Interconnect (EDI). The basic com-
ponent of the EDI is the EDI node. The EDI node is
parametrizable in the number of neighboring nodes. The
EDI follows the topology of the communication architec-
ture (for an example with one monitor, refer to Figure 8).

The FSM diagram of an EDI node is shown in Figure 9.
Upon a functional reset, this FSM enters the wait state, in
which it waits for an incoming event signal from its nearby
monitor or other EDI nodes. When an event is detected, the
FSM transitions to the send state, while it broadcasts the
event to all its neighboring EDI nodes. In the next clock
cycle, the FSM transitions to the idle state where it de-
actives its outgoing event signal, and ignores any incoming
returning event signals from its neighbors. This state is key
to the attenuation of the event signals in the EDI, as it en-
sures that eventually the entire EDI will be free of event
signals again. In the next clock cycle, the FSM transitions
to the more? state, where it checks whether the event input



Figure 10. Event Distribution Example.

signal is still asserted. If so, it will transition back to the
send state, while broadcasting the event to all its neigh-
boring EDI nodes. If the event input signal is deasserted,
the FSM transitions to the initial wait state, where it again
resumes to wait for an incoming event signal.

For the example EDI shown in Figure 8, the concerted
operation is shown in Figure 10. Monitor M0 asserts its
output (monitor stop[0]), thereby signalling an event
to EDI Node N0. EDI Node N0 transitions to the send
state while asserting its output signal, stop out[0]. In
the next clock cycle, its neighboring EDI nodes, N1 and N3,
take similar action, to signal the remaining EDI nodes, N2,
and N4 via stop out[1] and stop out[3] respec-
tively. Consequently all nodes go through the state sequence
wait→ send→ idle→ more? → wait. Afterwards,
the complete EDI is in the same state as it was before the
event came in from the monitor, but in between all network
interfaces have been informed of this event, through the as-
sertion of the stop out[i] signals.

It takes the EDI a single clock cycle to propagate the
pulses generated by a monitor through a EDI node. Given a
communication architecture that communicates data at the
granularity of flits (3 cycles for the Æthereal NOC), this en-
sures that any monitor event always reaches the borders of
the network ahead of the data itself. This is a key debug
feature we exploit, as it allows this data to be kept within
the borders of the communication architecture for an (po-
tentially) infinite amount of time. The actual processing of
this data by the receiving IP can then be analyzed in the
necessary detail required to find an error cause, by subse-
quently single-stepping the delivery operation for this data
at the required debug granularity.

4.3. Network Interface Debug Operation

We illustrate the functional states and transitions of the
NI shell FSMs, and then describe how they are modified
for debug. Figure 11 shows the FSM of the narrowcast NI

Figure 11. Modified Network Interface FSM for a
Narrowcast Master.

shell for a DTL master port as shown in Figure 3(a). Other
NI shell FSMs are similar. Please refer to Figure 1 for the
relevant signals and groups of a DTL port, which we use
in our implementation. The states of the FSM serialize and
handshake the DTL signal groups in the correct order (cmd
dec and cmd accpt for the command, then read for
read data or wdata accpt for write data). The cmd dec
state decodes the address group to select the channel corre-
sponding to the right slave, which is the defining feature
of the narrowcast connection that implements distributed-
shared-memory communication.

For the communication to be stopped when a break-
point is detected, this FSM needs to be adapted. The states
that are responsible for handshaking are duplicated in so-
called shadow states. These are the lighter gray states in the
state diagram, with an apostrophe appended to the name of
the original state. Shadow states differ from their original
counter-part. First, when in a shadow state, the FSM deac-
tivates the NI shell’s handshake signals, causing communi-
cation between the master and NI shell ports to (eventually)
stop. Second, to take an FSM out of a shadow state, a signal
from the external debugger software is required.

In the particular FSM of Figure 11, the stop tran-
sitions s2 and s6 are equal to the original f2 and
f6, but include checking that the channel should be
stopped, and that an unconditional stop or stop condi-
tion occurs: (stop enable[i] = logic-1) AND
((stop = logic-1) OR (stop condition[i]
= logic-1)), where i is the channel identifier. f2’
and f6’ are modified from f2 and f6 respectively by
including the negated stop condition. The continue transi-
tions c2, c6, and c7 are equal to the original f2, f6, and
f7 ANDed with the continue[i] = logic-1 signal,
respectively. A general recipe for other protocol FSMs can
be easily derived from this example.

The stop enable, stop condition, and
continue signals come from the NI shells TPRs,



described in the following section. They control how the
NI shell hardware reacts to incoming events on the stop
signal. TAP controller instructions set and read the TPRs,
as described in Section 4.5. The user uses a higher-level
debug API, defined in Section 5, built on top of the TAP
controller instructions.

4.4. Network Interface Debug Control

The debug signals required to control the state progres-
sion of the NI shell FSMs originate from an NI-shell TPR
(see Figure 6). All NI-shell TPRs are included in the TPR
daisy-chain described earlier in Section 4.1. The NI TPR is
a data register that provides the user with all required debug
control over the interconnect interactions. By programming
the various NI TPRs the user can achieve transaction, mes-
sage, and/or element debugging per channel. As shown in
Figure 7(b), the NI TPR consists of 5 fields: stop enable,
stop granularity, stop condition, continue, and
ip stop. All but the last field are present per channel.

1) Stop Enable: This field indicates whether the com-
munication on a particular channel is stopped on an internal
event or not. A logic-0 means that the communication on
this channel does not stop when an event signal is received
from the EDI. Also a possible software stop is ignored (see
the description of the stop condition field below). A
logic-1 stops the channel on the conditions, specified by
the stop granularity and stop condition fields.

2) Stop Granularity: This field controls the granularity
at which the communication on a certain channel is stopped.
A logic-0 and logic-1 allow ongoing messages and ele-
ments, respectively, to complete before stopping. The latter
will stop the channel faster.

3) Stop Condition: Provided that stopping has been en-
abled (i.e. stop enable set to logic-1) for the channel,
and the appropriate stop granularity has been set, this bit
determines under which condition this channel will stop. A
logic-0 means that the channel will stop only after a pulse
from the EDI has been received. A logic-1 means the
channel will stop unconditionally before the next element,
at the granularity specified by the stop granularity bit.
This channel will stop irrespective of whether a stop pulse
arrived from the EDI or not.

This field gives the user the flexibility to either wait for
a stop pulse from the EDI (i.e. for an absolute breakpoint
or an external stop command), or program a channel to be
stopped unconditionally (for a pre-programmed or forced
user stop). There are two reasons for providing this field.
First, in case of (infinitely) long transactions or errors on the
interface, the user can stop the NOC by programming this
field without having to wait for a transaction to complete.
Second, a single-step consists of a continue atomically fol-
lowed by an implicit unconditional stop. This field enables

this implicit stop.
4) Continue: The stop combined with the continue gives

the user the power to observe the functional behavior of the
SOC in a controlled fashion during debug. The continue
field is interpreted differently from the other fields. Writ-
ing logic-1 in the continue TPR causes an active-high
signal to be fed to the NI shell. Upon continuing commu-
nication, the shell resets this signal’s value automatically
through special reset logic. Setting this bit to logic-1 is
thus interpreted as a single continue pulse for the channel.

A continue with the appropriate stop condition therefore
ensures an atomic continue and stop, to ensure that exactly
one handshake takes place. This accuracy cannot be guaran-
teed by separate continue and stop commands because they
involve user interaction, TPR programming, stop event dis-
tribution, etc. all which take time, during which an IP may
execute multiple handshakes.

5) IP Stop: Every NI shell TPR also has a single
ip stop bit which enables the NI shell to forward an event
to the connected IP cores. This is used for a functional stop
request for the IP cores, enabling the stopping all the com-
ponents (the interconnect and the IPs) of a SOC close to
each other in time. Otherwise, only stopping the intercon-
nect without the IP cores means that the computational state
of the IP cores might still advance as they continue internal,
non-communication-related operations. This complicates
debug as the states of different parts of the system retrieved
later on may be difficult to correlate to one another.

A logic-0 means not to signal the connected IP cores
to stop. Setting the value to logic-0 is also used to signal a
continue action when the IP cores were previously stopped
using this method. A logic-1 signals a stop to the con-
nected IP cores, when a trigger event comes in via the EDI.

4.5. Extra TAP Controller Instructions

The entire on-chip debug infrastructure is controlled
and programmable through an IEEE 1149.1 Test Access
Port (TAP). A TAP is often already included in a chip
design to allow board-level manufacturing test. To sup-
port communication-centric debug, the controller associ-
ated with the TAP has been extended with a number of user-
defined instructions:

• DBG RESET: issue a functional reset of the chip.
• PROGRAM TPR: program the monitor and NI TPRs.

The former determine the breakpoint condition(s). The
latter control the resulting debug control actions.

• QUERY TPR: query the status of the breakpoint (trig-
gered or not) and the channels (whether there are still
on-going transactions) in the NI shells.

• JTAG STOP: send a trigger pulse to the EDI from the
TAP.



• PROGRAM TCB: switch the system between functional
and debug modes.

• DBG SCAN: scan out the complete state of the system
via the scan chains in debug mode.

These instructions implement safe reading and writ-
ing of TPRs (which can be non-trivial due to the differ-
ence in debug and functional clock domains). They hide
SOC-dependent implementation details of the TPRs in scan
chains, etc. These generic instructions are however still
fairly low level for an end user because (s)he would have
to know the exact TPR layouts of Figure 7 and their posi-
tions in the TPR chain. It is for this reason that we defined
a higher-level software API, which is described in the fol-
lowing section.

5. Off-chip Debugger Software API

We extended the TCL interface of our hardware debug-
ger [15] to control the debug functionality in a user-friendly
manner. The following API functions are implemented:

• reset : Issues a functional reset of the system by using
the DBG RESET instruction.

• set bp <monitor> [<condition>]: Sets up the
<condition> in the monitor’s TPR. When the optional
<condition> field is left out, the breakpoint setting is
cleared. This call uses the PROGRAM TPR instruction to pro-
gram the appropriate monitor TPR bits via the TAP. Here,
and below, <monitor>s and <channel>s are specified
using their full, hierarchical design names.

• set bp action <channel> [<granularity>

<condition>]: Sets up a breakpoint action on the chan-
nel. The <granularity> is one of transaction,
message, or element. The <condition> is edi

or always. When the optional <granularity> and
<condition> fields are left out, the breakpoint action set-
ting is cleared. This call uses the PROGRAM TPR instruction
to program the appropriate NI shell TPR bits via the TAP.

• get mon status [ list of <monitor>s ]: Returns
an ASCII string, indicating whether the specified monitors
have triggered (logic-1) or not (logic-0).

• get ni status <ni>: Returns an ASCII string in-
dicating whether the channels in the specified NI are idle
(logic-1) or not (logic-0).

• continue [ list of <channel>s ]: Causes the com-
munication on the channels to continue. If the optional field
is left out, all channels are continued. This call uses the
PROGRAM TPR instruction to set the continue bits in the
appropriate NI TPRs to logic-1 via the TAP.

• synchronize: Retrieve the complete state of the sys-
tem by first switching the system to the debug mode, using
the PROGRAM TCB instruction, and subsequently scanning
out the manufacturing test scan chains, using the DBG SCAN

instruction. Then the system is switched back to functional
mode, using the PROGRAM TCB instruction. The complete
state is stored in an internal database for subsequent query
by the user.

6. Experimental Results

6.1. Example Use Case

In this subsection we show how the debug infrastructure
and the software API work together on an example. Our
automated design flow [6] generated the system shown be-
fore in Figure 6. This includes the RTL VHDL of the NOC,
the clock and reset controllers, test bench and traffic genera-
tors, embedded C code to program the NOC, and scripts for
gate-level synthesis, scan-chain insertion, etc. Each mas-
ter has a connection to both slaves. In Figure 12 we show
signal traces of the gate-level implementation of the NOC
with scan chains. We boot the system until it is running in
functional mode (omitted from the trace). The system is de-
bugged first at the message level, and then element level.
This is accomplished by Script 1, which uses the software
API defined above to control the on-chip debug support.

Script 1 Example Debug Script
1: set bp top.R00.M 378
2: set bp action {top.NI1.ch1} edi

3: while {[get mon status top.R00.M] eq “0”} {}
4: while {[get ni status NI1 ] ne “1111”} {}
5: set bp action {top.NI1.ch1} always

6: continue {top.NI1.ch1}
7: continue {top.NI1.ch1}
8: set bp action{top.NI1.ch1} element always
9: for {set i 0} {$i<5} {incr i} { continue }

10: set bp action {top.NI1.ch1} element edi
11: continue

Line 1 sets a breakpoint at the monitor attached to router
R00, to match the value 378 on the output links of the
router. Line 2 specifies that the channel top.NI1.ch1 be-
tween Master 1 and Slave 2 is sensitive to events gener-
ated by the monitors and user (via the TAP) (edi). Chan-
nel ch0to Slave 1 continues to operate. On reception of an
event from the EDI, the NI finishes the ongoing message
(message). These two commands are executed by the off-
chip debugger software, which uses the TAP and DCI (i.e.
the TPR chain) to load the appropriate values (Section 4.4)
in the monitor and NI TPRs. This is for example shown by
the transition of stop enable, labelled A, in Figure 12.

Line 3 polls the monitor TPR to see if it triggered. Af-
ter a number of transactions (box labelled B), the mon-
itor triggers, which is shown by the transition on signal



ni stop in labelled C. NI1 completes the ongoing mes-
sage on the channel between Master 1 and Slave 2. It then
stops, i.e. does not accept the messages for Slave 2 offered
by the master (command valid is high, see label D). In line
4 the TPR of NI1 is checked. First that there are no pack-
ets in transit on channel ch1 containing (parts of) messages
(cf. live tx wr r 1 and live tx rd r 1). Second that all
credits have arrived in the producer’s NI [9].

Line 5 changes the sensitivity of channel ch1 to single-
step mode (always), i.e. only a single message is ac-
cepted before stopping again. This is visible at label E,
where the stop condition changes. Line 6 continues oper-
ation of channel ch1 (label F). Immediately, the write re-
quest message that was waiting (label D) is accepted, sent
to Slave 2, and executed. Immediately after, Master 1 of-
fers a read transaction, but this command is not accepted.
All this is shown in box G. When line 7 is executed, the
waiting read request is accepted, executed, and the corre-
sponding response data consumed (see the box labelled H).
The read data dtl rd data transitions from “xxx” to a de-
fined value, but this is hard to read in the signal trace due
to the timescale used. We then change the stop granularity
of channel ch1 to the element level, line 8, label I), fol-
lowed by 5 continue commands (line 9). In the boxes la-
belled J and K, five elements are accepted: the command
dtl cmd accept and 4 data elements on dtl wr accept.
Finally, line 10 (label L) makes channel ch1 sensitive to the
EDI only, i.e. no single stepping. Label M shows how the
system continues at full speed after a continue pulse.

All debug commands are given from the debug clock do-
main. The system operates on the functional clock, and
parts of the system that are not debugged operate nor-
mally. For example, although not shown for lack of space,
throughout the example the other master can continue to
send transactions to both slaves. Figure 12 has been ob-
tained with a simulator. To debug an FPGA or real silicon,
the synchronize call has to be used to download the state
of the chip to the debugger, or vice versa. This means that
the entire system, including master 2, has to transition from
functional mode to debug mode. In general, clock cycle
synchronization leaves the system in a potentially inconsis-
tent state due to clock-domain crossings that do not utilize
valid/accept handshakes. Proper continuation can then only
be achieved be executing again from a system reset. In our
case, however, the state of the NOC can be synchronized
safely and independently from the clocks used by the IP
cores because all interfaces do use valid/accept handshakes.
At the start of the synchronize call, all channels have to
be stopped, e.g. at the element level which is quickest, and
they have to be re-enabled after the synchronization.

6.2. Required Silicon Area

For the example described above, the amount of silicon
area needed to implement the proposed debug infrastructure
is very low: a 2.5% increase of the NOC area, and no de-
crease in speed when synthesized at 250 MHz. The increase
in area is almost entirely due to the TPRs; the area for the
monitors and EDI nodes are neglible. Regarding timing, the
NI shell FSM complexity is increased marginally, but this is
not in the critical path. The EDI runs at NOC speed, and the
DDI and DCI speeds are determined by the scan chains and
boundary scan logic inserted for manufacturing test.

7. Conclusion

We presented a debug methodology to debug a SOC by
concentrating on its communication. We applied it to a
NOC because they represent the most complex intercon-
nects. Our extended communication model includes hand-
shakes for each of the multiple signal groups per IP port,
and multiple handshakes per signal group (e.g. for read
and write data elements). It also addresses narrowcast com-
munication based on distributed shared memories, where
a master transparently sends read and write transactions to
multiple slaves in its address space. As a result, debug con-
trol is offered at three granularities: data elements, mes-
sages, and transactions. Orthogonally, it is offered per chan-
nel (master-slave pair), also within narrowcast connections.
Different channels can be simultaneously debugged at dif-
ferent granularities.

We prove our concepts with an RTL implementation
that is automatically generated by our NOC design flow.
We show how to extend NI shell FSMs for general com-
munication protocols with shadow states to suspend the
valid/accept handshakes on the port interfaces. The mon-
itoring and distribution of events is cleanly separated from
how they are interpreted (the debug granularity per chan-
nel), in terms of hardware and programming. The software
infrastructure has a clearly defined hardware interface (the
TPRs and IEEE 1149.1 TAP with additional, generic de-
bug instructions), and an intuitive high-level software API
that uses it. The infrastructure offers powerful run-time pro-
grammable breakpoints, stopping, continuing, and single
stepping at three granularities. In particular, single stepping
is a non-trivial extension to atomically continue and stop, to
guarantee that no event escapes detection.

Our debug infrastructure consists of hardware compo-
nents (monitors and event distribution interconnect), and a
software API and library. The hardware infrastructure is
modular, requires very few changes to the NOC, and scales
linearly with the size of the NOC in terms of area. The area
cost is only 2.5% compared to the NoC and without speed
penalty.



Figure 12. Traces of our Example Debug Session.
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