
Hindawi Publishing Corporation
VLSI Design
Volume 2007, Article ID 68432, 16 pages
doi:10.1155/2007/68432

Research Article
A Unified Approach to Mapping and Routing on
a Network-on-Chip for Both Best-Effort and Guaranteed
Service Traffic

Andreas Hansson,1 Kees Goossens,2, 3 and Andrei Rădulescu3

1 Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
2 Computer Engineering, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,
2600 GA Delft, The Netherlands

3 SOC Architectures and Infrastructure, Research, NXP Semiconductors, 5656 AE Eindhoven, The Netherlands

Received 15 October 2006; Accepted 4 March 2007

Recommended by Davide Bertozzi

One of the key steps in Network-on-Chip-based design is spatial mapping of cores and routing of the communication between
those cores. Known solutions to the mapping and routing problems first map cores onto a topology and then route communi-
cation, using separate and possibly conflicting objective functions. In this paper, we present a unified single-objective algorithm,
called Unified MApping, Routing, and Slot allocation (UMARS+). As the main contribution, we show how to couple path se-
lection, mapping of cores, and channel time-slot allocation to minimize the network required to meet the constraints of the
application. The time-complexity of UMARS+ is low and experimental results indicate a run-time only 20% higher than that of
path selection alone. We apply the algorithm to an MPEG decoder System-on-Chip, reducing area by 33%, power dissipation by
35%, and worst-case latency by a factor four over a traditional waterfall approach.

Copyright © 2007 Andreas Hansson et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

System(s)-on-Chip (SoC) grow in complexity with the ad-
vance of semiconductor technology enabling integration of
dozens of cores on a chip. The continuously increasing num-
ber of cores calls for a new communication architecture as
traditional architectures are inherently nonscalable, making
communication a bottleneck [1, 2].

System architectures are shifting towards a more com-
munication-centric methodology [2]. Growing SoC com-
plexity makes communication subsystem design as important
as computation subsystem design [3]. The communication
infrastructure must efficiently accommodate the communi-
cation needs of the integrated computation and storage el-
ements, for example, processors, coprocessors, DSPs, hard-
ware accelerators, memory blocks, and I/O blocks.

Network(s)-on-Chip (NoC) have emerged as the design
paradigm for design of scalable on-chip communication ar-
chitectures, providing better structure and modularity than
its predecessors [1, 2, 4, 5]. Although NoCs solve the inter-
connect scalability issues, SoC integration is still a problem.

Even in a situation where the building blocks of the system
are already designed and validated, much tedious work is tra-
ditionally required to validate the complete system.

To enable cores to be designed and validated indepen-
dently, computation and communication must be decoupled
[6]. Decoupling requires that the services cores use to com-
municate are well defined [7]. Furthermore, many cores also
have inherent real-time performance requirements, such as
minimum throughput or maximum latency, making time-
related service guarantees essential [6]. An NoC delivering
Quality-of-Service (QoS) guarantees, adhering to the non-
functional (timing) requirements of the application, is key to
enable independent design and validation of the SoC build-
ing blocks [5]. While this eases the task of the SoC integrator,
additional constraints are placed on the NoC design.

Creating a NoC-based system requires efficient mapping
of cores and distribution of NoC resources [8, 9]. Addition-
ally, the resource allocation must fulfil the application con-
straints and guarantee deadlock freedom. Design choices in-
clude core port to network port binding, routing of com-
munication between cores and allotment of network channel

2 VLSI Design

capacity over time. As we will see in Section 6, these choices
greatly affect the energy, area, and performance metrics of
the system [8].

The main contribution of this work is a methodology ex-
tending spatial routing (path selection) to span also mapping
and temporal routing1 (time-slot allocation). This enables
the aforementioned requirements to be formulated as path
selection constraints and optimization goals. We present a
unified algorithm, called Unified MApping, Routing and Slot
allocation (UMARS+), that couples mapping, path selec-
tion and time-slot allocation, accommodating both guaran-
teed service and best-effort traffic. UMARS+ allows any NoC
topology, guarantees deadlock-free routing, has a low com-
plexity and yields a NoC with reduced area, power dissipa-
tion and communication latency.

As an example of the efficacy of the suggested methodol-
ogy, we apply UMARS+ to an MPEG decoder SoC, reducing
NoC area by 33%, power dissipation by 35%, and worst-case
latency by a factor four over a traditional waterfall approach.

This paper is organized as follows. Related work is in-
troduced in Section 2. The problem domain is described in
Section 3 and formalized in Section 4. The UMARS+ algo-
rithm, which solves the unified allocation problem under ap-
plication constraints, is described in Section 5. Experimental
results are shown in Section 6. Finally, Section 7 concludes
this work and outlines directions for future research.

2. RELATED WORK

QoS routing objectives are discussed in [12, 13] and impli-
cations with common-practize load-balancing solutions are
addressed in [14]. In addition to spatial, temporal character-
istics are included in path selection in [15–17].

The problem of mapping cores onto NoC architectures
and routing communication is addressed in [5, 8, 18–21]. In
all works, the mapping and routing is functionally decom-
posed into modules on the basis of a flowchart, as depicted
in Figure 1. The order in time in which processing is expected
to take place is used in making the decomposition into mod-
ules. Each module has its separate constraints and optimiza-
tion goals.

In [8, 18–21], mapping is perceived as a special case of
the NP-complete quadratic assignment problem (QAP) [22].
Intuitively, the QAP can be described as the problem of
assigning a set of cores to a set of locations with given dis-
tances between the locations and given weights of the com-
munication between the cores. The goal is then to map the
cores onto locations in such a way that the sum of the prod-
ucts between communication weights and distances is min-
imal. Due to the intractability of the QAP, all works use
suboptimal approximation methods that iteratively evalu-
ate potential solutions as indicated by the iteration arrow in
Figure 1.

1 The scope of this work is the TDM-based Æthereal NoC but the concept
is more widely applicable [10, 11].

Map
core ports

Spatially route
communication

Temporally route
communication

Iteration

Figure 1: Mapping followed by routing with iteration.

The solution space traversal method used to solve the
QAP in [8, 18] is a restricted branch-and-bound [22] algo-
rithm. The algorithm maps cores onto a tile-based archi-
tecture, aiming to minimize energy while throughput con-
straints are satisfied. The latter is accomplished by making
the distance parameter in the QAP model the energy con-
sumed when transporting bits from one location to the other.
Static xy routing is used in [18]. In [8] the algorithm is ex-
tended to route with the objective to balance network load.

In [19–21] a heuristic improvement method is used. An
initial mapping is derived with objectives such as minimiz-
ing communication delay, area or power dissipation. This is
succeeded by routing according to a predefined routing func-
tion. Routing and evaluation is repeated for pair-wise swaps
of nodes in the topology, thereby exploring the design space
in search for an efficient mapping. In [21] the algorithm is
extended to integrate physical planning and the design space
exploration is improved with robust tabu search.

In all presented iterative algorithms [8, 18–21], optimal-
ity refers to a cost function that evaluates the routes produced
by the routing algorithm on a given mapping. Mapping deci-
sions therefore anticipate and rely on the abilities of the rout-
ing algorithm to find optimal (and deadlock-free) routes be-
tween the locations decided by the mapping algorithm.

Known mapping and routing algorithms that incorpo-
rate QoS guarantees [15, 16, 21] either assume static com-
munication flows [15, 16], where message injection times are
known at design time, or do not derive any analytical bounds
on throughput and latency [21].

TDM-based NoC architectures are presented in [5, 10,
11]. However, only [5] address the resource allocation on
such architectures. A greedy noniterative algorithm first
maps cores based on clustering whereafter communication
is routed by static xy routing. Finally, temporal routing allo-
cates TDM time-slots on the network channels such that QoS
is guaranteed. This waterfall approach divides the allocation
in three distinct phases with no coupling or feedback. While
having a low run-time, this methodology pushes responsibil-
ity forward where it can be costly or even impossible to undo
mistakes from earlier phases.

Aforementioned works address only regular topologies
and use routing algorithms that are restricted to such topolo-
gies, for example, dimension-ordered routing [23], north-
last [24], odd-even [25], and DyAD [26]. However, algo-
rithms supporting irregular topologies are scarce. Benini [27]
outline a design flow for application specific NoCs using a
turn-prohibition algorithm that supports irregular topolo-
gies [28]. No details are however given as to how turns are
selected or how path finding is done on the prohibited net-
work.

Andreas Hansson et al. 3

This work, being an extension of [29], unifies the three
resource allocation phases: spatial mapping of cores, spa-
tial routing of communication, and the restricted form of
temporal mapping that assigns time-slots to these routes.
The hierarchically decomposed model, depicted in Figure 2,
is fundamentally different from [5, 8, 18–21] in that mapping
is no longer done prior to routing but instead during it.

The main goal of our methodology is to enable efficient
application-specific NoCs for both best-effort and guaran-
teed service traffic, thus extending and elaborating on the
methodology proposed in [29]. The key ideas and contribu-
tions of UMARS+ that allow us to achieve this goal are:

(i) mapping is transformed into a path selection problem,
(ii) temporal load (TDM slot tables) is included in the

path selection objective function,
(iii) differentiation is made between best-effort and guar-

anteed service traffic,
(iv) deadlock is avoided by adaptive turn-prohibition, en-

abling efficient use of residual resources on any net-
work topology.

3. BACKGROUND

3.1. Application

We assume that the application is mapped onto cores us-
ing existing tools such as [30]. The cores are computational
and storage elements of the SoC, such as processors, copro-
cessors, DSPs, hardware accelerators, memory blocks, I/O
blocks. Communication between cores is characterised as
flows, or sequences of packets, from a source to a destination
port.

We distinguish between guaranteed and best-effort ser-
vices. Guaranteed services (GS) are used for real-time critical
traffic and best-effort (BE) for noncritical traffic. Despite the
name, even the BE traffic enjoys a number of qualitative QoS
attributes [31], namely:

(i) data integrity, meaning that data is delivered uncor-
rupted;

(ii) loss-less delivery, which means no data is dropped in
the network;

(iii) in-order delivery, guaranteeing that data arrive at the
destination in the order it was sent by the source.

BE services are typically designed for average-case scenar-
ios and require no resource reservations. As a consequence,
BE services use resources efficiently. The main disadvantage
of BE services is the unpredictability regarding arrival times.
In the best case, if sufficient boundary conditions are as-
sumed, a statistical performance bound can be derived [32].

GS adds flow isolation to the list of qualitative QoS at-
tributes. Thus the network protects each flow against other
(malicious) flows. Moreover, GS introduce a number of
quantitative QoS attributes, incurring time-related bounds
on throughput and latency. To deliver those quantitative
guarantees, traffic characteristics must be known in advance
[33]. Minimum throughput and maximum latency con-

For every intercore communication,

map source and destination by

spatially routing and

temporally routing the communication

Figure 2: Mapping coupled with routing, hierarchically decom-
posed.

fc
... Controller

fc
...

· · ·

pck
GS

BE

...

pck

pck

GS

BE

...

pck

Header
parsing

unit

Header
parsing

unit

Switch

Figure 3: Router architecture where every unidirectional physical
channel is shared by two virtual channels, one for guaranteed ser-
vice (GS) and one for best-effort (BE).

straints of the application flows are therefore determined be-
forehand by means of static analysis or simulation.

3.2. Network

The Æthereal network comprises interconnected routers and
network interfaces (NI). The topology can be regular, such as
a mesh, torus, hypercube, or Clos. Irregular topologies are
also supported to enable dedicated solutions [27, 34–36].

NIs provide communication services to the cores at the
level of the transport layer in the OSI reference model [6].
This is the first layer that offers end-to-end services, hiding
the network details [1]. The physical, data-link and network
layers of the protocol stack, all being network specific, are
thereby not visible to the cores. The NI does not implement
any switching functionality. As a consequence, a flow control
digit, or flit, destined for a different port on the same NI must
turn around in the router network.

The task of a router is to forward data flows from source
port to destination port, solving contention when necessary.
The architecture, shown in Figure 3, uses wormhole routing
[37]. No routing decisions are taken by the routers as we em-
ploy source routing. The NIs contain programmable registers
that associate every flow with a path. Upon flit injection, the
source NI encodes the path in the header flit and the routers
merely execute the decisions already taken.

4 VLSI Design

Constraints
Topology
synthesis

UMARS+

Application Cores

NoC hardware
and software

Performance
verification

SystemC/RTL
simulation

RTL synthesis
and backend

Buffer sizingSmallest mesh loop

Figure 4: A top-level view of the complete proposed flow.

Two virtual channels [37], one guaranteed service chan-
nel and one best-effort channel, share each physical channel.
By dissociating the buffers from the actual physical channels,
a blocked packet in one virtual channel does not block pack-
ets residing on other virtual channels [38]. This mechanism
affords a division of the entire physical network into two
disjoint logical networks [39, 40]. The logically isolated net-
works use different policies for communication management
and can be treated as conceptually separated entities.

The arbitration mechanism that multiplexes between the
virtual channels is based on a two-level arbitration scheme.
The first level gives priority to GS flows. These flows are
thereby isolated from all BE flows as blocking in the BE net-
work can never violate given guarantees. In the second level,
two different schemes are used for BE and GS flows, respec-
tively.

3.2.1. Best-effort arbitration

Best-effort flows require contention resolution on the gran-
ularity of flits, as multiple packets can request the same out-
put channel and flit arrival cannot be predicted. This con-
tention is resolved individually in each router using a non-
optimal iSlip [41] algorithm (round-robin switch-matrix
scheduling). The dynamic contention resolution leads to un-
predictable storage requirements and delays. Moreover, if a
flit is blocked due to busy resources all the trailing flits of
that packet are also halted, thereby blocking the resources
they occupy in terms of channels and buffers. This can
result in chained blocking [42] where the resources of a
blocked packet again causes other packets to block, a prop-
erty that makes wormhole routing very susceptible to dead-
lock [37, 43].

We address deadlock by means of avoidance, the promi-
nent strategy in NoCs [3, 5, 8, 35, 44]. (Progressive [10, 45]
and regressive [46] deadlock recovery techniques exist but
are relatively uncommon.) Avoidance-based deadlock-free
routing relies on restrictions on resource allocation [37, 43].
In contrast to [35], that advocates the use of virtual chan-
nels, we do not add any hardware but solely restrict the BE
routing.

3.2.2. Guaranteed service arbitration

Guarantees are implemented by solving contention on the
flow level, using TDM-based virtual circuits. Every channel in
the network is multiplexed in time, thereby enabling a single

channel to carry several flows. By controlling channel arbi-
tration through a TDM slot table in such a way that two flows
never compete for the same time-slot, contention-free rout-
ing is achieved. In other words, once a flit is injected in the
router network it never waits for another flit. The slot table
is also used to divide bandwidth between the different flows.
Note that deadlock is not possible for GS flits as contention
is resolved at design-time.

3.3. Problem description

Our problem is to

(1) map the application cores onto any given NoC topol-
ogy,

(2) statically route the communication flows, and
(3) allocate TDM time-slots on network channels so that

application constraints are met.

Two important requirements can be identified and the
onus is, in both cases, on the mapping and routing phases.
First, the constraints of individual flows must be satisfied.
These constraints must hence be reflected in the selection of
mapping, path and time slots such that proper resources are
reserved. Second, all flows must fit within the available net-
work resources without causing deadlock. Failure in allocat-
ing a flow is attributable to nonoptimal previous allocations
or insufficient amounts of network resources. This calls for
conservation of the finite pool of resources, namely the chan-
nels and their time-slots.

This work shows how path selection can be extended to
span also mapping and time-slot allocation. This enables the
aforementioned requirements to be formulated as path selec-
tion constraints and optimization goals.

Figure 4 shows the top-level NoC design flow [5] and the
role of UMARS+ in the generation of the NoC hardware and
software. The end result is a SystemC model and synthesis-
able RTL VHDL, compliant with the NXP back-end flow.

4. PROBLEM FORMULATION

4.1. Application

The services are given by the set of valid service classes.

Definition 1. The set of valid service classes Q = {GS,BE}
represents guaranteed and best-effort service, respectively.

Andreas Hansson et al. 5

Both service classes provide data-integrity, loss-less de-
livery and in-order delivery. GS extend those fundamental
services with flow isolation and quantitative guarantees on
minimum throughput and maximum latency.

The application is characterized by an application graph,
comprised of communicating core ports.

Definition 2. An application graph is a directed multigraph,
A(P,F), where the vertices P represent the set of core ports,
and the arcs F represent the set of flows between the ports.
The set of flows comprises two mutually exclusive subsets,
FGS and FBE, containing GS and BE flows, respectively. More
than a single flow is allowed to connect a given pair of ports.
Every core port is source or destination of at least one flow,
leaving no node isolated. Each flow f ∈ F is associated with
a service class, q(f) ∈ Q, a minimum throughput, b(f) ∈ R,
and a maximum latency constraint, l(f) ∈ R. Let s(f) de-
note the source node of f and let d(f) denote the destination
node.

An example application, containing five core ports, is
shown in Figure 5. The ports are interconnected through
six flows with diverse service requirements. Bandwidth mea-
sures are given in Mbps by the designer, as described in [5].
These numbers are, in a preprocessing stage, translated into
a real number of TDM slots.

To be able to constrain mapping according to physical
layout requirements (e.g., subsystem grouping), we allow
grouping of the core ports in P and map groups instead of
individual ports. UMARS+ is thereby forced to map ports in
a group to the same spatial location (NI).

Definition 3. The mapping groups PM , is a partition of P
where the elements are jointly exhaustive and mutually ex-
clusive.

An example of such a partition on a set of core ports
P = {p0, p1, p2} is shown in Figure 7 where PM =
{{p0, p1}, {p2}}. The union of the elements in PM is clearly
the entire P, making the partition jointly exhaustive. More-
over, the elements of PM are mutually exclusive as no p ∈ P
exists in more than one of them.

A partition according to Definition 3 corresponds to an
equivalence relation where two elements in P are considered
equal if they must be mapped to the same spatial location.
The equivalence class of a core p is hereafter denoted by [p].
In the example shown in Figure 7, [p0] = [p1] = {p0, p1}
whereas [p2] = {p2}.

4.2. Network

Time-division of network channel capacity is governed by
slot tables.

Definition 4. A slot table is a sequence of elements in F0 =
F ∪ {∅}. Slots are either occupied by a flow f ∈ F or empty,
represented by ∅. The number of empty slots in a slot table t
is denoted σ(t). The same slot table size ST is used in all the
tables of the network.

Input

BE
100/100

BE
100/100

Filter 1

GS
150/400

Mem.

GS
400/100

GS
10/50

Filter 2

GS
800/200

Output

Figure 5: Example application consisting of five core ports and six
flows with diverse service requirements. The labels on the edges de-
note throughput/latency requirements in Mbps and ns, respectively.

〈∅, ∅, ∅, ∅, f1〉

c0

t(c0) = 〈 f0, f0, ∅, ∅, ∅〉

σ(t(c0)) = 3

c1

〈 f1, f0, f0, ∅, ∅〉
c2

〈∅, f1, f0, f0, ∅〉

Figure 6: Two flows, f0 and f1 are allocated one and two time-slots,
respectively, on the paths indicated by the arrows.

To improve latency and reduce buffering requirements,
the virtual circuits are pipelined. Pipelining requires a logical
notion of router synchronicity, which is possible in the Æthe-
real NoC. If a slot i is reserved for a flow f on a channel, then
slot i+1 (modulo the table size) must be reserved on the next
channel along the path as depicted in Figure 6.

NoCs are represented by interconnection network
graphs.

Definition 5. An interconnection network graph I is a strongly
connected directed multigraph, I(N ,C). The set of vertices N
is composed of three mutually exclusive subsets, NR, NNI and
NP containing routers, network interfaces (NI), and core-port
mapping nodes as shown in Figure 7. The latter are dummy
nodes to allow unmapped core ports to be integrated in the
interconnection graph. The number of core-port mapping
nodes in I is equal to the number of mapping groups, |NP| =
|PM|.

The set of arcs C is composed of two mutually exclu-
sive subsets, CR and CP containing physical network channels
and dummy mapping channels. Channels in CR represent the
physical network architecture and interconnect nodes in NR

and NNI . The channels in CP interconnect every node in NP

to all nodes in NNI . This construction allows all cores to be
mapped to any NI. No direct interconnections are made be-
tween nodes in NR and NP .

More than a single physical channel is allowed to connect
a given pair of routers. However, an NI node nNI is always
connected to a single router through exactly one egress chan-
nel cE(nNI) ∈ CR and exactly one ingress channel cI(nNI) ∈
CR, as depicted in Figure 7.

6 VLSI Design

〈∅, ∅, ∅〉
cE

cI

〈∅, ∅, ∅〉

NM

P

P

p2

NI

NI
R

p1p0

I0 → I1 →
map0 → map1 →

∅= P
′
0 ⊆ P

′
1 ⊆

(a)

〈 f0, ∅, ∅〉
cE

cI

〈∅, ∅, f0〉
NI

NI

P

P

p2

R

p1p0

· · ·
· · ·
· · ·

(b)

〈 f0, f1, f1〉
cE

cI

〈 f1, ∅, f0〉
NI

NI

P

P

p2

R

p1p0

Ik

mapk

P
′
k = {p0, p1, p2} = P

→
→
⊆

(c)

Figure 7: Successive refinement of mapping and interconnection network.

Each channel c ∈ C has a bandwidth not yet reserved
(residual bandwidth) measured in number of slots, β(c) ∈ R,
a discretized ditto, β(c) ∈ N, and a slot table, t(c). Let s(c) de-
note the source node of c and let d(c) denote the destination
node.

4.3. Path selection

Definition 6. A path π ∈ seq1 C from source ns ∈ N to
destination nd ∈ N is a nonempty sequence of channels
〈c0, . . . , ck〉 such that

(1) d(ci) = s(ci+1) for 0 ≤ i ≤ k − 1,
(2) s(c0) = ns and d(ck) = nd.

Definition 7. For a source and destination node ns,nd ∈ N ,
Π(ns,nd) is the set of all possible paths from ns to nd.

4.4. Time-slot allocation

When allocating time-slots on a given path π = 〈c0, . . . , ck〉,
we first determine the set of available time-slots relative to c0.
To do so we aggregate the individual slot tables through shift
and union operations on the slot tables.

Definition 8. The left shift operator Li is an unary operator
that shifts a slot table i steps cyclically to the left, i ∈ N+:

Li
〈
t0, . . . , tk

〉 = 〈ti+1, . . . , tk, t0, . . . , ti
〉

,

L
def= L1.

(1)

Definition 9. The union operator | is a binary operator that
joins two equally sized slot tables: 〈t0, . . . , tk〉 | 〈t′0, . . . , t′k〉 =
〈t′′0 , . . . , t′′k 〉 where

t′′i =
⎧
⎨

⎩

ti if ti /= ∅,

t′i if ti = ∅.
(2)

Hence, for every position 0 ≤ i ≤ k in the sequence, the item
in the left hand side slot table, ti, is preferred if that slot is

reserved by a flow, ti ∈ F. If that slot is empty, ti = ∅, then t′i
is used instead. As a consequence, a slot on position i in the
joined table is empty if and only if both ti and t′i are empty.

With the shift and union operator we can formulate a slot
table aggregation function.

Definition 10. An aggregated slot table function t : seqC →
seqF0 maps a sequence of channels 〈c0, . . . , ck〉 to an aggre-
gated slot table,

t
(〈〉) = 〈∅, . . . , ∅〉,

t
(〈
c0, . . . , ck

〉) = L0t
(
c0
)∣∣L1t

(
c1
)∣∣ . . .

∣
∣Lkt

(
ck
)
.

(3)

Every channel slot table t(ci), is shifted cyclically i steps
left and thereafter joined by the union operator. A slot in
t(〈c0, . . . , ck〉) is empty if and only if it is empty in all shifted
slot tables [6]. By definition the empty sequence of channels
is associated with the empty slot table of size ST .

Consider, for example, allocating slots on the path
〈c0, c1, c2〉 in Figure 6. From the figure we get t(c0) =
〈 f0, f0, ∅, ∅, ∅〉, t(c1) = 〈 f1, f0, f0, ∅, ∅〉 and t(c2) =
〈∅, f1, f0, f0, ∅〉. To derive the set of empty slots, we start
with the slot table of c0, t(〈c0〉) = t(c0) = 〈 f0, f0, ∅, ∅, ∅〉.
We continue by adding L1t(c1) followed by L2t(c2) and get

t
(〈〉) = 〈∅, ∅, ∅, ∅, ∅〉,

t
(〈
c0
〉) = 〈 f0, f0, ∅, ∅, ∅

〉
,

t
(〈
c0, c1

〉) = 〈 f0, f0, ∅, ∅, f1
〉

,

t
(〈
c0, c1, c2

〉) = 〈 f0, f0, ∅, ∅, f1
〉
.

(4)

Note that the addition of c2 does not change the aggregated
slot table as t(c2) is merely t(c1) shifted one step to the right.

4.5. Deadlock avoidance

To guarantee deadlock freedom and at the same time offer
maximum routing flexibility we use a turn-prohibition algo-
rithm [28] built on the turn model [47].

Andreas Hansson et al. 7

Definition 11. A turn is an ordered pair of directed channels
(ci, cj), ci /= cj such that d(ci) = s(cj). That is, a pair of chan-
nels such that ci is entering the node that cj is leaving.

Definition 12. T(I) denotes the set of possible turns between
channels in the interconnection network I .

Definition 13. T−(I) denotes the set of prohibited turns and
T+(I) = T(I) \ T−(I) the set of permitted turns.

We introduce a restricted routing function for BE traffic
to assert deadlock freedom. This function prohibits any turn
not in the set of permitted turns T+(I). The latter is derived
by using any cycle-breaking algorithm with support for the
topology of the network I .

Definition 14. A turn-prohibiting routing function R′ is of the
form R′ : T+(I)× C ×N → P (C), where P (C) is the power
set of C. That is, when a BE flow destined for nd enters a node
through one of its input channels ci, R′(T+(I), ci,nd) sup-
plies a nonempty set of channels {c1, c2, . . . , ck} ⊂ C through
which the flow may be routed to its next hop enroute to nd
without causing deadlock.

4.6. Mapping

The NIs and core port mapping nodes together form the set
of nodes to which the port groups can be mapped.

Definition 15. The set of mappable nodes, NM = NNI ∪ NP

as shown in Figure 7(a) contains all nodes to which the ele-
ments of PM can be mapped.

The actual mapping from core ports to mapping nodes is
captured by a function.

Definition 16. A mapping function, map : PM → NM , maps
sets of ports (the elements in PM) to mappable nodes.

Both the interconnection network I and the mapping
function are refined or iterated over. We therefore subscript
them with an index. Our starting point is an initial mapping,
map0, where every [p] ∈ PM is mapped to a unique nP ∈ NP .
Similarly, I0 denotes the initial network where no channel ca-
pacity is reserved, β(c) = β(c) = ST , and all slots in t(c) are
empty for every channel c ∈ C.

As seen in Figure 7(a), the range of map0 covers only NP .
As the algorithm progresses (b), the range of mapi covers
both NP and NNI partially. Successive iterations of mapi pro-
gressively replace elements of NP with elements of NNI until
a final mapping is derived (c), where the range of mapk con-
tains elements of NNI exclusively.

Definition 17. The set of mapped core ports P′i = {p ∈ P |
mapi([p]) ∈ NNI} denotes the elements in P which are
mapped to NIs in iteration i.

From our definition of map0 it follows that P′0 = ∅.
Later we show that there exists a mappingmapk with all ports
mapped to elements in NNI , hence P′k = P.

(1) Allocate all flows in FGS
(2) Derive the set of permitted turns T+(Ii) by

turn-prohibiting the current network Ii
(3) Allocate all flows in FBE

Algorithm 1: Allocation of all flows in F.

4.7. UMARS+ contribution

We introduce a major change from previous work and for-
mulate mapping and path selection problem as a pure path
selection problem.

Given an interconnection network I0 and an application
graph A, we must select a path π for every flow f ∈ F such
that throughput (5) and latency (6) requirements of the flow
are met (for GS flows), without over-allocating the network
channels (7),

bandwidth of t(π) ≥ b(f), (5)

latency of t(π) ≤ l(f), (6)

β(c) ≥ 0, ∀c ∈ C. (7)

The theory required to derive worst-case throughput and
latency from a slot table is covered in [48].

Note that UMARS+ does not consider physical-level is-
sues such as floorplan congestion and wire length. It does,
however, enable the designer to (1) construct any regular or
irregular topology as input to the algorithm, (2) group the
core ports and thus force them to be mapped to the same NI,
and (3) partially (or even fully) specify the core port map-
ping.

5. UNIFIED MAPPING AND ROUTING

In this section, we present the UMARS+ algorithm. The
methodology is described in Sections 5.1 through 5.4. In
Section 5.5, we prove algorithm termination, whereafter we
conclude in Section 5.6 with a discussion on UMARS+ time-
complexity.

The outmost level of UMARS+ is outlined in Algorithm 1
and briefly introduced here. We start by allocating (map
and route) all guaranteed-service flows of the application
in Step (1). In Step (2), a set of permitted turns is derived
using the current interconnection network. Finally, all
best-effort flows are allocated in Step (3), just as was done
with the guaranteed-service flows. Allocation of FGS and FBE
is further explained in Section 5.2.

5.1. Turn-prohibition

Turn-prohibition is traditionally based purely on the net-
work topology [8, 24, 27, 34]. The turn-prohibition can then
be done prior to the allocation of GS flows and depends only
on the NoC topology. Thereby, it implicitly assumes uniform
channel capacities. By delaying this step, we can incorporate

8 VLSI Design

(1) Let the set of unallocated flows F′i = Fq
(2) While F′i /= ∅:

(a) Get flow arg max f∈F′′ b(f)
(b) Select a path π ∈ Π(s(f),d(f))
(c) F′i+1 = F′i \ { f }

Algorithm 2: Allocation of a set of flows Fq.

knowledge of residual bandwidth in the prohibition algo-
rithm.

After allocating FGS, the residual capacity on the network
channels, which is what is available for the flows in FBE, is
not uniform. Employing a traditional turn-prohibition algo-
rithm, we risk prohibiting those turns where there is capacity
left. We address this by using the algorithm proposed in [28]
with b(f) as channel weight. Besides being applicable to any
topology, this algorithm bounds the accumulated prohibited
turn weight to 1/2 of the total weight. Hence, by using the
nondiscretized residual bandwidth as channel weights we as-
sure that no more than half the residual turn bandwidth is
prohibited.

5.2. Allocation of a set of flows

Allocation of all flows Fq belonging to a certain service class q
is done according to Algorithm 2. A brief explanation follows
and we detail it further in Sections 5.3 and 5.4.

In Step (2)(a), a flow f is selected based on bandwidth
requirements. UMARS+ iterates over the monotonically de-
creasing set of unallocated flows F′i and never back-tracks to
reevaluate an already allocated flow. This results in low time-
complexity at the expense of optimality. A path π is selected
for f in Step (2)(b). By initially mapping cores to the core
mapping nodes, connected to all NIs, the first and last chan-
nel traversed implicitly determine what NI s(f) and d(f) are
mapped to, respectively. If q(f) = GS then time-slots are al-
located to f on π. Thereafter, mapi and Ii are updated to re-
flect the new state. The procedure is repeated until all flows
are allocated.

5.3. Flow traversal order

We order the flows based on bandwidth requirements, in
Step (2)(a) of Algorithm 2, as it

(i) helps in reducing bandwidth fragmentation [14],
(ii) is important from an energy consumption and re-

source conservation perspective as the benefits of a
shorter path grow with communication demands [8],
and

(iii) gives precedence to flows with a more limited set of
possible paths [8].

Ordering by b(f) alone may affect resource consumption
negatively as communication chains are disregarded. That

is, clusters of interconnected cores are not mapped in se-
quence. This may increase average hop-count as communi-
cating cores risk being mapped far apart due to resource satu-
ration. For this reason, the selection is limited to flows having
s(f) or d(f) mapped to a node in NNI . Every cluster of com-
municating cores then have their flows allocated in sequence.
A similar approach is employed in [19, 20], where the next
core is selected based on communication to already placed
cores.

Due to the nature of the least-cost path selection algo-
rithm, explained in Section 5.4.2, we restrain the domain
even more and only consider flows where s(f) ∈ P′i . This
additional restriction can be removed if path selection is
done also in the reverse direction, from destination to source,
which is not the case in the current implementation.

The next flow in Algorithm 2 is chosen according to (8),
where f ∈ F′′i if and only if f ∈ F′i ∧ s(f) ∈ P′i . When the
latter condition is not fulfilled by any flow, the entire F′i is
used as the domain,

arg max
f∈F′′

b(f). (8)

5.4. Path selection

When a flow f is chosen, we proceed to Step (2)(b) of
Algorithm 2 and select a path for f . This is done according
to Algorithm 3, briefly presented here, followed by in-depth
discussions in Sections 5.4.1 through 5.4.5.

Path selection for f is composed of three major tasks.

(1) Speculative bandwidth reservations for f are removed
from egress and ingress channels in Steps (1) and (2) to
have Ii reflect what resources are available to f prior to
its allocation. Speculative reservations are required as
interdependent flows are not allocated simultaneously
and are further discussed in Section 5.4.1.

(2) A path from s(f) to d(f) is selected in Steps (3) and
(5), a procedure elaborated on in Section 5.4.2. If s(f)
or d(f) are not yet mapped to NIs, these steps include
refinement of mapi, which is covered in Section 5.4.4.
If mapi is refined, then bandwidth reservations are
made on ingress and egress channels for flows other
than f , as they now have their source or destination
mapped to an NI.

(3) If q(f) = GS, then a set of time-slots is selected. Re-
sources used by f are then reserved on the resulting
path π, as discussed in Section 5.4.5.

5.4.1. Bandwidth reservation

When s(f) for a flow f is mapped to an NI, the communica-
tion burden placed on the ingress and egress channels of the
NI is not determined by f only. As every p in [s(f)] is fixed
to this NI, the aggregated communication burden of all flows
incident to those cores is placed on the ingress channel. The
egress channel similarly has to accommodate all flows ema-
nating from those cores. When d(f) is mapped, all flows to
or from [d(f)] are accounted for accordingly.

Andreas Hansson et al. 9

Failing to address the above may result in overallocation
of network resources. Numerous flows, still not allocated,
may be forced to use the ingress and egress channel due to an
already fixed mapping. An NI may thereby be associated with
an implicit load, not accounted for when evaluating possible
paths. We make this load explicit by exploiting knowledge
of ingress-egress pairs, as in [49].2 We define a function that
estimates how much bandwidth (measured in slots) a flow
reserves in the network.

Definition 18. The bandwidth requirement estimation func-
tion b′ : F → R+ supplies an estimate of required network
bandwidth for a flow f as

b′(f) =
⎧
⎨

⎩
b(f) if q(f) = BE
⌈
b(f)

⌉
if q(f) = GS.

(9)

Although we have no knowledge of exactly what time
slots are needed by future guaranteed service flows, we can
estimate the bandwidth required by b′(f) and incorporate
estimated average load in the cost function, further discussed
in Section 5.4.3.

Steps (1) and (2) of Algorithm 3 restore the speculative
reservations for f on egress and ingress channel to have Ii
reflect what resources are available prior to its allocation.

The corresponding bandwidth reservations on egress and
ingress channels are carried out in Steps (4)(b), (4)(c) and
Steps (6)(b), (6)(c) for source and destination NI, respec-
tively.

5.4.2. Selecting constrained least-cost path

Steps (3) and (5) of Algorithm 3 select a constrained least-
cost path using Dijkstra’s algorithm.

Three modifications are done to the standard relaxation
procedure, where πp denotes the partial path from s(f) to the
current node.

(1) Best-effort flows must obey the turn-prohibiting rout-
ing function R′. Therefore, only channels in R′(T+(Ii),
d(last πp),d(F)) are evaluated further. We use the turn
net approach described in [50], as the original Dijk-
stra’s algorithm cannot find least-cost paths on a turn-
prohibited network.

(2) The search space is pruned by discarding emanating
channels that cannot meet bandwidth constraints. For
best-effort flows we discard channels where β(c) <
b′(f). Guaranteed service flows do a similar control
on the discretized residual bandwidth β(c) < b′(f) but
also prune channels where σ(t(πp) | Lt(c)) < b′(f).
Channels that cannot meet bandwidth constraints or

2 The authors suggest selecting paths that interfere least with future re-
quests through a heuristic called minimum interference routing algorithm
(MIRA). The algorithm does not only consider the ingress and egress
channels but also calculates an interference metric for every intermedi-
ate channel in the network.

(1) If s(f) ∈ P′i , restore bandwidth reservation on egress
channel by adding b(f) to β(cE(mapi([s(f)]))) and
b′(f) to β(cE(mapi([s(f)]))).

(2) If d(f) ∈ P′i , restore bandwidth reservation on ingress
channel by adding b(f) to β(cI(mapi([d(f)]))) and
b′(f) to β(cI(mapi([d(f)]))).

(3) Select a constrained least-cost path πs from mapi([s(f)])
to a router nR ∈ NR.

(4) If s(f) /∈ P′i , then
(a) Refine mapi+1 = mapi ⊕ {[s(f)]¯ →d(head πs)}
(b) Reserve egress bandwidth for all unallocated flows

emanating from [s(f)] by subtracting
∑

fE∈FE b(fE)
from β(cE(d(head πs))) and

∑
fE∈FE b

′(fE) from

β(cE(d(head πs))) where fE ∈ FE if and only if
fE ∈ F′i , s(fE) ∈ [s(f)] and fE /= f

(c) Reserve ingress bandwidth for all unallocated flows
incident to [s(f)] by subtracting

∑
fI∈FI b(fI) from

β(cI(d(headπs))) and
∑

fI∈FI b
′(fI) from

β(cI(d(headπs))) where fI ∈ FI if and only if
fI ∈ F′i and d(fI) ∈ [s(f)].

(5) Select a constrained least-cost path πd from d(last πs)
to mapi([d(f)])

(6) If d(f) /∈ P′i , then
(a) Refine mapi+1 = mapi ⊕ {[d(f)]¯ →s(last πd)}
(b) Reserve egress bandwidth for all unallocated flows

emanating from [d(f)] by subtracting
∑

fE∈FE b(fE)
from β(cE(s(last πd))) and

∑
fE∈FE b

′(fE)

from β(cE(s(last πd))) where fE ∈ FE if and
only if fE ∈ F′i and s(fE) ∈ [d(f)]

(c) Reserve ingress bandwidth for all flows incident to
[d(f)] by subtracting

∑
fI∈FI b(fI) from

β(cI(s(last πd))) and
∑

fI∈FI b
′(fI) from

β(cI(s(last πd))) where fI ∈ FI if and only if fI ∈ F′i ,
d(fI) ∈ [d(f)] and fI /= f .

(7) If q(f) = GS, then select a constrained set of slots TS in
t(π) for the complete path π = πs � πd and update t(c),
for all c ∈ π.

(8) Do a final bandwidth reservation by subtracting b(f)
from β(c), for all c ∈ π. If q(f) = GS then subtract |TS|
from β, for all c ∈ π correspondingly.

Algorithm 3: Path selection for a given f .

do not have enough free slots, given t(πp), are thereby
omitted.

(3) As the final path must contain only physical network
resources, channels in CP may only be the first or last
element of a path. Hence, if d(last πp) ∈ NP , then all
channels emanating from d(last πp) are discarded.

The NI architecture requires a path to incorporate at least
one physical channel c ∈ CR as flows cannot turn around in-
side an NI. If a flow has both source and destination mapped
to the same NI we must hence traverse the egress channel,
turn around in the router and return to the NI through
the ingress channel. From a least-cost perspective the best
path from an NI to itself is the empty path and we force
the algorithm into leaving the NI by doing path selection in

10 VLSI Design

two steps. (An alternative with a higher time complexity is
A∗Prune [51] that enables both this constraint and the turn-
prohibitions to be formulated as path constraints.)

The first part of the path πs is selected in Step (3) of
Algorithm 3. We know by the definition of I that it is pos-
sible to find a path to a router from s(f) and stop at the one
with the lowest cost. If several routers share the same path
cost, then we pick the one with highest arity. This heuris-
tic maximises routing flexibility throughout the entire allo-
cation procedure. It also makes sure the source node of the
first flow (the one with highest communication volume) is
mapped to the NI connected to the router with highest arity,
a strategy suggested in [20].

The second part of the path πd is selected in Step (5),
starting where πs ended. From there we continue to the loca-
tion where d(f) is currently mapped. The complete path is
then just the two parts concatenated, π = πs � πd.

Deriving π like suggested above may, without further
care, lead to a path which is not the least-cost path in
Π(s(f),d(f)) as minimization is done on the parts in iso-
lation.3 However, if a flow f has s(f) ∈ P′i , then there is only
one possible least-cost router. This follows from every NI be-
ing connected to exactly one router and all channel costs be-
ing non-negative. Hence, there is only one possible πs and as
this πs is a part of any path in Π(s(f),d(f)) and πd is a least-
cost path, π is a least-cost path in Π(s(f),d(f)). To mitigate
the effect of partial minimization, we prefer allocating flows
where s(f) ∈ P′i , as discussed in Section 5.3.

5.4.3. Choice of cost function

The cost function used plays an essential role in meeting the
requirements introduced in Section 1. It should hence reflect
resource availability and resource utilization. A good heuris-
tic to maximise the probability of successful flow allocation
is to select a path with low contention. At the same time
we must keep the path length short not to consume unnec-
essarily many resources. Similar heuristics are suggested in
[13, 52, 53].

Double objective path optimization in general is an in-
tractable problem [12]. Combining objectives in one cost
function allows for tractable algorithms at the cost of opti-
mality. We therefore argue for a linear combination of the
two cost measures, where two constants Γc and Γh control
the importance (and normalisation) of contention and hop-
count, respectively.

Contention is traditionally incorporated by making
channel cost inversely proportional to residual bandwidth.
Although proved to produce good results in many applica-
tions [13, 53], this cost measure has two major drawbacks.
First, as the value always is greater than zero its contribution
to total path cost grows with distance even if there is no con-
tention on the channels traversed. Second, contention cost
grows exponentially, thereby disturbing the balance between
contention and hop-count importance. We desire control

3 Compare a sum of minima to the minimum of a sum.

〈∅, ∅, f2〉

〈 f0, f0, f1〉 〈 f1, ∅, ∅〉

〈∅, f0, f0〉

Figure 8: Scenario where average load is insufficient as metric and
leads to a path on which slot allocation invariably fails.

over the relative importance of contention and hop-count
through Γc and Γh and therefore use (10) to determine chan-
nel cost when allocating a flow with q(f) = BE. The con-
tention measure, ST −β(c), makes the cost contribution pro-
portional to the occupied bandwidth. It is zero for an unoc-
cupied channel and grows linearly as bandwidth is reserved,

Γc
(
ST − β(c)

)
+ Γh. (10)

When allocating guaranteed service flows, the cost measure
in (10) fails to reflect a number of important aspects involved
in deciding what is an optimal path.

(i) Using only average load when determining contention
cost ignores the temporal alignment of the available
capacity. Not only must the slots be free, we also re-
quire them to be aligned properly to be usable, about
which more presently.

(ii) It bases the cost on nondiscretized residual band-
width, thereby looking at the actual bandwidth avail-
able without accounting for TDM discretisation arti-
facts.

When using pipelined virtual circuits [6], average load is not
reflecting what resources are available to the current flow.
Not even the slot table t(c) itself provides an accurate view.
The set of available slots for a flow, f , on a channel, c, is a
function of the slot tables of all channels preceding c in the
path traversed from the location where s(f) is mapped to the
channel c itself.

Consider the example in Figure 8 where a flow f2 arrives
a router already used by flows f0 and f1. If we look only at
residual bandwidth, f2 prefers the channel going east over
the one heading south. However, if we consider not only the
number of free slots but also their temporal alignment, south
is actually a better choice than east. Even though the filling
of the slot table is higher for the south-going channel, the
alignment compared to the input channel makes it a better
choice.

Andreas Hansson et al. 11

We exploit knowledge of the partial path πp traversed so
far and determine contention cost for a channel c by how
much t(c) reduces the amount of available slots compared to
t(πp) if c is traversed. Discretized available bandwidth is in-
corporated by taking the maximum of the two as contention
measure, according to (11).

Γc max
{
ST − β(c), σ

(
t
(
πp
))− σ

(
t
(
πp
) | Lt(c))} + Γh.

(11)

Channels in CP must not contribute to the path cost, as
they are not physical interconnect components. We therefore
make them zero-cost channels.

5.4.4. Refining mapping function

When a path πs is selected for a flow f , we check in Step
(4)(a) of Algorithm 3, whether s(f) is not yet mapped to
an NI. If not, πs decides the NI to which the core is to be
mapped. We therefore refine the current mapping function
with the newly determined mapping to a node in NNI as
seen in Step (6)(a). This refinement is fixed and every core
in [s(f)] is now in P′i .

Correspondingly, we check if d(f) is not yet mapped to
an NI in Step (6) and if not, refine the mapping according to
πd in Step (6)(a).

5.4.5. Resource reservation

When the entire path π is determined, we perform a slot allo-
cation in Step (7) of Algorithm 3 if the flow requires guaran-
teed services. The slots available to f are deduced by looking
at t(π). From the empty slots we select a set of slots TS such
that bandwidth and latency requirements of f are met [48].
All channels c ∈ π are then updated with a new t(c) to reflect
what slots are reserved to f .

Step (8) ends the procedure by removing the resources
reserved for f from β(c) and β(c) for all channels in the path.

5.5. Algorithm termination

With each refinement of mapi, zero, one or two additional
sets of cores are moved to elements of NNI from NP , hence
P′i+1 ⊇ P′i , as depicted in Figure 7.

Theorem 1. (∃k)P′k = P: there exists a k such that all core
ports are mapped to NIs.

Proof. When a flow is f allocated, mapi is refined in Steps
(4)(a) and (6)(a) of Algorithm 2 so that s(f) and d(f) are
guaranteed to be in P′i . For every allocated flow f /∈ F′i we
hence know that s(f),d(f) ∈ P′i .

From Step (2)(c) of Algorithm 2 we know that F′i+1 ⊂ F′i ,
that is, the set of unallocated flows, monotonically decreases.
Hence, ∃k such that all flows are allocated, F′k = ∅. We know
that, for this k, s(f) and d(f), for all f ∈ F are in P′k. As no
isolated cores are allowed in A it follows that P = P′k.

5.6. Algorithm complexity

Due to the greedy nature of UMARS+, time-complexity is
very low as seen in (12), where d denotes the maximum de-
gree of any node in N . The expression is dominated by the
first term that is attributable to Dijkstra’s algorithm, used for
path selection. The second term stems from the turn pro-
hibition and varies depending on the choice of algorithm.
Finally, the last term covers the selection of next flow, band-
width reservations and slot allocation. Experiments indicate
that UMARS+ run-time is only 20% higher than that of load-
balancing path selection alone,

O
(|F|(|C|+|N| log |N|))+O

(|N|2d)+O
(|F|(|F|+|P|+ST

))
.

(12)

6. EXPERIMENTAL RESULTS

To evaluate the performance of our methodology, we apply it
to a range of SoC designs. The MPEG use-case is a MPEG
codec SoC, further described in Section 6.3. The uniform
use-case features distributed communication with 24 cores.
Each core has a randomly selected set of inter-connected
peers with a total aggregated bandwidth of 750 Mbps. The re-
maining use-cases are internal set-top box designs, each hav-
ing hot-spots around a limited set of SDRAM ports and 100
to 250 connections. These connections deliver a total band-
width of 1-2 Gbps to 75 ports distributed across 25 IP mod-
ules.

6.1. Deadlock avoidance

The turn-prohibition algorithm’s ability to preserve residual
resources is evaluated by allocating the uniform benchmark
to a fixed 3 × 4 mesh with a varying degree of BE and GS
flows. We study the relative success rate compared to what is
achievable without routing restrictions, that is, when dead-
lock can occur. The results of three different turn-prohibition
algorithms are compared. First, xy routing, second, tradi-
tional oblivious turn prohibition not taking residual band-
width into account, and third, the adaptive turn prohibition
that we propose.

In Figure 9, we see that the adaptive algorithm consis-
tently outperforms the other two algorithms with a relative
success rate constantly above 92%. While the oblivious turn-
prohibition algorithm offers a qualitative advantage over xy
routing by being applicable to any topology, the adaptive al-
gorithm adds also a significant quantitative advantage.

6.2. Evaluation experiments

A cost function where Γc = 1 and Γh = 1 is used throughout
the experiments. Those values favour contention-balancing
over hop-count as the slot table size is an order of magnitude
larger than network diameter in all use-cases.

All results are compared with the traditional multistep
algorithm in [5], referred to as waterfall. Only mesh topolo-
gies are evaluated, as the aforementioned algorithm is lim-
ited to this class of networks. For a given slot table size ST , all

12 VLSI Design

10/90 30/70 50/50 70/30 90/10

GS/BE mix (%)

75

80

85

90

95

100

R
el

at
iv

e
su

cc
es

s
ra

te
(%

)

xy routing

Oblivious turn-prohibition
Adaptive turn-prohibition

Figure 9: Relative success rate for the different turn-prohibition al-
gorithms.

MPEG uniform s1m1p2 s1m2p2 s8m1p2 s8m2p2
0

1

2

3

4

5

6

7

8

A
re

a
(m

m
2
)

Network interfaces, waterfall
Network interfaces, UMARS+

Routers, waterfall
Routers, UMARS+

Figure 10: Comparison of area requirements.

unique n×m router networks with less than 25 routers were
generated in increasing order of size. For every such router
network, one, two, or three NIs were attached to each router
until all application flows were allocated, or allocation failed.
Slot table size was incremented until allocation was success-
ful.

The run time of UMARS+ is in the order of a few mil-
liseconds on a Linux workstation and the whole topology ex-
ploration loop finishes in a matter of seconds for the example
SoC designs.

Each design is simulated during 3 × 106 clock cycles in a
flit-accurate SystemC simulator of the Æthereal NoC, using
traffic generators to mimic core behaviour.

All the presented use-cases feature applications with
guaranteed service flows only. These flows use all three parts
of the algorithm (mapping, routing, and slot allocation) and
have more allocation constraints than best-effort flows. The

latter makes it more difficult to find a working configura-
tion and stresses the importance of objective unification in
all three allocation phases.

6.2.1. Analytic benchmarks

Silicon area requirements are based on the model presented
in [54], assuming a 0.13 μm CMOS process. Figure 10 shows
that area requirements can be significantly reduced. Up to
33% in total area reduction is observed for the experiment
applications. Slot table sizes are reduced in all use-cases, lead-
ing to lower buffer requirements, analytically derived as de-
scribed in [5]. Area savings up to 31% are observed for the
NIs but the s1m2p2 use-case is hardly improved at all, show-
ing only a 0.5% decrease. However, the router network is
consistently smaller, with an area decrease between 30% and
75%.

The distribution of improvement on analytical worst-
case latency is shown in Figure 11(a). For every flow the
worst-case latency is derived using the model in [5]. The la-
tency achieved using UMARS+ and waterfall are compared
on a flow basis and the distribution of these improvement
figures are plotted in the diagram. Although a few flows suffer
from latency increase (negative improvement) in the s8m1p2
and s8m2p2 use-cases, the majority of flows have significant
improvements on worst-case latency. In the MPEG example,
every single flow has its worst-case latency reduced by 50%
or more.

6.2.2. Simulation benchmarks

Relative energy consumption of the router network (without
NIs), calculated according to the model in [55] is depicted in
Figure 12. As the application remains the same and hence es-
sentially the same bits are being communicated, the savings
in energy consumption are attributable to flows being allo-
cated on paths with fewer hops. The correlation between en-
ergy saving ratio and relative reduction in number of routers
is clearly visible. However, as the smaller router network is
used more extensively, energy is reduced less than the num-
ber of routers.

Figure 13 shows the average utilization of channels em-
anating from NIs and routers, respectively. As expected,
utilization increases as router network size is reduced and
UMARS+ consequently improves both NI and router utiliza-
tion. Time-division-multiplexed circuits imply bandwidth
discretisation, leading to inevitable over-allocation and com-
plicating the task of achieving high utilization. This together
with unbalanced hot-spot traffic, leaving some parts of the
network lightly loaded and others congested, lead to inher-
ent low utilization in some of the example use-cases. Note
that utilization is only to be optimized after all constraints
are met.

The distribution of improvement on average and max-
imum latency is shown in Figures 11(b) and 11(c), respec-
tively. As with the analytical latency comparison we see that
a few flows face an increased latency. The bias towards la-
tency improvement is clear though, and in all nonsynthetic

Andreas Hansson et al. 13

MPEGuniform s1m1p2 s1m2p2 s8m1p2 s8m2p2
0

20

40

60

80

100

Im
pr

ov
em

en
t

di
st

ri
bu

ti
on

< −50%
< −25%
< 0%

< 25%
< 50%
≥ 50%

(a) Analytical worst-case delay

MPEG uniform s1m1p2 s1m2p2 s8m1p2 s8m2p2
0

20

40

60

80

100

Im
pr

ov
em

en
t

di
st

ri
bu

ti
on

< −50%

< −25%

< 0%

< 25%

< 50%

≥ 50%

(b) Average delay in simulation

MPEG uniform s1m1p2s1m2p2 s8m1p2s8m2p2
0

20

40

60

80

100

Im
pr

ov
em

en
t

di
st

ri
bu

ti
on

< −50%
< −25%

< 0%

< 25%
< 50%

≥ 50%

(c) Maximum delay in simulation

Figure 11: Distribution of improvement on flow network delay. For every flow, latency of UMARS+, lUMARS+, is compared to that of waterfall,
lwaterfall, as 1− lUMARS+/lwaterfall. These improvement measures are divided into bins of 25% width whereafter the relative frequency of the bins
is plotted on a per application basis.

MPEG uniform s1m1p2 s1m2p2 s8m1p2 s8m2p2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
M

A
R

S/
w

at
er

fa
ll

ra
ti

o

Energy consumption
Number of routers

Figure 12: Comparison of energy consumption.

use-cases the latency is reduced with 50% or more for more
than half of the flows.

6.3. An MPEG application

An existing MPEG codec SoC with 16 cores constitutes our
design example and results are shown in Table 1. The archi-
tecture uses a single external SDRAM with three ports to
implement all communication between cores. A total of 42
flows tie the cores together. Using the design flow presented
in [5]4 results in a 2 × 3 mesh, referred to as clustering in
Table 1, with a total estimated area of 2.35 mm2. For com-
parison, a naive mapping with one core partition per NI is

4 Clustered mapping, xy routing and greedy slot allocation.

MPEG uniform s1m1p2 s1m2p2 s8m1p2 s8m2p2
0

10

20

30

40

50

60

70

80

U
ti

liz
at

io
n

(%
)

Network interfaces, waterfall
Network interfaces, UMARS+
Routers, waterfall
Routers, UMARS+

Figure 13: Comparison of NoC resource utilization.

Table 1: Comparison of MPEG NoCs.

Generation Mesh Slots
NI
area

Router
area

Total
area

Area
diff

Avg wc
latency

Clustering 2× 3 128 1.83 0.51 2.35 ref 1570 ns

Naive 3× 6 128 2.17 2.32 4.49 +91% 1583 ns

Optimized 1× 3 8 1.51 0.35 1.86 −21% 399 ns

UMARS+ 1× 3 8 1.26 0.32 1.57 −33% 383 ns

almost double in size, whereas the worst-case write latency
remains more or less unaffected.

A manually optimized mapping was produced which
managed to reduce the network area with 21% and an al-
most four-fold reduction of average worst-case write latency
was observed [5].

14 VLSI Design

UMARS+ arrives at a mesh of equal size to what was
achieved using the manually optimized mapping. Fewer NIs
are needed leading to reductions in router area. Smaller
buffer requirements, attributable to less bursty time-slot allo-
cation, results in reduced NI area. Total NoC area is reduced
by 17% and average worst-case latency by 4% compared to
the optimized handcrafted design. The solution was achieved
in less than 100 milliseconds on a Linux workstation. Only a
20% increase in run-time was observed when compared to
a pure load-balancing path selection, without mapping and
slot allocation.

7. CONCLUSION AND FUTURE WORK

We conclude this work by summarizing our contributions in
Section 7.1 and finally presenting directions for future work
in Section 7.2.

7.1. Contributions

In this paper, we consider the problem of mapping cores onto
any given NoC topology and statically route the communi-
cation between these cores. We present the UMARS+ algo-
rithm which integrates the three resource allocation phases:
spatial mapping of cores, spatial routing of communication
and TDM time-slot assignment.

As the main contribution we show how mapping can be
fully incorporated in path selection. This allows for formu-
lation of a single consistent objective function that is used
throughout all allocation phases. The objective is reflecting
two important goals, namely, fulfilment of application con-
straints and conservation of network resources while guar-
anteeing deadlock freedom.

We show how the pruning and the cost metric used in
path selection can be extended beyond one channel to cap-
ture the nature of virtual circuits. By incorporating also the
traversed path in cost calculations we derive a metric that re-
flects how suitable a channel is when used after the channels
already traversed.

We show how a highly flexible turn-prohibition algo-
rithm can be used to provide maximum adaptiveness in rout-
ing of best-effort flows. The proposed algorithm bases the
prohibitions on residual resources such that best-effort flows
can use what is not required by guaranteed-service flows.

The time-complexity of UMARS+ is low and experimen-
tal results indicate a run-time only 20% higher than that of
path selection alone.

We apply the algorithm to an MPEG decoder SoC, im-
proving area 33%, power dissipation 35% and worst-case la-
tency by a factor four over a traditional waterfall approach.

7.2. Future work

We compare UMARS+ only to [5], and a more extensive
comparison with traditional algorithms [8, 18–21] is of
value.

To allow a more extensive design space exploration for
both mapping and routing, UMARS+ can be extended to a
k-path algorithm, enabling a trade-off between complexity

and optimality. This extension can also be used for traffic
splitting, spatially distributing the load of guaranteed service
flows over multiple paths.

UMARS+ fully supports any topology, thereby enabling
application-specific NoC generation. To exploit those capa-
bilities, a valuable extension is to incorporate the algorithm
into a more refined topology generation tool. Topologies can
then be tailored for an application and physical layout.

REFERENCES

[1] L. Benini and G. de Micheli, “Networks on chips: a new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] M. Sgroi, M. Sheets, A. Mihal, et al., “Addressing the system-
on-a-chip interconnect woes through communication-based
design,” in Proceedings of the 38th Design Automation Confer-
ence (DAC ’01), pp. 667–672, Las Vegas, Nev, USA, June 2001.

[3] D. Bertozzi, A. Jalabert, S. Murali, et al., “NoC synthesis flow
for customized domain specific multiprocessor systems-on-
chip,” IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 2, pp. 113–129, 2005.

[4] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in Proceedings of the 38th Design
Automation Conference (DAC ’01), pp. 684–689, Las Vegas,
Nev, USA, June 2001.

[5] K. Goossens, J. Dielissen, O. P. Gangwal, S. Gonzàlez Pestana,
A. Rădulescu, and E. Rijpkema, “A design flow for application-
specific networks on chip with guaranteed performance to ac-
celerate SOC design and verification,” in Proceedings of De-
sign, Automation and Test in Europe Conference and Exposition
(DATE ’05), pp. 1182–1187, Munich, Germany, March 2005.

[6] E. Rijpkema, K. Goossens, A. Rădulescu, et al., “Trade-offs in
the design of a router with both guaranteed and best-effort
services for networks on chip,” IEE Proceedings: Computers and
Digital Techniques, vol. 150, no. 5, pp. 294–302, 2003.

[7] K. Keutzer, S. Malik, J. M. Rabaey, and A. Sangiovanni-
Vincentelli, “System-level design: orthogonalization of con-
cerns and platform-based design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 19, no. 12, pp. 1523–1543, 2000.

[8] J. Hu and R. Marculescu, “Exploiting the routing flexibility for
energy/performance aware mapping of regular NoC architec-
tures,” in Proceedings of Design, Automation and Test in Europe
Conference and Exposition (DATE ’03), pp. 688–693, Munich,
Germany, March 2003.

[9] U. Y. Ogras, J. Hu, and R. Marculescu, “Key research problems
in NoC design: a holistic perspective,” in Proceedings of Inter-
national Conference on Hardware/Software Codesign and Sys-
tem Synthesis (CODES+ISSS ’05), pp. 69–74, Jersey City, NJ,
USA, September 2005.

[10] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed
bandwidth using looped containers in temporally disjoint net-
works within the Nostrum network on chip,” in Proceedings of
Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE ’04), vol. 2, pp. 890–895, Paris, France, February
2004.

[11] A. Laffely, J. Liang, R. Tessier, and W. Burleson, “Adaptive sys-
tem on a chip (aSoC): a backbone for power-aware signal pro-
cessing cores,” in Proceedings of International Conference on
Image Processing (ICIP ’03), vol. 3, pp. 105–108, Barcelona,
Spain, September 2003.

Andreas Hansson et al. 15

[12] R. A. Guerin, A. Orda, and D. Williams, “QoS routing mecha-
nisms and OSPF extensions,” in Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM ’97), vol. 3, pp.
1903–1908, Phoenix, Ariz, USA, November 1997.

[13] R. Widyono, “The design and evaluation of routing algorithms
for real-time channels,” Tech. Rep. TR-94-024, International
Computer Science Institute & University of California, Berke-
ley, Calif, USA, June 1994.

[14] I. Matta and A. Bestavros, “A load profiling approach to rout-
ing guaranteed bandwidth flows,” in Proceedings of the 17th
Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM ’98), vol. 3, pp. 1014–1021, San
Francisco, Calif, USA, March-April 1998.

[15] R. A. Guerin and A. Orda, “Networks with advance reserva-
tions: the routing perspective,” in Proceedings of the 19th An-
nual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM ’00), vol. 1, pp. 118–127, Tel Aviv,
Israel, March 2000.

[16] W. H. Ho and T. M. Pinkston, “A methodology for designing
efficient on-chip interconnects on well-behaved communica-
tion patterns,” in Proceedings of the 9th International Sympo-
sium on High-Performance Computer Architecture (HPCA ’03),
pp. 377–388, Anaheim, Calif, USA, February 2003.

[17] S. Stuijk, T. Basten, M. Geilen, A. H. Ghamarian, and B.
Theelen, “Resource-efficient routing and scheduling of time-
constrained network-on-chip communication,” in Proceedings
of the 9th EUROMICRO Conference on Digital System De-
sign: Architectures, Methods and Tools (DSD ’06), pp. 45–52,
Dubrovnik, Croatia, August-September 2006.

[18] J. Hu and R. Marculescu, “Energy-aware mapping for tile-
based NoC architectures under performance constraints,” in
Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC ’03), pp. 233–239, Kitakyushu, Japan,
January 2003.

[19] S. Murali and G. de Micheli, “Bandwidth-constrained map-
ping of cores onto NoC architectures,” in Proceedings of De-
sign, Automation and Test in Europe Conference and Exposition
(DATE ’04), vol. 2, pp. 896–901, Paris, France, February 2004.

[20] S. Murali and G. de Micheli, “SUNMAP: a tool for automatic
topology selection and generation for NoCs,” in Proceedings
of the 41st Design Automation Conference (DAC ’04), pp. 914–
919, San Diego, Calif, USA, June 2004.

[21] S. Murali, L. Benini, and G. de Micheli, “Mapping and physical
planning of networks-on-chip architectures with quality-of-
service guarantees,” in Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC ’05), vol. 1, pp. 27–
32, Shanghai, China, January 2005.

[22] P. M. Pardalos, F. Rendl, and H. Wolkowicz, “The quadratic
assignment problem: a survey and recent developments,” in
Quadratic Assignment and Related Problems, P. M. Pardalos
and H. Wolkowicz, Eds., vol. 16 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pp. 1–42,
American Mathematical Society, Providence, RI, USA, 1994.

[23] L. M. Ni and P. K. McKinley, “A survey of wormhole routing
techniques in direct networks,” Computer, vol. 26, no. 2, pp.
62–76, 1993.

[24] C. J. Glass and L. M. Ni, “The turn model for adaptive rout-
ing,” Journal of the ACM, vol. 41, no. 5, pp. 874–902, 1994.

[25] G.-M. Chiu, “The odd-even turn model for adaptive routing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 11,
no. 7, pp. 729–738, 2000.

[26] J. Hu and R. Marculescu, “DyAD: smart routing for networks-
on-chip,” in Proceedings of the 41st Design Automation Con-

ference (DAC ’04), pp. 260–263, San Diego, Calif, USA, June
2004.

[27] L. Benini, “Application specific NoC design,” in Proceedings of
Design, Automation and Test in Europe Conference and Exposi-
tion (DATE ’06), pp. 491–495, Munich, Germany, March 2006.

[28] D. Starobinski, M. Karpovsky, and L. A. Zakrevski, “Appli-
cation of network calculus to general topologies using turn-
prohibition,” IEEE/ACM Transactions on Networking, vol. 11,
no. 3, pp. 411–421, 2003.

[29] A. Hansson, K. Goossens, and A. Rădulescu, “A unified ap-
proach to constrained mapping and routing on network-on-
chip architectures,” in Proceedings of 3rd IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and Sys-
tem Synthesis (CODES+ISSS ’05), pp. 75–80, Jersey City, NJ,
USA, September 2005.

[30] S. J. Krolikoski, F. Schirrmeister, B. Salefski, J. Rowson, and
G. Martin, “Methodology and technology for virtual compo-
nent driven hardware/software co-design on the system-level,”
in Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS ’99), vol. 6, pp. 456–459, Orlando, Fla, USA,
May-June 1999.

[31] I. Stoica, “Stateless core: a scalable approach for quality of ser-
vice in the Internet,” Ph.D. dissertation, Department of Elec-
trical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, Pa, USA, December 2000, also as Tech. Rep. CMU-
CS-00-176.

[32] H. Zhang, “Service disciplines for guaranteed performance
service in packet-switching networks,” Proceedings of the IEEE,
vol. 83, no. 10, pp. 1374–1396, 1995.

[33] C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne,
“Real-time communication in packet-switched networks,”
Proceedings of the IEEE, vol. 82, no. 1, pp. 122–139, 1994.

[34] U. Y. Ogras and R. Marculescu, “Application-specific network-
on-chip architecture customization via long-range link inser-
tion,” in Proceedings of IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’05), pp. 246–253, San Jose,
Calif, USA, November 2005.

[35] K. Srinivasan and K. S. Chatha, “A low complexity heuristic
for design of custom network-on-chip architectures,” in Pro-
ceedings of Design, Automation and Test in Europe Conference
and Exposition (DATE ’06), pp. 130–135, Munich, Germany,
March 2006.

[36] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “A de-
sign methodology for application-specific networks-on-chip,”
ACM Transactions on Embedded Computing Systems, vol. 5,
no. 2, pp. 263–280, 2006.

[37] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in
multiprocessor interconnection networks,” IEEE Transactions
on Computers, vol. 36, no. 5, pp. 547–553, 1987.

[38] P. Mohapatra, “Wormhole routing techniques for directly
connected multicomputer systems,” ACM Computing Surveys,
vol. 30, no. 3, pp. 374–410, 1998.

[39] D. H. Linder and J. C. Harden, “An adaptive and fault tolerant
wormhole routing strategy for k-ary n-cubes,” IEEE Transac-
tions on Computers, vol. 40, no. 1, pp. 2–12, 1991.

[40] J. Rexford and K. G. Shin, “Support for multiple classes of traf-
fic in multicomputer routers,” in Proceedings of the 1st Interna-
tional Workshop on Parallel Computer Routing and Communi-
cation (PCRCW ’94), pp. 116–130, Seattle, Wash, USA, May
1994.

[41] N. W. McKeown, “Scheduling algorithms for input-queued
cell switches,” Ph.D. dissertation, University of California,
Berkeley, Calif, USA, May 1995.

16 VLSI Design

[42] W. J. Dally, “Virtual-channel flow control,” IEEE Transactions
on Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–205,
1992.

[43] E. Fleury and P. Fraigniaud, “A general theory for deadlock
avoidance in wormhole-routed networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 9, no. 7, pp. 626–638,
1998.

[44] T. Bjerregaard and J. Sparsø, “A router architecture for
connection-oriented service guarantees in the MANGO clock-
less network-on-chip,” in Proceedings of Design, Automation
and Test in Europe Conference and Exposition (DATE ’05),
vol. 2, pp. 1226–1231, Munich, Germany, March 2005.

[45] P. Guerrier, “Un réseau d’interconnexion pour systémes
intégrés,” Ph.D. dissertation, Université Paris VI, Paris, France,
2000.

[46] I. Saastamoinen, M. Alho, and J. Nurmi, “Buffer implemen-
tation for Proteo networks-on-chip,” in Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS ’03),
vol. 2, pp. 113–116, Bangkok, Thailand, May 2003.

[47] C. J. Glass and L. M. Ni, “The turn model for adaptive rout-
ing,” in Proceedings of the 19th International Symposium on
Computer Architecture (ISCA ’92), pp. 278–287, Gold Coast,
Queensland, Australia, May 1992.

[48] O. P. Gangwal, A. Rădulescu, K. Goossens, S. Gonzàlez Pes-
tana, and E. Rijpkema, “Building predictable systems on chip:
an analysis of guaranteed communication in the Æthereal net-
work on chip,” in Dynamic and Robust Streaming in and be-
tween Connected Consumer-Electronics Devices, Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 2005.

[49] K. Kar, M. Kodialam, and T. V. Lakshman, “Minimum inter-
ference routing of bandwidth guaranteed tunnels with MPLS
traffic engineering applications,” IEEE Journal on Selected Ar-
eas in Communications, vol. 18, no. 12, pp. 2566–2579, 2000.

[50] M. Fidler and G. Einhoff, “Routing in turn-prohibition based
feed-forward networks,” in Proceedings of the 3rd IFIP-TC6
Networking Conference (Networking ’04), vol. 3042 of Lecture
Notes in Computer Science, pp. 1168–1179, Athens, Greece,
May 2004.

[51] G. Liu and K. G. Ramakrishnan, “A ∗Prune: an algorithm for
finding K shortest paths subject to multiple constraints,” in
Proceedings of the 20th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’01),
vol. 2, pp. 743–749, Anchorage, Alaska, USA, April 2001.

[52] K. Kowalik and M. Collier, “Should QoS routing algorithms
prefer shortest paths?” in Proceedings of IEEE International
Conference on Communications (ICC ’03), vol. 1, pp. 213–217,
Anchorage, Alaska, USA, May 2003.

[53] Q. Ma and P. Steenkiste, “On path selection for traffic with
bandwidth guarantees,” in Proceedings of the International
Conference on Network Protocols (ICNP ’97), pp. 191–202, At-
lanta, Ga, USA, October 1997.

[54] S. Gonzàlez Pestana, E. Rijpkema, A. Rădulescu, K. Goossens,
and O. P. Gangwal, “Cost-performance trade-offs in networks
on chip: a simulation-based approach,” in Proceedings of De-
sign, Automation and Test in Europe Conference and Exhibition
(DATE ’04), vol. 2, pp. 764–769, Paris, France, February 2004.

[55] J. Dielissen, A. Rădulescu, and K. Goossens, “Power measure-
ments and analysis of a network-on-chip,” Tech. Rep. NL-TN-
2005-0282, Philips Research Laboratories, Eindhoven, The
Netherlands, 2005.

	Introduction
	Related work
	Background
	Application
	Network
	Best-effort arbitration
	Guaranteed service arbitration

	Problem description

	Problem formulation
	Application
	Network
	Path selection
	Time-slot allocation
	Deadlock avoidance
	Mapping
	UMARS+ contribution

	Unified Mapping and Routing
	Turn-prohibition
	Allocation of a set of flows
	Flow traversal order
	Path selection
	Bandwidth reservation
	Selecting constrained least-cost path
	Choice of cost function
	Refining mapping function
	Resource reservation

	Algorithm termination
	Algorithm complexity

	Experimental results
	Deadlock avoidance
	Evaluation experiments
	Analytic benchmarks
	Simulation benchmarks

	An MPEG application

	Conclusion and future work
	Contributions
	Future work

	REFERENCES

