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Networks on chip (NoCs) are an essential component of systems on chip (SoCs) and much research is devoted to deadlock avoid-
ance in NoCs. Prior work focuses on the router network while protocol interactions between NoC and intellectual property (IP)
modules are not considered. These interactions introduce message dependencies that affect deadlock properties of the SoC as a
whole. Even when NoC and IP dependency graphs are cycle-free in isolation, put together they may still create cycles. Tradition-
ally, SoCs rely solely on request-response protocols. However, emerging SoCs adopt higher-level protocols for cache coherency,
slave locking, and peer-to-peer streaming, thereby increasing the complexity in the interaction between the NoC and the IPs. In
this paper, we analyze message-dependent deadlock, arising due to protocol interactions between the NoC and the IP modules.
We compare the possible solutions and show that deadlock avoidance, in the presence of higher-level protocols, poses a serious
challenge for many current NoC architectures. We evaluate the solutions qualitatively, and for a number of designs we quantify the
area cost for the two most economical solutions, strict ordering and end-to-end flow control. We show that the latter, which avoids
deadlock for all protocols, adds an area and power cost of 4% and 6%, respectively, of a typical Æthereal NoC instance.

Copyright © 2007 Andreas Hansson et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Networks on chip (NoCs) have emerged as the design para-
digm for design of scalable on-chip communication architec-
tures, providing better structure and modularity while allow-
ing good wire utilisation through sharing [1–4]. By provid-
ing services for intermodule communication [5] over a mix
of different sockets, NoC enables intellectual property (IP)
reuse [3, 6, 7] and enhances system-level composability [6].
The services must be implemented robustly and efficiently.

Deadlock is catastrophic to as SoC and a serious threat to
the robustness of the communication services offered by the
NoC. Therefore, the importance of deadlock-free operation
is stressed as a key research problem in NoC design [8] and
much work is focused on providing deadlock-free routing in
NoCs [9–11].

Deadlock freedom in the router network, henceforth just
network, relies on the consumption assumption [12]: the net-
work accepts and delivers all messages sent by the network
interfaces (NIs) as long as they promise to consume all mes-

sages from the network when they are delivered. Routing al-
gorithms that rely on this assumption, which to the best of
our knowledge is true for all nonlossy routing algorithms
currently used in NoCs, are still susceptible to deadlock aris-
ing from protocol interactions in the NIs. The IP blocks cre-
ate message dependencies between buffers in the NIs that,
when transferred to the router network, can lead to message-
dependent deadlocks [12].

The SoC comprises IP modules with two different types
of ports: masters (initiators) and slaves (targets) [3]. Masters
initiate transactions by issuing requests. One or more slaves
receive and execute each transaction. Optionally, a transac-
tion also includes a response, returning data, or an acknowl-
edgement from the slave to the master. This transaction
model subsumes both a distributed shared memory (DSM)
and message passing (MP) communication paradigm. As
we will see, this model of on-chip communication can lead
to four types of message dependencies, request-response,
response-request, request-request, and response-response,
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Figure 1: Request-response dependency at a memory.

depending on the behavior of the IP modules. These
dependencies arise as a consequence of the IP modules’
desired behavior. For example, the memory controller in
Figure 1 is expected to respond to requests, and thus creates
a request-response dependency.

Even when NoC and IP dependency graphs are cycle-free
in isolation, put together they may still create cycles due to
these dependencies. Traditional NoC architectures rely solely
on request-response protocols, and consequently only have
to address these dependencies. However, higher-level proto-
cols are being adopted in emerging SoCs for cache coherency
[13, 14], slave locking [14, 15], and peer-to-peer streaming
[16]. These higher-level protocols introduce additional de-
pendencies that must be addressed to provide deadlock-free
operation.

The main contribution of this paper is an analysis
of the message-dependent deadlocks that commonly used
programming models and coherency schemes can cause
network-based SoCs. We evaluate the possible solutions and
show that many NoCs do not consider [6, 17–20] or only par-
tially solve [21–23] the problem. These NoCs can only guar-
antee deadlock-free operation for a limited set of protocols.
Furthermore, we show how the Æthereal [3] and FAUST [24]
NoC, both employing credit-based end-to-end flow control
[25], avoid message-dependent deadlock irrespective of the
communication protocols used. Alternative approaches, for
example multiple networks, have not been shown for NoCs.

For a number of designs, we quantify the area cost for
the two most economical solutions, strict ordering and end-
to-end flow control. We show that the latter, which avoids
deadlock for all protocols, has an area and power costs of 4%
and 6%, respectively, of a typical Æthereal NoC instance.

Related work is introduced in Section 2. The architec-
tural platform is presented in Section 3. Next, the problem
is introduced in Section 4 and the different message depen-
dencies are covered in depth in Section 5. Solutions used in
NoCs are presented in Section 6. An evaluation of the dif-
ferent solutions is given in Section 7 together with a quan-
titative analysis of the two prominent techniques, strict or-
dering, and end-to-end flow control, applied to Æthereal. Fi-
nally, Section 8 concludes the paper and presents directions
for future work.

2. RELATED WORK

Key research problems in NoC design are presented in [8].
The authors stress the importance of deadlock-free opera-
tion but identify it only as a routing problem, not consider-
ing the protocol interactions between the IPs and the NoC at
the network endpoints.

Deadlock recovery is a popular resort in parallel comput-
ers [12] and is used in the Proteo [26] NoC that drops packets
on overflow. The majority of NoCs [3, 6, 17–24], however,
avoid deadlock, as deadlock detection and recovery mecha-
nisms are expensive [8] and complicate the provision of guar-
antees. Deadlock avoidance is also the focus of this paper.

An NI that offers high-level services is presented in
[3]. End-to-end flow control, important as we will see in
Section 6.2, is part of the basic functionality offered by the
design and the added bandwidth for an MPEG-2 decoder is
evaluated. However, as with [20, 24] that also use end-to-end
flow control, message-dependent deadlock is not discussed.

Many NoCs [21–23] break request-response dependen-
cies by introducing separate physical networks for the two
message types. Virtual, instead of physical, networks are used
in [27, 28] to avoid deadlock in a higher-order configuration
protocol and a forwarding multicast protocol, respectively.
All the solutions are protocol-specific and none address the
dependencies that can arise when IPs have both master and
slave ports.

The possibility of considering message types in the topol-
ogy synthesis is explored in [29]. The work presents a
methodology that tailors the NoC to a particular application
behavior while taking message-dependent deadlock into ac-
count. In contrast to what we advocate in this work, the NoC
architecture is inherently coupled to the application and as-
sumes that the NoC can be redesigned if the application or
its binding to the NoC should change.

A comprehensive survey on methods for handling
message-dependent deadlocks in parallel computer systems
is given in [12]. In contrast with the computer networks and
multiprocessor environments studied in the work, NoC stor-
age and computation resources are relatively more restricted,
and the protocol stack is entirely implemented in hardware.
Hence, design constraints and optimization goals are funda-
mentally different.

In this work, we present the implications regarding dead-
lock that arise in a network-based SoC due to the interactions
between the NoC and the IP modules. Furthermore, we evalu-
ate the area and power cost of a NoC architecture, applied
to a number of representative SoCs, that avoid all poten-
tial message-dependent deadlocks through the use of credit-
based end-to-end flow control.

3. ARCHITECTURAL PLATFORM

We assume that NoCs comprise two components: routers
(R) and network interfaces (NIs), as depicted in Figure 2.
The routers can be randomly connected amongst themselves
and to the NIs, that is, there are no topology constraints,
although the routing is assumed to be deadlock-free. The
routers transport packets of data from one NI to another.

The NIs enable end-to-end services [3] to the IP mod-
ules and are keys in decoupling computation from commu-
nication [6, 7]. The NI allows the designer to simplify com-
munication issues to local point-to-point transactions at IP
module boundaries, using protocols natural to the IP [7], for
example, AXI [15] or OCP.
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Figure 2: Different levels of deadlock.

Master and slave IP ports are connected to slave and
master NI ports, respectively. The term connection is used
throughout this paper to denote a unidirectional peer-to-
peer interconnection between a master and a slave, either car-
rying requests from master to slave, or responses from slave
to master, but not both. In Section 6.4, we return to the dif-
ferences with the looped containers [18] of Nostrum.

Throughout this paper, data integrity, lossless data de-
livery, and in-order data delivery are assumed to be services
inherent to the router network. Freedom of reassembly dead-
lock and resequence deadlock is thus guaranteed [30]. In
Proteo [26] that is lossy, and Nostrum [18] that uses adap-
tive (hot-potato) routing, additional care must be taken to
recover from and avoid deadlock, respectively.

4. PROBLEM DESCRIPTION

In this paper, we assume freedom of routing-dependent dead-
lock [12], depicted in Figure 2(a). All NoCs we are aware of
solve this kind of deadlock, mostly by assuring acyclic re-
source dependencies in the router network [3, 6, 17–24]. A
dependency cycle involving only the routers, as shown in the
figure, can hence not occur.

Although acyclic routing algorithms assert that no dead-
lock occurs, they do so under the consumption assumption.
This assures that delivered messages are, in a finite time, sunk
by the NIs. By induction, because the network dependencies
are acyclic, all buffers are eventually emptied.

Unconditional consumption requires that delivery of one
message is not coupled to the injection or reception of an-
other message [12]. Regardless of whether the DSM or MP
communication paradigm is used, IP modules often violate
this assumption as a result of their normal desirable behav-
ior, for example, a slave module that responds to incom-
ing requests and thereby introduces a request-response de-
pendency. Together with the dependencies of the network,
the message dependencies can again cause dependency cy-
cles and introduce message-dependent deadlock, as shown
in Figure 2(b).

Taxing the IP modules with the responsibility of correct-
ness (e.g., by employing end-to-end flow control on the ap-
plication level) is not desired as it necessitates modification
of existing IPs [31] and frustrates reuse [7]. Therefore, the
onus of consumption is placed on the NIs. In the following
sections, we show how the IP behavior determines the type
of dependencies that arise, and in Section 6 we present solu-
tions that guarantee consumption in their presence.

Besides the router-dependent and message-dependent
deadlocks, we also address application deadlock [16]. This
third level of deadlock, involving the IPs only, is as impor-
tant as the two lower levels. It is, however, independent of
the behavior of the NoC and is out of the scope of this paper.

5. MESSAGE DEPENDENCIES

We adopt the terminology used in [12]. A message depen-
dency chain represents a partially ordered list of message
types m1 through mn, where mi ≺ mj if and only if mj can be
generated by a node receiving mi. The chain length denotes
the number of types n in the chain. We refer to a protocol
with such a message dependency chain as a n-way protocol.
A message of type mn is said to be terminating as it does not
introduce any new messages.

5.1. Request-response dependency

A dependency that is frequently occurring in contemporary
SoCs is the request-response dependency. As we have seen, this
dependency arises in a slave module, such as a memory con-
troller, that awaits a request and upon reception processes the
request and sends a response. The protocol is clearly two-way
with a message dependency chain request ≺ response.

The coupling between reception of request and gener-
ation of responses introduces a dependency between the
request and response buffers in the NI, as depicted in
Figure 2(b). Transferred to the network, this dependency can
cause deadlock. In the figure, two master and slave pairs com-
municate via two shared input buffered routers. The two
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connections between m1 and s1 are drawn with continuous
lines and the connections of m2 and s2 with dashed lines.
Note that dimension-ordered routing is used and that the
network is clearly acyclic. Moreover, the individual master
and slave pairs do not introduce cycles as there is only a mes-
sage dependency on the slave side. However, a dependency
cycle is formed over the two slave modules. Responses from
s1 enter the network, turn east, and end up in b2. This buffer
is shared by responses destined for m1 and requests going to
s2. From b2, the dependencies continue through the slave s2,
and the shared buffer b1, back to s1, closing the cycle. As a re-
sult, a deadlocked situation, where none of the involved con-
nections make progress, can occur.

As we will see in Section 6.3, one way to resolve the de-
pendencies of b1 and b2 is to use separate request and re-
sponse networks, or at least separate buffer classes.

5.2. Response-request dependency

In contrast to what most NoC designs suggest, many pro-
tocols create more than just request-response dependencies.
For example, when a master reacts on the response from a
slave by sending an additional request, it creates a response-
request dependency. Consider for example an implementa-
tion of atomic access through read-modify-write (RMW)
[14, 15]. A read request is issued by the master which ac-
quires exclusive ownership and receives a response from the
slave. Finally, the master issues a write request which upon
completion releases the lock. This protocol creates a message
chain read ≺ response ≺ write.

Examples of more specialized protocols that have
response-request dependencies are given in [27, 28, 32]. In
these works, interconnections and multicast groups are es-
tablished through a three-way resource reservation protocol:
(1) a master sends a setup request, (2) the slave responds with
a positive or negative acknowledgement, and in the latter case
(3) the master restores the reservations done by sending a
tear-down. The message dependency chain thus comprises
three types: setup ≺ ack/nack ≺ teardown.

5.3. Request-request and response-response
dependencies

The aforementioned dependencies involve only dedicated
master and slave modules. This is also an assumption made
by most existing solutions to message-dependent deadlock
in NoCs [21–23, 27]. With the introduction of IP modules
with both master and slave ports, for example, a processor or
direct memory access (DMA) engine, two additional depen-
dencies may arise: request-request and response-response.

Request-request dependencies, as depicted in Figure 3,
are created when reception of a request on the slave side is
coupled to the generation of a request on the master side.
This occurs when IP modules process a certain input that is
sent to them by the preceding module and then write their
output to the succeeding module, as done in peer-to-peer
streaming and in protocols that, in the interest of perfor-
mance, use forwarding [12, 33].

Request1 ≺ Request2 Requestn ≺ Response1

· · ·
· · ·IP IP IP

Responsen−1 ≺ Responsen

Figure 3: Message forwarding.

5.3.1. Forwarding

In a forwarding protocol, an initial request passes through
a number of intermediate IPs, generating new requests un-
til the final destination is reached. Potentially, a response is
travelling in the other direction, creating response-response
dependencies on the way back. Two prominent examples of
forwarding protocols are cache coherency protocols [33] and
collective communication [34], such as multicast and narrow-
cast [3, 28].

Cache coherency in network-based SoCs is typically im-
plemented using a directory-based protocol as the medium
does not lend itself to snooping [13, 14]. These protocols, in
general, do not adhere to strict request-response protocols,
as they strive to reduce the number of network transactions
generated per memory operation [33]. Both reply forward-
ing and intervention forwarding manifest request-request de-
pendencies, and the latter introduces also response-response
dependencies.

Multicast and narrowcast are used in NoCs to implement
DSM on a single interconnection [3], and in parallel systems
also for cache invalidation, acknowledgement collection, and
synchronization [34]. These higher-order interconnections
give rise to both request-request and response-response de-
pendencies when implemented using forwarding [28]. The
latter is used to avoid sending a unicast message for every
destination, which causes congestion at the source [35].

5.3.2. Streaming

A streaming protocol, where data is pushed from producer to
consumer, is beneficial in dataflow applications [16, 36] com-
prising a chain of modules, such as the video pixel processing
pipeline [37] depicted in Figure 4.

The advantage of pushing (writing) data instead of
pulling it from the producer is that it greatly reduces the im-
pact of network latency. When pulling, as suggested by [38],
then first a read request is sent whereafter the producer re-
sponds with the data, thereby doubling the latency by travers-
ing the network twice. Note that the latter approach, where
every IP reads and writes its input and output, respectively,
reduces the protocol to strict request-response but has several
drawbacks, further discussed in Section 6.3. An example of a
SoC employing peer-to-peer streaming is presented in [39]
where a commercially available SoC for picture improvement
is extended with a NoC.

The peer-to-peer streaming protocol where IPs write
their output to the next module, illustrated in Figure 5, has a
message chain that is built only from (forwarded) requests:
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Figure 5: Dependencies created by peer-to-peer streaming.

request1 ≺ · · · ≺ requestn, where n is the number of
modules in the processing chain. Consider for example the
pipeline in Figure 4 that has 12 different types of request
messages if all communications are implemented by peer-to-
peer streaming.

6. SOLUTIONS

To provide a deadlock-free NoC, the consumption assump-
tion must be fulfilled. As a first requirement, messages must
be separated into different NI buffers based on their type.
Having a separate NI buffer per message type is a neces-
sary but not a sufficient condition to avoid deadlocks [12].
Message-dependencies together with dependencies in the
router network can still introduce cycles.

As already outlined, the avoidance-based solutions to this
problem fall within two categories. First, the consumption
assumption can be implemented by designing the NIs such
that NI buffers are guaranteed to consume all messages sent
to them, regardless of the IPs. Buffer sizing (Section 6.1) and
end-to-end flow control (Section 6.2) are instances of this
technique. Alternatively, the NoC must guarantee that mes-
sages of one type never preclude the advances of its subordi-
nate types indefinitely. Thereby, messages of the terminating
type (guaranteed to sink upon arrival) reach their destination
and its dominant types can follow suit. This technique is re-
ferred to as strict ordering (Section 6.3), and virtual circuits
(Section 6.4) is a special case.

B: end-to-end flow control

Req. Req.

Resp. Resp.

NI NI

s1 m1

R R

NINI Resp. Resp.

Req. Req.m2 s2

C: strict ordering A: buffer sizing

Figure 6: Various solutions.

6.1. Buffer sizing

A first way to solve the deadlock problem is to ensure enough
space by (over-)sizing the buffers. This requires a gener-
ous storage budget, determined by the maximum bounds
on packet size and the number of outstanding transactions.
The concept is shown in Figure 6 that revisits the case of a
request-response protocol.

While extensively used in parallel computers [12], this
method is prohibitively expensive in NoCs and is not used
in any known architecture.

6.2. End-to-end flow control

Instead of adapting the buffer size to the maximum require-
ments, end-to-end flow control does the other way around:
it assures that no more is ever injected than what can be con-
sumed. This approach, end-to-end flow control, is used in
the Æthereal and FAUST NoC. As illustrated in Figure 6, it
removes a dependency edge from the network to the NI.

The simplest form of end-to-end flow control is the so-
called local flow control [30], assuring that enough space is
available to fit the response before sending the request. This
local check solves response-response and response-request
dependencies.
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Requests-request and request-response dependencies are
caused by transactions initiated by remote parties, and thus
require end-to-end flow control. As buffer space is the criti-
cal resource, a windowing mechanism must be used. An ex-
ample of such a mechanism is credit-based flow control, as
illustrated in Figure 7. A rate-based mechanism, such as the
one used in [40], is insufficient as it does not bound buffer
usage.

Just as buffer sizing, end-to-end flow control solves all
potential message dependencies. It does so without placing
any restrictions on the amount of sharing in the router net-
work. Furthermore, routers need not know message types or
the number of connections, and can thereby be simplified in
complexity and optimized for other important or otherwise
critical features [12]. However, credit-based end-to-end flow
control carries three major downsides.

First, it requires extra buffering to hide the round-trip
latency of the credits. The amount of buffering is determined
by the performance requirements [41] and it is evaluated in
Section 7.1.

Second, communication of credits consumes bandwidth
and hence power. The closed-loop nature requires state to be
communicated between the producer and consumer NI. The
additional bandwidth, quantified in Section 7.1, can be re-
duced with 20% by piggybacking credits on the data packets
[3].

Third, it requires dedicated NI buffers per connection.
Alternatively, if many sources share a common destination
buffer they need collective knowledge of the destination and
each other, something that cannot be implemented in a cost-
efficient way.

6.3. Strict ordering

Another way of assuring freedom of message deadlock is
by ordering network resources. This is done by introduc-
ing logically independent networks, physical or virtual, for
each message type. Arteris [21], STbus [22], and SonicsMX
[23] fit in the first category by having two physical networks
for requests and responses, respectively. The methods used
to break request-response dependencies in [27, 28] fit in the
latter category as they both use one buffer class per message
type. This approach is illustrated in Figure 6 where a buffer
is added to break the dependency cycle.

A major drawback of the strict ordering is that buffers
cannot be shared between the different message classes, in-

creasing the amount of buffering required. The partitioning
into logical networks leads to inefficient utilization of net-
work resources [33] and increased congestion due to unbal-
ance [12]. These effects increase with the number of net-
works required. In [22], the authors argue that the size of the
request and response networks can be made different. The
size is however static, and use-cases (modes) with different
traffic characteristics magnify the problem.

Having virtual instead of physical networks mitigates the
aforementioned problem. However, the router complexity
increases as it must forward messages considering message
type [12].

The major limitation with strict ordering is the inher-
ent coupling between the NoC and the IP modules. A NoC
with n logical networks can only be used by IP modules em-
ploying protocols with n or fewer message types. In multi-
processor designs, like the Alpha 21364 [42], this entangle-
ment of concerns is not an issue. The router network is tai-
lored to the protocol with seven virtual networks, one for
each message type. For a NoC design, however, the coupling
between IPs and the NoC architecture severely limits the re-
usability. Consider for example the implementation of a for-
warding protocol [28] where the number of buffers deter-
mines the maximum number of multicast groups.

Higher-order protocols require either a redesign of the
NoC or a reduction of the protocol to n ways. IP modules
using peer-to-peer streaming communication hence cannot
use the NoCs in [21–23] as they only support two-way proto-
cols. The protocol has to be reduced to pure request-response
and communication must go via memory. This adds com-
plexity, requires additional bandwidth, introduces latency,
increases congestion, and consumes more power.

6.4. Virtual circuits

Virtual circuits represent the extreme case of strict ordering
as every connection has its own logical network. This way of
implementing unconditional delivery is found in the guar-
anteed service networks of Æthereal [3], MANGO [43], and
Nostrum [18]. The implementations differ, but all rely on
predetermined spatial and/or temporal multiplexing.

The deadlock freedom comes at a price of exclusively re-
served resources coupled with decreased utilization. Further-
more, in all three NoCs the maximum number of circuits
supported by a router and NI is decided at design time. For
all three NoCs, the number of buffers in the NI sets an upper
bound for the number of circuits. The router is limited by
the number of virtual channels (buffers) in MANGO, by the
slot table size in Æthereal and by the number of temporally
disjoint networks in Nostrum.

The lack of resource sharing and potentially low utiliza-
tion is the major drawback of all three implementations.
However, Nostrum is more severely limited than the other
two, due to the looped containers [18] that do a round trip
and reserve an equal amount of resources in both direc-
tions. As the progress guarantee requires that no circuit car-
ries more than one message type, requests and responses
must use separate circuits. A circuit may therefore only carry
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Table 1: Avoidance techniques used in NoCs.

NoC Technique 2-way n-way

aSOC — − −
MANGO BE — − −
Nostrum BE — − −
×pipes — − −
Arteris Strict ordering + −
SonicsMX Strict ordering + −
STbus Strict ordering + −
MANGO GS Virtual circuits + +

Nostrum GS Virtual circuits + +

Æthereal GS Virtual circuits + +

SPIN End-to-end flow control − −
FAUST End-to-end flow control + +

Æthereal BE End-to-end flow control + +

messages from master to slave or slave to master, not both.
Thereby, Nostrum is, if no additional measures are taken,
limited to maximally 50% utilization as only the forward
path may carry messages. An alternative is to enforce a max-
imum number of outstanding transactions and a maximum
transaction size and then size the buffers accordingly, as dis-
cussed in Section 6.1.

7. EVALUATION

As seen in Table 1, the best-effort network in MANGO and
Nostrum, together with aSOC [17] and ×pipes [19], do not
address message dependencies at all, leaving these networks
susceptible to deadlock (livelock in the case of Nostrum).
Hence, not even a two-way protocol can be safely imple-
mented on these architectures without further measures.

Arteris, SonicsMX, and STbus all have separate re-
quest and response networks, which allows them to handle
two-way protocols without deadlock. However, peer-to-peer
streaming protocols or forwarding multicast cannot be used
by the IP modules unless the NoCs are extended with ad-
ditional logical networks. The pipeline in Figure 4, for ex-
ample, requires ten more networks. Even then, the maximal
pipeline length is still limited by the architecture. Further-
more, if one IP fails to consume its messages it can bring the
entire network to a stall.

The guaranteed-service network in Æthereal, MANGO,
and Nostrum all avoid message-dependent deadlocks, but do
so at the price of (1) reduced resource sharing, and (2) a fixed
number of connections supported by the router and NI ar-
chitecture.

SPIN [20], FAUST, [24] and the best-effort network in
Æthereal all employ credit-based end-to-end flow control.
However, only the latter two fulfil the consumption assump-
tion as SPIN issues more credits than the capacity of the re-
ceiving buffer. The additional credits are introduced to re-
duce latency, and the only consequence is said to be an in-
creased possibility of contention in the network. However,
consumption can no longer be guaranteed making the sys-

Table 2: Buffer cost (words).

MPEG s1m1p2 s1m2p2 s8m1p2 s8m2p2

Total 242 339 615 450 801

Per conn. 5.8 3.2 3.0 3.5 3.3

tem susceptible to message-dependent deadlock. In FAUST
and Æthereal, the consumption assumption is fulfilled and
no message-dependency chain can introduce deadlock. The
router architecture is oblivious to message types and the
number of connections, but the latter is instead limited by
the number of buffers in the NIs.

7.1. Cost analysis

In this section, we evaluate the cost associated with the two
most resource-efficient solutions, namely strict ordering and
end-to-end flow control. This is done for five different use-
cases. The MPEG use-case is an MPEG codec SoC with 16
IP modules, tied together by 42 connections. The remaining
four use-cases are internal video processing designs, all hav-
ing a hot spot around a limited set of IPs (external memories)
and 100 to 250 connections. These connections deliver a total
bandwidth of 1-2 Gbyte/s to 75 ports distributed across 25 IP
modules.

For each use-case, a NoC is dimensioned using the
UMARS algorithm [44]. Given the performance require-
ments, NI buffer sizes are then calculated in two individ-
ual parts: (1) the amount required to decouple the IP and
NI consumption and production without introducing stalls,
and (2) the number of words that must be added to hide the
round-trip latency of flow control [45]. The contribution of
the latter is presented in Table 2.

As seen in Table 2, the average cost is merely three to six
words per connection. The addition to the total NoC area is
shown in Figure 8. The silicon area requirements are based
on the model presented in [46], for a 0.13 μm CMOS process
with full-custom FIFOs. The added NoC area is below 4%
for all the applications. The mean value is 3.2%. Thus, in a
network-based SoC, such as the one presented in [39], the
area cost of end-to-end flow control is no more than 0.2% of
the whole SoC.

To put the area cost of end-to-end flow control in con-
trast with strict ordering, we calculate an approximate cost
of such an implementation. This is done by introducing an
additional best-effort router network, identical to the one
in place, thus having one network for requests and one for
responses. Although we have an approximation, the results
in Figure 8 suggest that the two methods are comparable in
cost. The MPEG and s8m2p2 designs have a more evenly dis-
tributed communication and less NIs per router than the
other designs. As a result, close to 20% of the area is at-
tributable to the routers in these two cases, which affects the
cost of strict ordering negatively. The average area cost for
strict ordering is slightly less than 3.9% of the NoC, only neg-
ligibly different from what is achieved with end-to-end flow
control.

Note that we add only one router network for the com-
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Figure 9: Additional traffic and power consumption.

parison as all the use-cases employ a strict request-response
protocol. With the introduction of higher-order proto-
cols, the cost of end-to-end flow control remains constant,
whereas the cost of strict ordering increases linearly with the
number of logical networks (protocol stages). This is under
the assumption that all network components are designed to
handle all different message types. As proposed in [29], it is,
for a given application, possible to reduce the cost by only in-
troducing the additional buffer classes where strictly needed.

To asses the cost of the traffic introduced by the end-to-
end flow control, we simulate each design 3×106 clock cycles
in a flit-accurate SystemC simulator of the Æthereal NoC, us-
ing traffic generators to mimic core behavior. Figure 9 shows
the additional cost in terms of injected flits and power con-
sumption.

The additional amount of injected flits ranges from
23% up to 44%. The MPEG design has an average band-
width (76 Mbyte/s) three times higher than the other de-
signs, which results in less flits carrying only credits. A higher
bandwidth (and larger burst size) increases the opportunities
for piggybacking credits on data-carrying packets [3]. Fur-
thermore, it also leads to a more bursty delivery of credits
with more credits per packet. As a result, buffers grow (see
Table 2), but less credit-carrying flits are injected.

As more flits are injected and routed through the net-
work, also the power consumption increases. The contribu-
tion added by the credit-carrying flits is depicted in Figure 9.
Note that the power estimation, calculated according to the
model in [47], covers only the router network (without the
NIs). In the reference case with no flow control, the flits that
carry only credits and no data are treated as empty. Despite
the amount of flits, the additional cost in power consump-
tion is consistently below 6%, with an average of 4.6%.

8. CONCLUSION AND FUTURE WORK

In this paper we analyze message-dependent deadlock, aris-
ing due to protocol interactions between the NoC and the IP
modules. We compare the possible solutions and show that
deadlock avoidance, in the presence of higher-level protocols,
for example, cache coherency, slave locking and peer-to-peer
streaming, poses a serious challenge for many current NoC
architectures.

Furthermore, we show how a NoC, such as the Æthereal
and FAUST NoCs, employing credit-based end-to-end flow
control, provides robust communication services for all po-
tential communication protocols used. We show that the as-
sociated area and power cost represent 4% and 6%, respec-
tively, of a typical Æthereal NoC instance.

Future work includes a more in-depth analysis of the
costs associated with the various solutions in the presence of
streaming peer-to-peer protocols.
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