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Abstract

Networks-on-chip (NoC) are a scalable interconnect solution for systems on chip and
are rapidly becoming reality. Monitoring is a key enabler for debugging or perfor-
mance analysis and quality-of-service techniques. The NoC design problem and the
NoC monitoring problem cannot be treated in isolation. We propose a monitoring-
aware NoC design flow able to take into account the monitoring requirements in
general. We illustrate our flow with a debug driven monitoring case study of trans-
action monitoring. By treating the NoC design and monitoring problems in synergy,
the area cost of monitoring can be limited to 3-20% in general. We also investigate
run-time configuration options for the NoC monitoring system resulting in accept-
able configuration times.

Key words: run-time monitoring, network on chip, transaction monitoring, design
flow

1 Introduction

Advances in semiconductor technology have enabled very complex large scale
systems on a chip (SoCs) designs. Each new SoC generation integrates more
processing elements (IPs) and offers increased functionality. As the number of
IPs increases, traditional interconnects, such as busses, become a bottleneck.

Networks-on-chip (NoCs) are a modular, scalable interconnect solution [1, 9,
14,17,19]. Concrete examples of NoCs are Æthereal [13], Xpipes [8], QNoC [3]
and Mango [2]. Currently, they tend to become the preferred interconnect so-
lution for large scale inherently multiprocessor SoCs. However, NoCs require
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sophisticated tools to aid in design-time decisions [3, 12, 15, 23]. Furthermore,
with increasing complexity there is also a strong need for run-time NoC mon-
itoring [4, 6, 24, 25], which must be accounted for in the design phase. This
is in turn driven by debugging [4, 6] and performance monitoring/Quality of
Service (QoS) [24,25,27].

With the introduction of NoCs, the on-chip communication becomes more
sophisticated relying on run-time programmable solutions. In centralized bus-
based systems a single bus monitor is enough to be able to track the whole
history of the system. In NoC-based SoCs, due to the inherent parallel behavior
of communications, where multiple pipelined parallel communications may
exist between IPs, multiple monitors have to be employed. The problem of
how many such monitors are needed, their automatic placement in the NoC-
based SoC by means of a monitoring-aware NoC design flow and the associated
area cost implications have not been previously investigated.

Monitors and the traffic they generate are traditionally added non-intrusively
into the SoC by using a separate monitoring NoC [24]. The cost of such a
solution is high however, and a more efficient solution is to use the same
NoC for both monitor data and user data, as suggested in [4, 6, 25]. When
monitoring traffic uses an interconnect of its own, it can be dimensioned after
the user data NoC is designed. This merely adds an extra step in the design
flow. However, when monitor and user data must share the same NoC, the
overall design flow must be revised [6].

NoC design flows for ASIC type designs are normally split in several steps as
topology selection, mapping, path selection and slot allocation [3, 12, 15, 23].
Some design flows may omit or combine various steps. Each step adheres to the
decisions taken in the previous steps. As prerequisites for NoC design, com-
munication requirements must be derived, and the set of IPs to be connected
to the NoC must be specified. In the topology selection step, the router net-
work together with the bordering NIs are generated, based on the previously
derived communication requirements. Using this topology together with the
IP specification, the binding of IP ports to NI ports is done in the mapping
step. In the path selection step, paths are allocated for all the communication
flows specified, and in the slot allocation step each of the flows gets its own
TDMA time slots for the traversed NoC links.

We have two interdependent problems: the one of functional dimensioning of
the NoC and mapping of cores while accounting for their communication re-
quirements, and the other of monitor placement and monitoring bandwidth
specification. If these two problems are solved sequentially, the monitoring
communication requirements can be precomputed. However, if the communi-
cation requirements of the monitors do not fit directly on the generated appli-
cation NoC, a new NoC must be generated, e.g., by increasing the topology
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and repeating the process. However, by increasing the topology, the number
of NoC routers increases. In turn, the mapping, path selection and allocation
of resources may change and the number of required monitoring probes may
increase as well (e.g. if probing all routers is required) and their communica-
tion requirements may change. In the mentioned cases the monitoring problem
(whether driven by debugging or by run-time performance analysis) must be
solved within or at least tightly coupled with the NoC design process. The
task of placing the monitors must therefore be automated and integrated in
the NoC design flow.

2 Contribution

We propose a monitoring-aware NoC design flow able to take into account the
monitoring requirements at all steps in the NoC design flow. We illustrate this
with a debug driven monitoring case study. Simple, area-efficient transaction
monitors, attached to selectively chosen NoC routers, are used to enable de-
bugging of the NoC-based SoC at transaction level. This is one of the most
difficult cases, where the monitoring requirements are only known after the
path selection step. In the context of application specific designs, the proposed
flow is able to automatically insert transaction monitors, by determining the
number and placement of these transaction monitors and accounting for their
communication requirements. The smallest area NoC which satisfies the ap-
plication requirements, as well as the monitoring requirements is generated as
a result. The area implications are quantified and compared to original NoCs
without monitoring. The efficiency of the flow is shown on several realistic
examples. Several run-time configuration options for the monitoring service
are also detailed and experimentally investigated. This paper is an extended
version of [7].

3 Related Work

In [24], the use of end-to-end monitors collecting network interface statistics is
proposed in order to assist the operating system controlling the NoC. The work
focuses on the use of such performance monitors to optimize communication
resource usage. The monitored data uses a separate NoC, called the control
NoC instead of the application NoC.

Router-attached performance monitors are used in [25] to keep track of the
network utilization. By means of a network manager this information is made
useful to a QoS manager to increase/decrease the quality levels of running
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applications. The monitored performance data uses the same NoC as the user
data.

[28] uses link utilization monitors as support for a congestion-controlled best
effort communication service, by means of run-time centralized model predic-
tive control. It uses the existing NoC to transport the monitored link utiliza-
tion at precomputed periods.

Embedded monitors in an FPGA environment are used to track end to end
run-time behavior (queue utilization) as feedback for the design exploration
phase [21]. The employed hardware monitors have dedicated wires for trans-
port of their results multiplexed in front on an output port, showing an ap-
proach that is not scalable.

[4] proposes a generic NoC monitoring service comprising monitors attached to
NoC components, routers or NIs, offered by the NoC. Targeted at debugging,
it focuses on generic concepts of the service, architectural and general cost
implications. The monitored data uses the same network as the user data.

[6] shows that using the same interconnect for the user traffic and monitoring
traffic is area-efficient but may require modifications in the NoC design flow.
However, it falls short on showing how to solve this problem in general and
what are the associated cost implications.

All previous work assumes that: (1) the placement of the monitors is known,
(2) the monitoring generated traffic or communication requirements are known
in advance, (3) this traffic fits on top of the user traffic on the shared NoC or
(4) on a separate NoC.

For monitoring, in general, these assumptions are not valid. The number and
placement of monitors and their associated monitoring communication re-
quirements are usually not known beforehand, but only after the NoC to be
probed has been fully designed, or at least some steps in the NoC design flow
have been performed. For example, some requirements may be known only af-
ter topology generation, such as the number of routers employed in the NoC,
which is relevant if all routers or a coverage of routers need to be probed
e.g. with router monitors showing link utilization. In this case the number
of routers determines the number of probes and their placement, while their
communication requirements are fixed, depending only on the number of links
being traced. Other communication requirements may be known after the path
selection step in the design flow, e.g. router monitors able to trace a connec-
tion, e.g. the functional traffic for debug reasons (or for connection utilization).
In this case, assuming a desired full coverage of the connections, the number
of probes and their placement is given by the routers in the cover. Their com-
munication requirements depend on the number of connections passing the
probed router and their sizes. We propose a monitoring aware design flow
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that fully integrates the design of the NoC and its monitoring service, solving
all the above mentioned issues.

4 Architectural Platform

4.1 NoCs and Æthereal

NoCs comprise two components: routers (R) and network interfaces (NI), as
depicted in Figure 1. The routers can be randomly connected among them-
selves and to the NIs (i.e., there are no topology constraints). Note that in
principle there can be multiple links between routers. The routers transport
packets of data from one NI to another.

Fig. 1. Example NoC

The NIs enable end-to-end services [26] to the IP modules and are key in de-
coupling computation from communication [2,29]. The NI allows the designer
to simplify communication issues to local point-to-point transactions at IP
module boundaries, using protocols natural to the IP [29]. They are responsi-
ble for (de-)packetization, for implementing the connections and services, and
for offering a standard interface (e.g., AXI or OCP) to the IP modules.

We use the Æthereal NoC [12, 13] as an example for our work. The Æthe-
real NoC runs at 500 MHz and offers a raw link bandwidth of 2GB/s in a
0.13µm CMOS technology. It is supported by state of the art design time de-
cision tools [12, 15].Æthereal offers transport-layer communication services to
IPs, in the form of connections, comprising best-effort (BE) and guaranteed-
throughput (GT) services. Guarantees are obtained by means of TDMA slot
reservations in NIs. Æthereal NoC instances are reconfigurable at run-time.
This is achieved by programming the NIs using standard memory-mapped
I/O ports. The current setup uses centralized programming of the NoC and
source routing. The Æthereal NoC allows the mapping of potentially multiple
IPs per NI and potentially multiple NIs per router with any topology.
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The interconnected IPs interact with each other by means of transactions,
which are read and write transactions from IPs. Transactions consist of one
request message and one optional response message. E.g. a request message
can be a write message. A response message is for example data coming back
as a result of a read operation, or an acknowledgment as a result of a write
operation. Transactions are performed on connections, consisting of one re-
quest and one response channel. The paths of request and response channels
may be different.

The NIs convert these messages into packets, by chopping them into pieces
of a maximum length and adding a header to each of these pieces, resulting
in packets. Packets may be of different lengths. Packets are further split into
flits, the minimum flow-control unit between hops. One flit corresponds to one
TDMA slot.

4.2 Transaction Monitoring

4.2.1 The Transaction Monitoring Problem

To increase the operational speed of system-level debugging, the NoC debug-
ging infrastructure must bring the abstraction level of the monitored data at
transaction-level, and allow run-time transaction monitoring in particular, at
a reasonable cost.

The problem of how many transaction monitors are needed relates to the
desired coverage of the user communication flows. In general a full coverage
is desired. However, it is prohibitively expensive to duplicate all traffic in the
NoC; therefore the coverage may be full but has to be selective at certain
moments in time. This means that the monitors must cover all channels, but
not at the same time. At run-time, any (potentially more) of the desired
channels can be selected to be monitored. The number of simultaneously active
monitors in the system is bounded by the number of monitors deployed, as
each monitor can only track a single channel.

The problem of the cost implications of the monitoring relates to the area of
the monitors, the number of monitors involved and also to the area of the
resulting NoC which supports both the application and monitoring communi-
cation requirements. The resulting NoC, potentially larger than the original
NoC, accounts for the extra NIs, NI ports or enlarged topology to support
monitoring in addition to the application communication.
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4.2.2 NoC Monitoring Service

We use a monitoring service (NoCMS) as described in [4]. The NoCMS is of-
fered by the NoC in addition to the communication services offered to the IPs.
It consists of configurable probes attached to NoC components, see Figure 2
for details. The probe modular design comprises three parts: the sniffer (S),
the event generator (EG) and the monitoring network interface (MNI). The
MNI can be a separate NI or it can be merged with an existing NI. The moni-
toring service access point (MSA) is an IP which controls the configuration of
the monitors at run-time and receives the monitored data from all monitors.
E.g. the MSA can stream this data outside the chip through a debug port.
The NoCMS is configured by means of probe programming via the NoC using
memory-mapped I/O write transactions.

The generic NOCMS concepts must be instantiated for the monitoring task
at hand, in our case transaction monitoring. This implies the replacement of
the EGs with transaction monitors, the placement of transaction monitors to
offer a full channel coverage of the system, the placement of the MSA, and
the dimensioning of the communication requirements of the monitors (as this
data should go to the MSA via the NoC). We use centralized monitoring with
a single MSA.
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Fig. 2. NoC Monitoring Service

4.2.3 Transaction Monitors

The transaction monitors can be attached to routers or NIs. For simplicity we
only consider them as attached to routers. They can ultimately track transac-
tions over a single channel passing any of the router’s links. The transaction
monitors consist of a configuration block and a set of five pipelined filters, as
illustrated in Figure 3.

The monitors can be (re-)programmed at run-time to track any channel. All
run-time settings are done through the configuration block. The configura-
tion path is marked CFG in the figure. As previously mentioned this is done
by means of simple write transactions. The configuration time required for
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configuring the NoC monitoring service together with possible configuration
options and policies are discussed in Section 7.2.6.

MNI

flit

all GT/BE

one connection

messages

events

TM

SP MP

SNIP MNIP

Sniffer

Link Selection

GT/BE Filtering

Connection Filtering

Depacketization

Abstraction
Enable/

Configuration

CFG DATA

Fig. 3. Transaction Monitor

The monitoring data path starts at the sniffer and is marked DATA in Figure 3.
The raw data is provided to the transaction monitor by the sniffer, which
captures it from the router links. The link of interest can be selected at run-
time by configuring the first filter. The flits can be further filtered as BE or
GT in the second filtering block. Further filtering of flits is done by identifying
a single connection from the set of connections sharing the same link, in the
next filter.

Transactions are composed of messages. Message identification allows to see,
from within the NoC, when a write or a read message has been issued and
from where or to which of the IPs or memories. Messages are payload packed
in packets. Therefore, message identification requires depacketization, a pro-
cedure usually done at the NI. For the fourth filter, which is the essential
one to provide transaction monitoring, we reused available Æthereal hardware
modules for depacketization. The fifth filter has abstraction capabilities and
is not discussed here because the details are not important. The interface be-
tween the transaction monitor and the MNI consist of a slave port (SP) for
configuration and a master port (MP) for sending the monitoring data. Their
corresponding MNI ports are the SNIP and the MNIP.

Up to 64 bits of configuration data are required by a single transaction mon-
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itor during the configuration. This can be done using either one 64-bit DTL-
MMBD write operation or two 32-bit DTL-MMIO write operations. For the
DTL details see [10]. In the first case the configuration data can be packed into
a 32-bit (one word) command (C), 32-bit (one word) address (A), 64-bit (two
words) payload (P) write message which would enter the MSA connected NI.
In the second case the same data is packed into two (C,A,P) write messages.
Note that in general the amount of configuration data required per monitor
may differ with the monitor type, e.g. it may not be the same for a trans-
action monitor and a performance monitor, potentially resulting in more/less
required write messages per monitor. However, the same run-time configura-
tion policies and techniques may apply, see Section 7.2.6.

A 0.13µm CMOS technology implementation of a transaction monitor sup-
porting the first four filtering stages shows an area cost of 0.026mm2. Assum-
ing that no filtering/abstraction is done locally at the monitor, the bandwidth
requirements of the transaction monitors are comparable with the bandwidth
of the monitored connection. Further details on the (single) transaction mon-
itor architecture and implementation with the associated problems (and their
solutions) can be found in [5].

5 Application-aware placement

Since we are considering ASIC-like design, the application is known at design
time. For the NoC-based SoC it means that also the set of connections (all
request and response channels) is known at design time. The bandwidth and
latency constraints of the channels are determined beforehand by means of
static analysis or simulation.

At least one probe is required on the path of each channel, regardless whether
it is a request or response channel. This means that any of the existing channels
can be probed, achieving a full channel coverage. Furthermore, the concurrent
observation of multiple channels is only limited by the number of probes in
the NoC. We can simultaneously monitor one channel per probe. At run-time,
the monitored channels per probe may change by means of programming the
probes. This selectivity is acceptable as usually not all streams are required to
be monitored at once (duplicating all traffic, even at a high abstraction level
is prohibitive).

In ASIC design, a full coverage of routers with monitors may potentially be
avoided, see for example the four monitors in Figure 4(a) covering each one of
the four channels, versus the two monitors in Figure 4(b) covering each the two
channels passing through. This leads to a reduction of the total monitoring
solution area cost. Note that even assuming a full coverage of NoC routers with
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transaction monitors the communication requirements of these monitors are
not known before the path selection step in the NoC design flow, as we do not
know earlier what channels will pass through each of the monitored routers.
Therefore, the problem of modifying the design flow to support monitoring
constraints cannot be avoided.

6 Design Flow

6.1 Design Flow vs. NoC Monitoring

When adding monitoring to a existing NoC two main architectural construc-
tion can apply. One is the use of separate interconnects for the monitoring
data and one is sharing the existing interconnect for both the user and the
monitoring data. A hybrid version may also exists as a compromise between
the two extremes, in which a single NoC is shared but physical resources for
user and monitoring are disjoint. Note that although any interconnect may
be used, as a separate monitoring interconnect it is logical to use a NoC, the
monitoring NoC, because it is scalable. Using point to point wires or busses
will eventually lead to scalability problems.

Separate NoCs. In this case, a separate NoC is chosen for monitoring. While
Figures 5(a) and 6(a) show the original NoC and design flow without ac-
counting for monitoring, Figure 5(b) shows the resulting system after adding
the transaction monitors, and Figure 6(b) the corresponding design flow. The
monitoring NoC is used for transporting the monitoring data from transac-
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(b) Optimal placement of moni-
tors

Fig. 4. Placement of Transaction Monitors
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tion monitors to the MSA and for monitoring configuration traffic from MSA
to the transaction monitors. In principle the monitoring NoC is similar in
topology with the user NoC interconnect. For simplicity, we only show a fully
probed NoC in Figure 5(b), with probes attached to all routers. A more ad-
vanced, selective NoC probe placement at routers is possible, e.g. ensuring a
coverage of all NoC physical links or all NoC logical channels as shown in
Section 5. For each of the probed routers, a new router and an NI are added.
The NI is used by the probe to connect to the monitoring NoC. After the user
NoC design process, the regular NoC design flow is applied also for the moni-
toring NoC, taking into account the monitoring communication requirements.
Dimensioning of the monitoring communication requirements and of the num-
ber of debug IPs (e.g. router probes) required, which are dependent on the
user NoC topology, mapping, and path selection, is simple as the user NoC
design was done beforehand. While applying the NoC design flow for the mon-
itoring NoC, the topology is already given by the original NoC, and mapping
is given by the probe placement in the original NoC, as previously explained.
Therefore only the path selection and slot allocation have to be done for the
monitoring NoC. As the monitoring communication requirements are (should
be) below the user communication requirements, in most cases these can be
accommodated on the monitoring NoC; therefore the path selection and slot
allocation would succeed. The major disadvantage of this solution is that it is
expensive in area.
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Fig. 5. Monitoring Transport Options

Shared NoC. In this case, we share all the NoC resources for user traffic or
for monitoring traffic but we keep the NoC user traffic and the monitoring
traffic separated, creating a virtual NoC for monitoring. After the user NoC
is obtained, the monitoring communication requirements and debug IPs are
computed and transaction monitors are added to the design. Figure 5(c) shows
that transaction monitors are connected to the existing NoC by means of an
extra port on the existing user NIs. Note that this can also be done by adding
separate NIs for monitoring on the corresponding routers. The NoC is shared
between the user and the monitoring traffic. The mapping of the probes to
existing NIs is based on the closest available NI. We have the mapping of IPs
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Fig. 6. Design Flows

to NIs and the NoC topology. Path selection and slot allocation is computed
together for all the communication requirements: user and monitoring. Fig-
ure 6(c) shows the corresponding design flow. It is possible that everything
fits on the existing user NoC. This means that the user NoC can accommo-
date the monitoring communication requirements on top of the existing user
communication requirements. Topology of the NoC will therefore not change.
This is exactly the situation shown in Figure 5(c). In this case, we have the
lowest area cost, as no new NoC components, routers and NIs for monitor-
ing, are added, except the new NI ports to connect the probes to the NoC.
However, the combined communication requirements may not fit on the ex-
isting user NoC. In this case, it is clear that a new NoC must be generated,
e.g. by increasing the topology and repeating the process. By increasing the
topology, the number of user NoC routers increases and in turn the number of
required transaction monitors may increase as well (e.g. if probing all routers
is required). This leads to the recomputing of the monitoring communication
requirements and monitoring IPs. This means that the NoC monitoring flow
must be revised, as illustrated in the remainder of this paper. The reason
for selecting and investigating this option is that the resulting NoC will in
general be the cheapest one. For a more detailed analysis of the monitoring
interconnect options, see [6].

6.2 UMARS

UMARS [15] is a QoS constrained NoC design algorithm. It unifies the three
resource allocation phases: spatial mapping of cores, spatial routing of commu-
nication, and the restricted form of temporal mapping that assigns time-slots
to these routes. UMARS considers the real-time communication requirements,
and guarantees that application constraints on bandwidth and latency are met.

UMARS is a greedy algorithm, iterating over the monotonically decreasing
set of unallocated channels until they are all accommodated in the NoC, or
until allocation failed. The algorithm, as outlined in Algorithm 1, never back-
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tracks to reevaluate an already allocated flow, enabling run-times in the order
of milli-seconds.

Algorithm 1 Outer loop of UMARS

(1) While there are unallocated channels
(a) Select the channel with highest bandwidth
(b) Find a mapping and a path
(c) Select slots on this path

An important property of UMARS that we exploit in this work is the fact
that channels are allocated ordered on their bandwidth requirements. This is
done as it: 1) helps in reducing bandwidth fragmentation [18], 2) is important
from an energy consumption and resource conservation perspective since the
benefits of a shorter path grow with communication demands [16], 3) gives
precedence to flows with a more limited set of possible paths [16]. This ordering
assures us that no channel succeeding the one currently being allocated has
higher bandwidth requirements.

6.3 Monitoring-Awareness

The proposed monitoring aware NoC design flow is depicted in Figure 7. The
coupling of mapping, path selection and time-slot allocation from the original
UMARS is extended with the mapping of transaction monitors to routers such
that a full coverage of user channels is achieved. Here, we do not discuss the
original UMARS mapping, routing and slot allocation; for these refer to [15].

As a preprocessing step to the modified UMARS, transaction monitors are
virtually added to all routers (as this would be the maximum set of transaction
monitors that we consider). These virtual monitors are added to the set of IPs
present in the system. They are connected to the closest local NI, attached to
the router they monitor.

Due to the centralized monitoring used, a single MSA is further added to the
set of IPs and it gets its own NI. A single GT connection is assumed from any
monitor to the MSA although yet of unknown required bandwidth. We con-
sider monitoring connections as latency insensitive, so no latency constraints
are added to them.

Monitor Placement. The loop of Algorithm 1 is extended with a fourth step,
after a channel is allocated. This step is described in Algorithm 2. First, we
check whether we need to insert additional monitoring. If the channel passes
through a router that is monitored, we know, as channels are traversed in
decreasing bandwidth order, that the monitor is able to monitor also this
channel. Hence, nothing changes in this case. However, if none of the routers
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Fig. 7. Monitoring-aware design flow

that the channel passes through are yet monitored, we select one in Step 1a
of Algorithm 2. We select a router with the highest arity on the channel
path, because it maximizes the number of potential observed channels for this
monitor. Once we select the router to be probed we are sure that the router will
stay in the final set of transaction monitors. Therefore, the virtually probed
router is added to the set of probed routers.

In Step 1b of Algorithm 2 we then add a channel from the now monitored
router (and its associated NI) to the MSA. This channel is added to the set
of unallocated flows.

Dimensioning. The requirement in terms of bandwidth is derived as a function
of the channel that mandated the insertion of the probe. Note that the way
in which the communication requirements are dimensioned does not impact
the overall proposed design flow. For the transaction monitoring example we
set the traffic numbers for the monitoring channels equal to the bandwidth
required by the monitored channel. The next channel to be monitored by the
same monitor, whose monitoring channel has been allocated, is guaranteed to
require a lower bandwidth. As one monitor can only monitor one channel at a
time, the previously allocated monitoring channel would be reused. The same
holds if the monitoring channels would require, e.g. 10% of the monitored
connection bandwidth, due to a higher abstraction power of the monitors.

Algorithm 2 Step four

(1) If the path does not pass a monitored router
(a) Select a router on the path
(b) Add a channel from this router to the MSA

The newly added channel is a monitoring channel. The only difference between
a genuine user channel and a monitoring channel is that we only want to
monitor the user channels and not the monitoring channels themselves. Besides
allocating the user and monitoring channels we also take care not to monitor
the monitoring channels. Therefore, Algorithm 2 is only executed for user
channels.

Results. If UMARS completes the allocation successfully, we have as results the
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mapping, routing, slot allocation, monitor placement and monitoring dimen-
sioning. After UMARS completes the allocation for all flows, all the routers
in the set of probed routers have monitors attached. All the rest of virtual
monitors are removed, as well as all the unallocated monitoring flows.

Iterations. If an allocation was not found by varying the slot table size till
some predefined upper limit, the topology can be increased and the process
repeated.

7 Experiments

7.1 Application Examples

Real Examples. We have used two real applications. (mpeg) an mpeg2 en-
coder/decoder using the main profile (4:2:0 chroma sampling) at main level
(720x480 resolution with 15Mb/s) supporting interlaced video up to 30 frames
per second. This application consists of 15 processing cores and an external
SDRAM, and has 42 channels (with an aggregated bandwidth of 3GB/s), all
configured to use guaranteed throughput, as presented in [12].

(audio) this application performs sample rate conversion, MP3, audio-postprocessing
and radio. It closely resembles the chip presented in [20]. The application con-
sists of 18 cores and has 66 channels all configured to use guaranteed through-
put.

We have combined the two applications into four cases to be used as examples:
mpeg (Design1 ), mpeg + audio (Design2 ), 2 × mpeg + audio (Design3 ), 4
× mpeg + audio (Design4 ).

Synthetic Examples. We have also generated synthetic application benchmarks
for testing our proposed design flow. These benchmarks are structured to fol-
low the application patterns of real SoCs. We have generated applications
into two classes of such benchmarks, as presented in [22]: (i) Spread commu-
nication benchmarks (Spread), where each core communicates to a few other
cores. These benchmarks characterize designs such as the TV processor that
has many small local memories with communication evenly spread in the de-
sign. (ii) Bottleneck communication benchmarks (Bottleneck) where there are
one or multiple bottleneck vertices to which the core communication takes
place. These benchmarks resemble designs using shared memory/external de-
vices such as the set-top boxes.

We have used spread communication of 12 IPs, in which every IP commu-
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nicates with three others. We have used bottleneck communication with two
converging points and 12 IPs. We have generated 500 synthetic application
examples with spread and bottleneck communication.

7.2 Results

7.2.1 Setup

For both the real and synthetic application examples we have investigated
what the original UMARS vs. monitoring-aware UMARS output is. The orig-
inal UMARS generates the minimal NoC on which only the application re-
quirements fit, while the monitoring-aware UMARS generates the minimal
NoC on which both the application and monitoring requirements fit. To eval-
uate the performance of our approach, we looked at: (i) required number of
transaction monitors,(ii) resulting topology size,(iii) resulting slot table size
and (iv) resulting area.

For each application we have evaluated all possible meshes, from one by one
up to seven by seven. For each of these topologies we have added one, two and
three NIs per router, as depicted in Figure 8 and evaluated slot table sizes up
to 65 TDMA slots. A larger slot table size mitigates overprovisioning due to
granularity, but is often associated with a growth in buffer sizes as network
consumption tends to become more bursty. Out of all the configurations for
which UMARS finds an allocation, we present the one with lowest total area
cost.
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Fig. 8. NIs per router

Table 1 summarizes the results for the real examples, when one, two or three
NIs per routers are tried. Due to the large communication demands, and given
the constraints on topology and slot-table size we set for our experiments, De-
sign4 only fits on a topology using three NIs per router. For the synthetic
examples, Figures 9 and 10 summarize the results for bottleneck and spread
communication respectively. Each of the four aspects is discussed in detail in
the following subsections. In Section 7.2.6, we briefly look at run-time recon-
figuration of the monitoring system.
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Table 1
Real Examples

Designs area inc size mon slot table

1NI/R

Design1 5.15 - 2x4 - 21

Design1+M 5.43 +5.5% 2x4 5 27

Design2 8.75 - 3x3 - 30

Design2+M 10.16 +16.1% 3x4 10 27

Design3 12.03 - 3x4 - 44

Design3+M 13.95 +16% 3x4 9 60

2NIs/R

Design1 4.03 - 1x4 - 21

Design1+M 4.12 +2.2% 2x2 3 20

Design2 7.88 - 2x3 - 20

Design2+M 8.2 +3.9% 2x3 6 20

Design3 10.82 - 3x3 - 22

Design3+M 11.64 +7.6 % 2x4 8 29

3NIs/R

Design1 3.62 - 1x2 - 30

Design1+M 3.85 +6.3% 1x3 3 18

Design2 6.97 - 1x3 - 27

Design2+M 7.16 +5.4% 1x3 3 30

Design3 10.26 - 2x3 - 21

Design3+M 10.78 +5% 2x3 6 22

Design4 18.45 - 3x4 - 21

Design4+M 19.07 +3.4% 2x4 8 36

7.2.2 Number of transaction monitors

For the synthetic cases with bottleneck communication, we see that the num-
ber of routers needed to be probed for full coverage varies between 50% and
100% with an average of 75%. Figure 9(a) displays the distribution. For spread
communication Figure 10(a) displays the distribution. We see that the num-
ber of routers requiring a probe is higher compared to the bottleneck cases,
but that is no surprise as the communication is more balanced (spread out)
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Fig. 9. Bottleneck
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Fig. 10. Spread

over the routers. The minimum is 60% while the maximum is 90%. Hence, the
interval is narrower than with bottleneck communication, the maximum is
actually lower, and coverage of all routers was never required. Looking at the
diagrams it is obvious that the number of routers needing probes is focused
around the 80-90% bins.

Please note that the number of transaction monitors required is high because
the Æthereal NoC allows multiple IPs to be connected to the same NI and
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multiple NIs to be connected to the same router. Therefore, channels can be
very short, e.g. a channel between a master and a slave connected to the same
NI will go through the NI starting from the master, then through one router
and back to the same NI to the slave. All routers having at least one channel
like this passing through will require one transaction monitor. Other NoCs
may require a channel to pass through two different NIs, potentially lowering
the number of transaction monitors being required.

For the real examples, see column mon in Table 1, showing the number of
monitors and compare it to column size showing the mesh size. On average
87% of the routers need to be probed, but full coverage of routers with probes
was required in 60% of the cases. Relating this with the area numbers from
the same table, it is interesting to observe that the most area-efficient solu-
tions required all routers probed. Therefore probing all routers must not be
associated with area-inefficient solutions, the number of monitoring probes (in
our case transaction monitors) being just one component which influences the
total area cost of the monitoring solution.

7.2.3 Topology size

For the topology size we looked at the total number of routers employed.
Figures 9(b) and 10(b) display the distribution for the synthetic examples.
On average, topology stays the same (no extra routers required) or one or
two extra routers are required. Increases in topology size with more than two
routers, but with a maximum of 8, are still required in other cases, especially
in the bottleneck applications. This can be explained because in bottleneck
designs it is harder to accommodate the new monitoring channels due to the
existing bottleneck vertices. Interesting is the fact that in 3-4% of the cases the
number of routers actually decreased. This we can attribute to the heuristic
nature of UMARS and to the higher number of slots used in the NoCs with
monitoring.

For the real examples we see the number of routers kept constant in six cases,
and both an increase and a decrease in two cases. The latter is accountable
to an allocation found with a higher slot table size, see column slot table in
Table 1.

In both real and synthetic examples we see that there is a good chance(30-
60%) to find a solution on the same NoC topology, without requiring extra
routers.
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7.2.4 Slot Table size

Figures 9(c) and 10(c) display the distribution of the slot table size variation
for the synthetic examples. In general we can see a similar shape for both
bottleneck and spread communication examples. In a small number of cases
(up to 10%) the slot table size is constant. It varies within a limit of +/-
5 slots on a cumulated 50% of the cases. In roughly 30% of the cases the
variation is between 5 and 10 slots, either in the negative or positive part.
Higher variations than 10 slots are least visible in the figures.

For the real examples, we can observe the slot table size being constant in one
case, bigger in six cases and smaller in three. Clearly, there exists a relation
between the NoC topology and the slot table size.

In general a higher number of slots corresponds to adding the monitoring com-
munication requirements on the same (or eventually smaller) NoC topology
than the one used for user only communication requirements. A lower number
of slots corresponds to a bigger NoC topology in the resulting shared NoC.
The adapted UMARS design flow tries to balance these aspects.

7.2.5 Area

The total NoC area is derived according to the model in [11] extended with
the area of the transaction monitors, 0.026mm2 per monitor in 0.13µm CMOS
technology. Note that the total area presented includes NIs, routers and probes
(transaction monitors). The area of NIs also accounts for buffer sizing in the
NIs/NI ports corresponding to the real communication requirements of the
users and monitors. The area numbers do not include the area of other IPs in
the SoC, but refer to the NoC together with the complete monitoring service.

For bottleneck communication, area wise the cost is continuously below 50%
with an average of 15%. Figure 9(d) shows the distribution of area overhead
over the test cases and it is obvious that most lie in the left half of the span.

For spread communication Figure 10(d) shows the distribution. From an area
point of view the overhead is between 10% and 40%, which again is a narrower
interval than for bottleneck communication. In all it ends up on an average
of 15% also for uniform traffic. No major difference in the area overhead is
noticeable between uniform and bottleneck communication.

For the real examples the total area increase, see column inc in Table 1,
amounts to between 2.2% and 16.1%. The area overhead is between 3% and
7% in the most area efficient case of three NIs per router which succeeded for
all four designs. The resulting four designs we consider the end results of the
monitoring-aware NoC design flow.
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It is also interesting to see the overall distribution of this area between NIs,
routers and monitors. This is presented in Figure 11 for the four designs in their
most area-efficient case using 3NIs/R. For the original designs the distribution
of area between NIs and routers is shown. The main remark is that in all cases
area of the transaction monitors is insignificant relative to the total area of
the designs, dominated by the area of the NIs. Furthermore, in all designs the
area of the monitors is even several times lower than the area of the routers
involved.

7.2.6 Run-time reconfiguration

It has been previously mentioned that transaction monitors can be (re-)configured
at run-time by means of write transactions. As a separate experiment we have
looked at complete monitoring service configuration and evaluated the configu-
ration options and the resulting configuration times. For this we have used the
example MPEG design case using a 2x3 mesh topology, which was fully probed,
resulting in six transaction monitors. We have used a centralized monitoring
service with one MSA. We have used a slot table size of 128. Each transaction
monitor uses a dedicated connection to the MSA. We have investigated both
using the existing GT and BE communication services for monitoring system
configuration. When using GT connections we have reserved a single slot for
each monitoring connection.

We have tried two monitoring system-wide policies for configuration. One
policy is based on simple write messages, which are not acknowledged by the
transaction monitors. The total configuration time in this case is the time
elapsed from the sending of the first message from the MSA to the first trans-
action monitor to be configured until the last received message at any of the
transaction monitors. Note that the last message sent from the MSA may not
be the last received message at the transaction monitors.

A second monitoring system configuration policy is based on acknowledge-
ments. In this case, a 32-bit acknowledge is sent back from each of the trans-
action monitors upon reception of a configuration message and completion
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Table 2
ALL-FIRST

mpeg ALL GT(ns) ALL BE(ns) FIRST GT(ns) FIRST BE(ns)

WR64 1212 78 1212 78

2xWR32 3378 174 1980 174

WR ACK64 1832 152 1832 152

2xWR ACK32 4136 224 2600 224

of the local transaction monitor configuration. The advantage of the second
method is that the MSA knows when the monitoring system is configured. In
this case the configuration time is the time elapsed between the time when the
first message is sent from the MSA and the last acknowledgement is received
at the MSA. Note that in general the acknowledgements are not received at
the MSA in the sending order of the configuration messages from the MSA.

In the case of multiple configuration messages required for the same transac-
tion monitor (e.g. two write messages) we have used two options. One option
is to to send all the messages for the same transaction monitor first then fol-
lowed by all the messages for the second transaction monitor and so on. This
is graphically depicted in Figure 12(a) and further referred as the ALL case.
A second option is to send the first message to the first transaction monitor
followed by the first message to the second transaction monitor, and so on,
and only send the second message to all the transaction monitors when all the
first messages for all transaction monitors have been sent, and so on. This is
illustrated in Figure 12(b) and further referred to as the FIRST case.

Table 2 show the configuration time experimental results. On the first column
we show use of write messages as described in Section 4.2.3, where WR64 and
WR32 corresponds to a write with 64 bits or 32 bits of payload; 2xWR32 shows
that two write messages are used for the configuration, while the presence of
ACK shows the presence of a 32-bit acknowledgement in the configuration
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process for a single transaction monitor. The table shows that using BE for
configuration is several times faster than using GT as the configuration data
does not have to wait for the reserved slot. This is expected because as soon
as there is an empty slot or reserved but not used slot the BE configuration
would sneak on the link. When using multiple configuration messages over
GT monitoring connections for the same probe, it is more efficient to do it
the FIRST way than to do it the ALL way. This is because in the ALL way
the second configuration message for the first probe cannot be sent to the
corresponding NI queue until there is space in the queue, thus delaying the
first configuration message for the second probe. Table 2 finally shows the
expected result that the use of acknowledgements increases the configuration
time. Note that when using GT connections for configuration, the results in
Table 2 do not account for the time required to set up these connections.

The results show that the run-time configuration is feasible for realistic cases,
and the configuration time required for it is acceptable.

8 Conclusion

We propose a NoC design flow in which monitoring is taken into account at
design time and is fully integrated in the flow. It automates the insertion of
the monitors whenever their communication requirements are known, leading
to a monitoring aware NoC design flow. Our flow was exemplified with the
concrete case of transaction monitoring, in the context of the Æthereal NoC
and UMARS design flow.

We are the first to quantify the complete cost of the complete monitoring so-
lution accounting for the monitors, extra NIs, NI ports or enlarged topology
needed to support monitoring in addition to the original application commu-
nication. Results show an area efficient solution for integrating monitoring in
NoC designs. Monitors alone do not add much to the overall area numbers
as the designs remain dominated by the area of NIs. We also considered the
run-time reconfiguration of the monitoring system, showing acceptable recon-
figuration times.

As future work we will look at more intelligent algorithms for application spe-
cific placement of transaction monitors and at the detailed trade-offs between
the monitoring capabilities of single monitors and these placement strategies.
We will also investigate whether an application independent monitor place-
ment strategy can be developed.
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