
Trade-Offs in the Configuration of a

Network on Chip for Multiple Use-Cases

Andreas Hansson1 and Kees Goossens2,3

1Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
2Computer Engineering, Delft University of Technology, Delft, The Netherlands

3Research, NXP Semiconductors, Eindhoven, The Netherlands

m.a.hansson@tue.nl, kees.goossens@nxp.com

Abstract— Systems on chip (SoC) are becoming increasingly
complex, with a large number of applications integrated on the
same chip. Such a system often supports a large number of use-
cases and is dynamically reconfigured when platform conditions
or user requirements change.

Networks on Chip (NoC) offer the designer unsurpassed run-
time flexibility. This flexibility stems from the programmability
of the individual routers and network interfaces. When a change
in use-case occurs, the application task graph and the network
connections change. To mitigate the complexity in programming
the many registers controlling the NoC, an abstraction in the form
of a configuration library is needed. In addition, such a library
must leave the modified system in a consistent state, from which
normal operation can continue.

In this paper we present the facilities for controlling change
in a reconfigurable NoC. We show the architectural additions
and the many trade-offs in the design of a run-time library
for NoC reconfiguration. We qualitatively and quantitatively
evaluate the performance, memory requirements, predictability
and reusability of the different implementations.

I. INTRODUCTION

Systems on Chip (SoC) grow in complexity with an increas-

ing number of processors, memories and accelerators inte-

grated on a single chip. These heterogeneous high-complexity

chips are programmable and integrate a rich set of applica-

tions [1]–[4], e.g. PDA phones with mp3 players, cameras,

radios and gaming. The application dynamism is increasing,

both between applications, through run-time addition or re-

moval [4], and within applications, for example the variation

on bandwidth and computation demand in MPEG-4 [2].

Networks on Chip (NoC) have emerged as the design

paradigm for scalable on-chip communication architectures,

providing better structure and modularity while allowing good

wire utilisation through sharing [5]–[8]. The programmability

of the NoC enhances flexibility and reuse in both the long

term, over platform generation, and short term, when switching

between use-cases on a milli-second granularity [1], [4],

[7]. Internally, programming the NoC involves the individual

routers and network interfaces (NI). To mitigate the complexity

of reconfiguration, the abstraction level must be raised and

provide an interface between NoC implementations and appli-

cations [2], [9].

The system typically moves from one configuration to the

next as a result of user interaction [4], change in environment,

e.g. signal reception, or resource availability, such as the

battery level. A switch in use-cases upon such an event causes

changes in the application task graph and subsequently the

network connections [2], [10]. NoC reconfiguration requires:

1) the means for performing changes, i.e. a programmable

NoC architecture [11], [12], 2) the means to specify and

compute configurations, either at run time [1], [2] or at design

time [10], and 3) the facilities for controlling change, that is,

orchestration of the actual reconfiguration.

When performing the latter task, it is crucial that the

changes are applied in such a way as to leave the modified SoC

in a consistent state, that is, a state from which the system can

continue processing normally rather than progressing towards

an error state [13]. The Intellectual Property (IP) modules

in the SoC move from one consistent state to the next by

issuing and serving transactions. These transactions modify

state and while in progress, have transient state distributed in

the system, including also the NoC. Simply updating the NI

registers could cause out-of-order delivery or even no delivery,

with an erroneous behaviour, e.g. deadlock, as the outcome.

Should a transaction be corrupted or not even allowed to finish

due to inconsistent NoC reconfiguration, it is unlikely that

the application will recover. Consider for example a situation

where the response to a read transaction never arrives, causing

the IP module that initiated the transaction to stall indefinitely.

Similarly, a write transaction that is only partially delivered

might cause the target IP to stall, waiting for the outstanding

data elements. These events are catastrophic to the SoC and

must be avoided or recovered from.

In this paper we address the actual configuration process.

We introduce the Æthereal Run-Time (ART) library for NoC

reconfiguration with a basic set of functions, through which we

can connect the IP ports in a graph structure and dynamically

add, remove or modify the interconnections, thus changing

the task-graph topology in a consistent way. We show: 1)

the hardware support required by the library to ascertain

transaction consistency, and 2) the trade-offs (performance,

memory requirements, predictability, flexibility, reusability) in

implementing the library functions.

The remainder of this paper is organised as follows. Sec-

tion II introduces related work and is followed by a problem

description and delimitation in Section III. Then, Section IV

discusses the architectural support and the different operations

that are used to reconfigure the NoC. The details of the



ART library implementation are given in Section V before

we present the results in Section VI. Finally, we conclude in

Section VII.

II. RELATED WORK

A comprehensive model of dynamic change management is

given in [13]. The work discusses the requirements of the con-

figuration management and the implications of evolutionary

change of software components. A more practical approach to

dynamic application reconfiguration in multi-processor SoCs

is presented in [4], [14]. Reconfiguration of the interconnect

is, however, not addressed.

A methodology for deriving procedures for deadlock-

free reconfiguration between routing functions is introduced

in [15]. The work shows how reconfiguration-induced dead-

lock, caused by additional dependencies in the transition

between the old and new routing function, can be avoided.

In this work we assume a fixed network topology and employ

turn-prohibited routing [16] with a fixed set of prohibited turns.

Hence, reconfiguration-induced deadlock cannot occur.

Much work is focused on complete NoC design and compi-

lation flows [9], [17], [18]. While the works suggest automated

generation of configuration code [17] and standardised NoC

application programming interfaces [9], no details are given

as how to facilitate the dynamic changes.

NI architectures are presented in [3], [7], [11], [19],

[20]. The interfaces in [11], [19], [20] are OCP compliant,

whereas [7] presents an NI with support for DTL and AXI.

A specialised NI, tightly coupled to an accelerator, is im-

plemented and evaluated in [3]. All these works focus on

providing programmability and only briefly discuss how to

employ it in practice.

Methodologies for derivation of network configurations

are presented in [1], [10], [21]–[24]. Design-time algorithms

limited to a single use-case [22]–[24] are plentiful. In [10],

multiple use-cases are supported by computing a number of

hierarchical configurations at design-time. The works in [1],

[21] add even more flexibility by deciding the resource binding

at run-time and allowing task migration. While showing how

to determine NoC configurations, none of the works detail how

to deploy it.

Concluding, existing work addresses the problem of pro-

viding hardware run-time programmability and deriving a

configuration to be programmed. This paper investigates the

actual detailed configuration process and presents the nec-

essary hardware additions and the trade-offs in designing a

library for consistent NoC reconfiguration.

III. PROBLEM DESCRIPTION

NoCs comprise two components: routers (R) and net-

work interfaces (NI). The routers can be randomly connected

amongst themselves and to the NIs (i.e., there are no topology

constraints). The routers transport packets from one NI to

another.

The NIs enables end-to-end services [7] to the IP modules

and are key in decoupling computation from communica-

tion [11], [25]. The NI is responsible for (de-)packetisation,

for implementing the connections and services, and allows the

designer to simplify communication issues to local point-to-

point transactions at IP module boundaries, using protocols

natural to the IP (e.g., AXI or OCP) [25].

The IP modules, or rather their ports, acts as either masters

or slaves [7]. Masters initiate transactions by issuing requests.

One or more slaves receive and execute each transaction.

Optionally, a transaction also includes a response, returning

data or an acknowledgement from the slave to the master.

The term connection is used throughout this paper to denote

a bidirectional peer-to-peer inter-connection between a master

and a slave IP. As shown in Figure 1, a connection comprises a

request channel, from master to slave, and a response channel

in the reverse direction. Every connection is bound to four

unique queues: one in the sending NI and one in the receiving

NI, for both the request and the response channel. The Quality

of Service, best-effort (BE) or guaranteed service (GS), is

determined on a per-connection basic. Guarantees are provided

by time-division multiplexed (TDM) virtual circuits [7].

Master

D
T

L

SlaveD
T

L

NI Router network NI IPIP

{East, South, East}
Path = Time slots =

{0, 1}
Dest. queue =

0
Dest. space =

4

Fig. 1. A connection with request and response channel on a 2×2 mesh.

To set up a channel, only the source NI requires program-

ming [7], [11]. Hence, the target NI is always ready to receive

data and does not require any programming to do so.

As indicated in Figure 1, the information required is:

• a path through the router network,

• a queue identifier, selecting a queue in the destination NI,

• the end-to-end flow control credits, reflecting the size of

the destination queue, and, in the case of a GS connection,

• a set of TDM time-slots determining when the channel

may use the network links.

The NI also offers the possibility to set a lower limit for

when data and credits may be sent. These threshold values are

initialised to zero and therefore require no modification if the

functionality is not used.

We assume that the configuration is already computed,

either off-line [10] or on-line [1], [21]. Similar to [1], [4],

[7], [21], the configuration is done by a general-purpose CPU

(in our case an ARM) and is initiated by events in the system,

caused by e.g. a user command to start or stop an application,

an embedded resource manager [26] or mode switches in the

incoming streams [4].

When modifying or closing channels, both the NoC and

the IPs must be left in a consistent state, that is, a state from

which the system can continue processing normally rather than



progressing towards an error state [13]. Simply updating the NI

registers could cause out-of-order delivery or even no delivery,

with an erroneous behaviour, e.g. deadlock, as the outcome.

Reconfiguration of the tasks running on IP modules [4],

[14], [27] is an important task that lies outside the scope of this

paper. However, the techniques shown here are also applicable

at the higher IP level.

While parts of the presented algorithms are specific to

Æthereal, the concepts described apply to NoCs in general and

we give suggestions to alternative implementations throughout

the text.

IV. NETWORK CONFIGURATION

The configuration of the network is hidden from the ap-

plication programmer by an application-level configuration

API, such as C-HEAP [27], that switches between use-cases

and leaves the actual NoC reconfiguration to the ART library

software. This approach hides the underlying implementation

and eases integration as well as modifications [9]. Thereby, it

is the responsibility of the configuration management system,

not the user, to determine the specific ordering of actual change

operations applied [13].

A. Configuration registers

The network connections are configured at run time via a

memory-mapped configuration port on the NI, denoted Config

in Figure 2. The configuration port offers access to the NI

registers through normal read and write transactions [12].

D
T

L

Slave

Master

A
X

I

Config

Shells Kernel

slot0

slot1

slot2

path

space

limit

BE/GS

queue

mask

equal

block

Fig. 2. Network interface registers.

As seen in Figure 2, the registers are divided into three

different blocks with three different address ranges. First,

the path, queue, BE/GS, limit and space registers, with one

instance per outgoing channel. This block controls, in order,

the path through the router network (source routing), the queue

to which data is delivered in the destination NI, the assigned

service level (BE/GS), lower limits for when data and credits

may be sent, and the flow-control space counter that is used

to track the occupancy of the destination queue. Second, the

slot table, in this example with only three slots. These registers

determine when the GS channels are scheduled and may inject

flits into the router network. Third, the registers in the protocol

shells [7]. These registers are optional and depend on the

functionality of the specific shell instantiations. The DTL shell

connected to the master in Figure 2 has mask, equal and

block registers. The first two are used to implement narrowcast

connections [7], whereas the latter is used when inactivating

and closing connections, further discussed in Section IV-E.

B. Configuration infrastructure

We assume that there exists one or more configuration

master modules that execute the configuration operations.

Such a module, typically a general-purpose CPU, only has

one data bus and needs an infrastructure to facilitate access to

the NIs in the platform.

By connecting the configuration port back to a (DTL)

initiator port on the NI, as done on NIm and NIs in Figure 3,

the configuration data is carried by the NoC itself [7] instead of

an additional control network, as advocated in [2]. By reusing

the existing infrastructure, low-bandwidth control traffic is

allocated resources just like any user-generated traffic. In

Section IV-F we show that it is still possible to separate user

traffic from control traffic by allocating TDM slots also for

the latter.

To reach NIs other than NIc from the configuration master

we set up configuration connections over which the configura-

tion data is read and written. As illustrated in Figure 3(a), the

first step is to open a configuration request channel from NIc

to NIs. The opening of this channel only involves manipulation

of the Rc registers in NIc, as indicated by the arrow marked 1.

The configuration request channel makes the Rs register in NIs

accessible via the DTL port on NIc. To enable communication

of responses back to NIc, we also establish a configuration

response channel, from NIs back to NIc. This is done by

writing to the Rs registers of NIs, indicated by the arrow

marked 2 in Figure 3(a). The response channel is left unused

but in place when moving on to the initialisation of NIm

(arrows 3 and 4).

The configuration connections, allocated resources just like

any other connection [10], are all set up in the configuration

initialisation phase, further covered in Section V. Hence,

the configuration response channels are set up once and

are already in place when the first user-specified connection

is opened. The configuration request channel, however, is

inactivated and re-opened for every NIt.

There are two opportunities for adding parallelism in the

configuration infrastructure. First, having more than one con-

figuration master, e.g. hierarchically distribute the control to

different subsystems. Second, by using more ports on NIc

for accessing remote NIs and thereby enabling one master to

configure multiple NIs in parallel. In our experiments we use

a single configuration master, and only one port for remote

configuration.

C. Configuration operations

Configuration of the network relies on three top-

level operations, closely related to the channel create,

channel reconfigure and channel destroy primitives of C-

HEAP [27].

• Open a new connection.

• Modify an existing connection.

• Close an existing connection.



Router network

Config Config

Config

master

C
o
n
fi
g NIc

DTL

→
→
→
→

3:
4:

1:
2:

NIc
NIs
NIc
NIm

NIs
NIc
NIm
NIc

NIs

Master Slave

bm,req

bm,resp

bs,req

bs,resp

NIm

Rm

1, 3

2

4

Rc

Rs

D
T

L

D
T

L
D

T
L

D
T

L

m

c c

(a) Opening the configuration connections.

Router network

Config Config

Config

master

C
o
n
fi
g NIc

DTL

3:
4:

1:
2:

NIc
NIs
NIc
NIm

NIs
NIm
NIm
NIs

→
→
→
→

NIs

Master Slave

bm,req

bm,resp

bs,req

bs,resp

NIm

creq

cresp

Rm

1, 3

2

4

Rc

Rs

D
T

L

D
T

L
D

T
L

D
T

L

s
c

m

c
m

(b) Opening a user-specified connection.

Fig. 3. Using the NoC itself as configuration infrastructure.

1) Opening a connection: Algorithm IV.1 describes how a

channel is opened on a target NI, hereafter denoted NIt.

Algorithm IV.1 Open channel emanating from NIt

1) Open a configuration request channel to NIt.

a) Set the path, the destination queue in NIt (the queue

of the looped-back initiator port), the initial space,

and, if using GS for configuration, also the time

slots by writing to NIc via the Config port.

b) Enable the queue in NIc for scheduling by the NI

kernel scheduler.

2) Open the channel emanating from NIt.

a) Set the path, the destination queue, the initial

space, the thresholds, and time-slots in NIt by

writing to the DTL port on NIc.

b) Enable the queue in NIt for scheduling.

3) Close the configuration request channel to NIt.

a) Await the completion of the writes to NIt by

reading the Config port of NIc until no data is left in

NIc and all credits have returned from NIt (i.e. the

transactions are consumed and executed by NIt).

In Step 2, with the configuration channel in place, the regis-

ters of NIt are written. Thereafter, in Step 3a, the configuration

master waits until all transactions are delivered to the Config

port on NIt. As seen in Step 3a this is done by busy-waiting

on the local status registers in NIc until all data has been

sent and all credits have returned. In a NoC that does not

employ end-to-end flow control this can be implemented with

acknowledged writes or by reading back the value of the last

register written.

Using the primitive for channel opening, Algorithm IV.2

lists the steps necessary to open a connection between a master

and a slave port. Recall that the configuration response chan-

nels are already in place, as shown in Figure 3(b). The three

writes required to set the registers in a target NI are posted and

delivered in order as they use the same configuration channel.

When switching between different target NIs, the configuration

request channel must be closed. Therefore, Step 3 waits until

NIs has consumed and hence executed the transactions (Step 3a

in Algorithm IV.1).

Algorithm IV.2 Open connection between NIm and NIs

1) Open a configuration request channel from NIc to NIs.

2) Open the response channel from NIs to NIm.

3) Close the configuration request channel from NIc to NIs.

4) Open a configuration request channel from NIc to NIm.

5) Open the request channel from NIm to NIs.

6) Close the configuration request channel from NIc to NIm.

As we will see in Section VI, the time required to open a

connection varies, although the operation only involves writes

to the NI registers.

D. Modify a connection

When the source and destination remain the same (NI as

well as queue), but the properties of the connection change,

then we say the connection is modified. This is for example

done to adapt to quality changes in a scalable algorithms [26],

redistribute resources (links and time slots) between the con-

nections, or to move connections from one path to another

so that routers can be powered down [9]. For the individual

channel, the modification can reflect a change in:

• the data or credit threshold,

• the allocated bandwidth,

• the guaranteed latency, or

• the path through the network.

The first three modifications require only minimal updates.

Time slots can be added and removed and threshold values

changed even while the channel is being used. Modifying

the path, however, is more complicated as we must preserve

(loss-less) in-order delivery. A shorter path means flits can

arrive earlier than those already sent on the longer, or more

congested, path and thereby invalidate the in-order delivery.



For a GS channel, the transmission delay is known and

directly proportional to the path length, as contention is

avoided by means of pipelined virtual circuits [7]. Hence, if

the new path is longer, then the update can be done without

disabling and later re-enabling the queue. Should the path be

shorter, then it is possible to only disable scheduling for δ flit

cycles where δ is the reduction in path length. Note, however,

that this additionally requires the configuration to be done over

a GS connection as the inter-arrival time of the disable and

re-enable operations at NIt must not be shorter than δ flit

cycles. If configuration is done with BE connections this is

not possible to guarantee.

Modifying the path of a BE channel, with a non-

deterministic delay, is comparable to adaptive routing, where a

flit i+1 may overtake flit i, due to a shorter or less congested

route [28]. In Algorithm IV.3, we show the general (and safe)

procedure for modification of any (BE or GS) channel.

Algorithm IV.3 Modify channel emanating from NIt

1) Open a configuration request channel from NIc to NIt.

2) Reconfigure NIt.

a) Disable scheduling of the queue.

b) Await the return of all outstanding credits.

c) Update the path and slots.

d) Enable scheduling of the queue.

3) Close the configuration request channel from NIc to NIt.

The channel modification can safely be done as soon as the

router network has delivered all the flits to the destination NI.

Consider for example modification of the request channel, creq

in Figure 3(b). When the router network is empty there is no

longer any risk for out-of-order delivery. However, NIm has no

notion of what data is received, only what data is consumed,

and this in the form of end-to-end flow control. Hence, to

ascertain that no flits are in flight, Step 2b not only waits until

the router network has delivered all the flits to the destination

NI, but also until the data is consumed and the credits returned.

This corresponds to emptying both the router network and

bs,req in Figure 3(b).

As a consequence of the above, channel modification re-

quires the destination of the channel, exemplified by the slave

in Figure 3(b), to sink all outstanding transactions. This might

require progress on the reverse channel and due to this, care

must be taken when ordering the configuration operations.

E. Close a connection

The crux in closing a connection is to ensure that the master,

slave and the network are left in a consistent state after the

change, with no transient state distributed anywhere along

the request-response path. Transactions, e.g. a DTL or AXI

read, are initiated by the master and accepted by NIm. NIm

subsequently engages in a number of transactions with NIs

through the exchange of flits and credits. Then, NIs acts as a

master to the slave and delivers the request and accepts the

response. Thereafter, the response goes through the network

and is presented to the master IP module.

The key observation is that transactions take place both on

the IP (reads/writes) and on the network level (flits/credits).

When quiescence is reached on both levels, a change can

take place with a consistent state as the outcome. Using the

definition of [13], a module is quiescent if: 1) it will not

initiate new transactions, 2) it is not currently engaged in a

transaction that it initiated, 3) it is not currently engaged in

servicing a transaction, and 4) no transactions have been or

will be initiated which require service from this module.

1) Requirements: To achieve quiescence, a number of ac-

tions must be taken. Starting at the master in Figure 3(b), it

is necessary to force the module into a state where it is not

initiating any new transactions, but still continues to accept and

service transactions that are outstanding. In terms of requests

and responses, this translates to:

1) No new requests must enter the request buffer bm,req, but

an ongoing request (e.g. a write burst) must be allowed

to finish.

2) Requests already accepted into bm,req must be delivered,

such that bm,req, creq and bs,req are empty.

3) All initiated transactions that require a response must be

allowed to finish. Thereby, also bs,resp, cresp and bm,resp

are empty.

Step 1 requires knowledge of how command/address/data

is accepted from the master and what timing relations are

allowed between these groups of signals. Typically, a valid-

accept handshake first takes place on the command and address

signals with the master offering a request to the NI by

driving the valid signal high. The NI in turn indicates that

it has accepted the request by driving the accept signal high.

Thereafter, the two parties engage in a similar handshake on

the potential data words involved in the transaction.

Step 2 arises due to the fact that the NoC acts as a slave, thus

giving the master the impression that a transaction involving

only a request is finished already when delivered to the NI

shell (if posted).

Step 3 requires knowledge of the various types of transac-

tions allowed by the protocol to determine whether a request

also gives rise to a response. This functionality is implemented

in protocol shells, separating protocol specific functionality

from the NI kernel.

2) Hardware implementation: The master protocol shell

requires one input signal to initiate the close operation, passi-

vate, and one output signal to assert that a quiescent state is

reached, is quiescent. These two signals are read and written

from the NI kernel through the block control register, shown

in Figure 2.

When a request channel is passivated, any ongoing request is

allowed to finish, whereafter the accept signal to the master is

gated and kept low, thus preventing it from initiating any new

transaction1. Before the is quiescent is asserted, all ongoing

transactions must also finish. We implement this check with

a counter inside the shell. The value is incremented for every

accepted request that gives rise to a response, such as a read,

1This infrastructure can also be used for debugging purposes [29].



and decremented for every response delivered back to the

master. A signal activate is used to bring the shell back to

an active state where new transactions can be initiated.

3) Algorithm: With the above functionality implemented

in the protocol shells, a connection is closed according to

Algorithm IV.4. Steps 7, 8 and 12 are carried out by repeatedly

polling a remote register. These operations can be transformed

to local busy-waits by using the concept introduced in [30].

Algorithm IV.4 Close connection between NIm and NIs

1) Open a configuration request channel to NIs.

2) Set the thresholds for both data and credits to zero.

3) Close the configuration request channel to NIs.

4) Open a configuration request channel to NIm.

5) Set the thresholds for both data and credits to zero.

6) Passivate the connection by writing to the block registers

in the shell.

7) Await the quiescent state from the shell.

8) Await the outgoing request queue to be emptied and the

return of all outstanding credits (plus the sending of any

potential credits back to NIs).

9) Clear the slot table reservation.

10) Close the configuration request channel to NIm.

11) Open a configuration request channel to NIs.

12) Await all outstanding credits.

13) Clear the slot table reservation.

14) Close the configuration request channel to NIs.

Algorithm IV.4 assumes independent transactions, where

completion of a transaction does not depend on any other

transactions with other IPs [13]. If such dependencies do exist,

they must be addressed by the user of the ART library, as the

change then is on a granularity larger than a single connection.

The library provides functions for manipulation of individual

channels or even individual registers to facilitate such use.

Note that in NoCs that do not employ end-to-end flow con-

trol, quiescence in the router network has to be implemented

by e.g. inserting a special tagged message as an end-of-stream

marker [21].

F. Guaranteed-service configuration

When NoC configuration is done via BE channels, no timing

guarantees can be given on the operations performed. The

benefit is that no resource reservation has to be made for

the configuration connections, that are both seldom used, and

have very low bandwidth requirements. The drawback is the

uncertainty in when the configuration operations are executed,

and potentially long delays in case of congestion.

Although resource reservations for configuration connec-

tions might initially seem wasteful, it is, however, possible to

reuse the same resources (TDM slots) for all the configuration

connections, wherever two or more configuration channels

share a common link. This is due to the fact that we use

the configuration request and response channels in a mutually

exclusive manner, where one is always passivated before

another one is used. Hence, it suffices to reserve a single time

slot per link for all the configuration connections. In a network

with n TDM slots this bounds the reserved resources to 1

n
of

the total ingress/egress bandwidth. The actual use of these time

slots is multiplexed by the configuration master at run time.

V. LIBRARY IMPLEMENTATION

The API shown in Listing V.1 constitutes the foundation of

the ART library for manipulation of the NoC configuration.

The art config init is performed as a part of the bootstrap pro-

cedure, before any calls to the other functions. It instantiates

the configuration response channels, from every NI back to

NIc.

Listing V.1 Top-level configuration operations.

/* Initialise the config response channels. */

void art_config_init();

/* Open, modify and close a connection. */

void art_open_conn(const conn_t* const conn);

void art_modify_conn(const conn_t* const old_conn,

const conn_t* const new_conn);

void art_close_conn(const conn_t* const conn);

The last three operations all work on the granularity of a

connection, represented by a data structure carrying all the

information required to configure the NIs (and optionally also

the routers). The C implementation of this structure is shown

in Listing V.2.

Listing V.2 Connection structure.

typedef struct {

/* Location of master and slave */

ni_t master_ni;

unsigned char master_queue_id;

ni_t slave_ni;

unsigned char slave_queue_id;

/* Quality-of-Service, GS/BE */

service_t qos;

/* Settings for the master NI */

path_t master_slave_path;

unsigned char master_space;

unsigned char master_data_limit;

unsigned char master_credit_limit;

slot_t master_slot_list;

unsigned char master_channel_id;

unsigned int narrowcast_equal;

unsigned int narrowcast_mask;

/* Settings for the slave NI */

path_t slave_master_path;

unsigned char slave_space;

unsigned char slave_data_limit;

unsigned char slave_credit_limit;

slot_t slave_slot_list;

} conn_t;

The top-level operations in turn call a number of internal

functions for encoding of the struct fields into 32-bit words,



Remote

L
o
c
a
l

sc module
initConfigConnections

openConnection

closeConnection

modifyConnection

(a) Ideal processor.

Remote

L
o
c
a
l

ARM
SRAM

open conn

modify conn

close conn

main

config init

(b) ARM7 SystemC model.

Fig. 4. Configuration master instantiations.

e.g. art encode path, opening and closing of configuration

connections, art open config conn and art close config conn,

or reading/writing specific registers, such as art set slots and

art get transaction. The final outcome is calls to DTL read and

write operations, which is the only processor-specific part of

the library. This allows for easy porting to other platforms [31].

The library functions can also be used together with a power

management library as it implements the functionality to close

and modify connections. Together with hardware support, e.g.

clamping of the network link signals, this affords safe power

down of parts of the NoC. Note though that modifications

of the network topology may necessitate modifications of the

BE routing function to preserve full connectivity. In such

a situation it is imperative to address also reconfiguration-

induced deadlock [15].

VI. RESULTS

In our experiments, we use two different configuration-

master implementations. First, a SystemC module where com-

putation is done without progressing the simulation time, i.e.

infinitely fast. Only the read and write operations contribute

to the configuration time. This option, depicted in Figure 4(a)

is referred to as the ideal processor.

Second, the implementation shown in Figure 4(b), compris-

ing a SWARM SystemC model of an ARM7 [32], clocked

at 100 MHz. The core has a von Neumann architecture, and

a bus within the tile determines whether the read and write

transactions go to the local memory, through the Local port to

the corresponding Config port of NIc, or via the Remote port

to a remote NI.

To assess the impact of the processor execution time, we

compile two different binaries for the ARM: one with the

connection structures and the ART library, as described in

Section V, and one where the configurations are pre-compiled

into plain read and write calls, thus removing all computation

and minimising the amount of function calls. Both binaries are

compiled using arm-elf-gcc version 3.4.3 with the compiler

options -mcpu=arm7 -Os.

Unless indicated otherwise, configuration is done using BE

connections. The configuration-related traffic thus contends

with connections that are already open.

The first measure we study is the time required to initialise

the configuration connections and how this grows with the

number of NIs. Figure 5(a) shows the effect of increasing the

mesh size from 1×4 to 5×4, constantly having two NIs per

router. It is clear that the NoC is not the limiting factor, as

the ARM is consistently more than 8 times slower than the

ideal processor for the read/write implementation, and 70 times

slower using the library. All three implementations show a

linear growth, as expected with a constant work per NI. No

user-specified traffic is yet occupying the NoC.

Figure 5(b) shows the effect on the cumulative setup time

when varying the number of connections on a fixed 4×4 mesh

with two NIs per router. The setup time is measured from

the point when initialisation of all the configuration response

channels is completed. The impact of the latter is shown in

Figure 5(a) (the scenario with 32 NIs). The user-specified

connections have a total bandwidth of 6.2 Gbyte/s, uniformly

spread across the NoC. With an average burst size of 8 words

and a flit size of 3 words this roughly amounts to 20% of

the total ingress/egress bandwidth. All connections belong to

the GS class of traffic and are thus subjected to non-work-

conserving arbitration.

Also in this experiment the ARM is roughly 10 times slower

than the ideal processor when using read/write calls, and

60 times slower with the library implementation. The time

required grows linearly with the number of connections, only

showing some minor fluctuations. The worst case setup times

for a single connection are 0.46, 3.04 and 16.72 µs for the three

implementations. Again, we conclude that the computation

time is far greater than the time spent on communication

and we can see that the contention from already opened

connections is hardly noticeable.

We also evaluate the possibility to exploit locality when

multiple channels share the same source NI and there are no

ordering constraints between the channels, e.g. when opening

connections. In contrast to Algorithm IV.2, we iterate over

the NIs rather than over the connections when opening a set

of channels. Then, for every NI, the configuration request

channel only has to be opened and closed once. Applying

this strategy, the cumulative time still grows linearly with the

number of connections. However, for the ideal processor, the

time required to open all connections is consistently less than

half or what is achieved in Figure 5(b). Similarly for the ARM

implementations, the total setup time is roughly 40% less using

this technique.

Next, we assess the memory requirements of the ARM

binary. To reduce the memory footprint, we also specify the

bit widths of the different fields in the connection structure.

Note though, that bit members generally worsen the execution

time as many compilers generate inefficient code for reading

and writing them.

The binary size for a varying number of NIs is shown in

Figure 6(a). The various NoC instantiations correspond to the

same mesh networks as in Figure 5(a), here together with a

40 connection use-case. Expanding the library functions to

read and write calls roughly doubles the size. This is to be

compared with the ten-fold speedup observed in Figure 5(a).

Figure 6(b) shows the corresponding scaling with the num-

ber of connections. Here, the difference between the library

and the read/write implementation becomes more obvious

as the number of connections grows. As an example, the

expansion to read/write calls increases the size with 170%



ARM library
ARM read/write

Ideal processor

Number of NIs

T
im

e
(µ

s)

403224168

350

300

250

200

150

100

50

0

(a) Initialisation time for different number of NIs.

ARM library
ARM read/write

Ideal processor

Number of connections

T
im

e
(µ

s)

150140130120110100908070605040302010

2500

2000

1500

1000

500

0

(b) Setup time for different number of connections.

Fig. 5. Execution time.

ARM library, bit fields
ARM library

ARM read/write

Number of NIs

B
in

ar
y

si
ze

(b
y
te

s)

403224168

20000

15000

10000

5000

0

(a) Binary size for different number of NIs.

ARM library, bit fields
ARM library

ARM read/write

Number of connections

B
in

ar
y

si
ze

(b
y
te

s)

150140130120110100908070605040302010

50000

40000

30000

20000

10000

0

(b) Binary size for different number of connections.

Fig. 6. Binary size.

for the 150 connection case.

We conclude that the effect of bit members is only a few

percent reduction of the binary size. Moreover, as expected, we

observe an execution time that is slightly worsened, although

the measured increase is a mere 1.2%. Taking both these facts

into account it is hardly justifiable to employ bit members

unless memory footprint is absolutely critical.

Table I summarises the analytical approximations of the

graphs in Figure 5 and Figure 6. Note that the table does

not show the constant term.

It is clear from our experiments that the quantitative differ-

ences between the ARM library and read/write implementation

are both in performance, where the library is roughly a

factor six slower, and size with only half the binary size.

Qualitatively, the library offers a flexibility and reusability

that is impossible to achieve without it. Taking these facts

into account, we propose to pre-compute the read/write calls

TABLE I

ANALYTICAL APPROXIMATIONS OF THE LINEAR TERM IN FIGURE 5 AND 6

Ideal processor ARM read/write ARM library

Initialisation time / NI (ns) 95 784 6385
Setup time / conn. (ns) 246 2506 13594

Tear-down time / conn. (ns) 647 2305 9575
Binary size / NI (bytes) - 149 67

Binary size / conn. (bytes) - 262 104

for any use-case that is fixed and do not require any run-time

flexibility. The configuration channels themselves constitute

a good example of such a use-case. Here, we can enjoy a

six-fold speed up without sacrificing any flexibility. Similarly,

for applications that frequently change between a set of pre-

defined operation points, e.g. due to QoS levels, it is possible

to pre-compute the instruction sequences and thereby speedup

the transitions.



While the effect of contention on connection instantiation

time is hardly noticeable in Figure 5(b), Figure 7 shows a far

more adverse scenario. A network similar to the one shown in

Figure 3, with only one router between the NIs is configured

with varying load on the links between NIm, and NIs. The

raw link bandwidth is 2000 MB/s. A total of 40 IPs are active

in the setup, communicating over 20 connections, of which

10 are BE. The TDM table has a size of 11, leaving one

slot unreserved. Note though that the work-conserving BE

scheduling also may use unoccupied GS slots.

ARM library
ARM read/write

Ideal processor

6.95

1.84

0.39

Offered load (MB/s)

T
im

e
(µ

s)

200018001600140012001000800600

25

20

15

10

5

0

Fig. 7. Connection setup time with varying link contention.

When configuration is done with GS connections, the end

result is a configuration time of 0.39, 1.84 and 6.95 µs for

the three different implementations. As seen in Figure 7 this

corresponds to the BE configuration time when link contention

is low. We can thus conclude that the non-work-conserving

nature of the TDM scheduling only marginally increases the

time required. Furthermore, it is clear from the experiment that

the offered load must be high (more than 60%) before there is

any noticeable effect on the configuration time. Moreover, the

impact varies greatly for the three implementations. The ideal

processor is slowed down 8 times by the contention whereas

the ARM implementations are in the order of 2.5 times slower.

The latter are less affected by the increased communication

time as it constitutes a smaller part of the total execution time.

Note that using GS connections for configuration enables

us to give timing bounds on use-case transitions, if only

the IP modules are guaranteed to react in a bounded time.

When opening connections this is not an issue, as the IPs per

construction are in an idle state. However, as we shall see,

closing time is largely dependant on the IP reaction time.

Similar to Figure 5(b), Figure 8 shows the cumulative

execution time required to tear down a use-case with a varying

number of active connections. In contrast to an open operation,

a tear down also involves waiting for in-flight transactions to

finish. Here, we use an ideal model of the IP that is able to

stop after every single transaction. Typically, reconfiguration

points occur much more infrequently [21]. Even with the ideal

model, the IP modules play an important part in determining

the time required to carry out a tear down operation. This

also causes a large variation across the different connections.

For the ARM the fastest tear-down operation is completed in a

little more than 1 µs while the library implementation requires

4.8 µs. The ideal processor does the corresponding action in 12

ns. As the IPs are involved it is not trivial (or even possible)

to bound the time required to tear down a connection. The

measured worst case, however, is 12 µs for all three methods.

ARM library
ARM read/write

Ideal processor

Number of connections

T
im

e
(µ

s)
150140130120110100908070605040302010

2000

1500

1000

500

0

Fig. 8. Tear-down time.

Figure 9 shows the distribution of setup and tear-down times

for the different connections, using the ideal processor and BE

connections for configuration. As expected, the setup times are

less varying, with a narrow distribution around 250 ns. The

only source of variation is due to scheduling and contention

in the network. The tear-down times are far more varied with

a long tail to the right.

To study the impact of the remote polling used in the close

operations we also implement a polling engine, similar to

the Synchronisation-Operation Buffer in [30]. This minuscule

hardware module is added just before the Config port of the

NIs and transforms the remote busy-wait to a local busy-

wait. Instead of reading the remote register and then check

for a certain value, the desired value is first programmed in

the polling engine, whereafter a subsequent read only returns

once this value is read. This addition reduces the average tear-

down time with 8%. More important, it reduces the amount

of remote reads with 65%, but introduces one extra write for

each connection as the desired value must be set. The total

amount of remote transactions and data traffic is reduced with

30%.

VII. CONCLUSION AND FUTURE WORK

In this paper we present the facilities for controlling change

in a reconfigurable NoC. To mitigate the complexity in pro-

gramming the NoC, we advocate an abstraction in the form

of a run-time configuration library. Such a library must leave

the modified system in a consistent state, from which normal

operation can continue.



Tear down with polling engine
Tear down

Setup

Time (µs)

F
re

q
u
en

cy

>
1000

901-1000

801-900

701-800

601-700

501-600

401-500

301-400

201-300

101-200

0-100

100

80

60

40

20

0

Fig. 9. Setup and tear-down time distribution

We introduce a library for NoC reconfiguration with a basic

set of functions, through which we can connect the IP ports

in a graph structure and dynamically add, remove or modify

the interconnections. We show the architectural additions and

the many trade-offs in the design of the run-time library and

evaluate the performance, memory requirements, predictability

and reusability for the various options.

From our experiments we can conclude that the NoC

configuration has implications on the practical management

policies of multiple use-cases. Even with hardware polling

engines, the tail in tear-down times might cause severe pre-

dictability problems when applications are deactivated and

freed resources have to be reallocated to new applications. In

some cases the problem can be avoided by allocating mutually

exclusive resources to the various applications, but in general

this problem must be addressed on the application level.

Furthermore, as the network is not the performance bottleneck,

adding more ports and hence more parallel configuration

connections is of little or no use. However, a centralised

approach might soon reach serious scalability limitations. The

time required to reconfigure the network is already substantial

and this does not include the process of computing a new

configuration and the reconfiguration of tasks running on the

IP modules. A first step is to distribute the work to multiple

configuration masters. Further decentralisation is possible by

employing the distributed programming model.

In our future work, we plan to explore the coupling with a

run-time mapper.

REFERENCES

[1] L. T. Smit et al., “Run-time mapping of applications to a heterogeneous
reconfigurable tiled system on chip architecture,” in Proc. FPT, 2004.

[2] T. Marescaux et al., “Networks on chip as hardware components of an
os for reconfigurable systems,” in Proc. FPL, 2003.

[3] M. D. van de Burgwal et al., “Hydra: an energy-efficient and reconfig-
urable network interface,” in Proc. ERSA, 2006.

[4] M. Rutten et al., “Dynamic reconfiguration of streaming graphs on a
heterogeneous multiprocessor architecture,” IS&T/SPIE Electron. Imag.,
vol. 5683, 2005.

[5] L. Benini and G. de Micheli, “Networks on chips: A new SoC paradigm,”
IEEE Comp., vol. 35, no. 1, 2002.

[6] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proc. DAC, 2001.

[7] A. Rădulescu et al., “An efficient on-chip network interface offering
guaranteed services, shared-memory abstraction, and flexible network
programming,” IEEE Trans. on CAD of Int. Circ. and Syst., 2005.

[8] M. Sgroi et al., “Addressing the system-on-a-chip interconnect woes
through communication-based design,” in Proc. DAC, 2001.

[9] Z. Lu and R. Haukilahti, “NOC application programming interfaces:
high level communication primitives and operating system services for
power management,” in Networks on chip, A. Jantsch and H. Tenhunen,
Eds. Kluwer Academic Publishers, 2003, ch. 12.

[10] A. Hansson et al., “Undisrupted quality-of-service during reconfigura-
tion of multiple applications in networks on chip,” in Proc. DATE, 2007.

[11] T. Bjerregaard et al., “An OCP compliant network adapter for GALS-
based SoC design using the MANGO network-on-chip,” in Proc. SOC,
2005.

[12] J. Dielissen et al., “Concepts and implementation of the Philips network-
on-chip,” in IP-Based SOC Design, 2003.

[13] J. Kramer and J. Magee, “The evolving philosophers problem: Dynamic
change management,” IEEE Trans. on Soft. Eng., vol. 16, no. 11, 1990.

[14] J. Kang et al., “An interface for the design and implementation of dy-
namic applications on multi-processor architecture,” in Proc. ESTImedia,
2005.

[15] O. Lysne et al., “A methodology for developing deadlock-free dynamic
network reconfiguration processes. part ii,” IEEE Trans. on Par. and

Distr. Syst., vol. 16, no. 5, 2005.
[16] A. Hansson et al., “A unified approach to mapping and routing on a

network on chip for both best-effort and guaranteed service traffic,”
VLSI Design, 2007.

[17] K. Goossens et al., “A design flow for application-specific networks
on chip with guaranteed performance to accelerate SOC design and
verification,” in Proc. DATE, 2005.

[18] D. Bertozzi et al., “NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip,” IEEE Trans. on Par. and Distr. Syst.,
vol. 16, no. 2, 2005.

[19] L. Ost et al., “MAIA: a framework for networks on chip generation and
verification,” in Proc. ASP-DAC, 2005.

[20] S. Stergiou et al., “×pipes lite: A synthesis oriented design library for
networks on chips,” in Proc. DATE, 2005.

[21] V. Nollet et al., “Centralized run-time resource management in a
network-on-chip containing reconfigurable hardware tiles,” in Proc.

DATE, 2005.
[22] J. Hu and R. Mărculescu, “Exploiting the routing flexibility for ener-

gy/performance aware mapping of regular NoC architectures,” in Proc.

DATE, 2003.
[23] S. Murali et al., “Mapping and physical planning of networks on chip

architectures with quality of service guarantees,” in Proc. ASP-DAC,
2005.

[24] K. Srinivasan et al., “An automated technique for topology and route
generation of application specific on-chip interconnection networks,” in
Proc. ICCAD, 2005.

[25] D. Wingard, “Socket-based design using decoupled interconnects,” in
Interconnect-Centric design for SoC and NoC, J. Nurmi, H. Tenhunen,
J. Isoaho, and A. Jantsch, Eds. Kluwer, 2004.

[26] R. J. Bril et al., “Multimedia QoS in consumer terminals,” in Proc. SIPS,
2001.

[27] A. Nieuwland et al., “C-HEAP: A heterogeneous multi-processor ar-
chitecture template and scalable and flexible protocol for the design of
embedded signal processing systems,” Design Automation for Embedded

Systems, vol. 7, no. 3, 2002.
[28] J. Hu and R. Marculescu, “Dyad: Smart routing for networks-on-chip,”

in Proc. DAC, 2004.
[29] K. Goossens et al., “Transaction-based communication-centric debug,”

in Proc. NOCS, 2007.
[30] M. Monchiero et al., “An efficient synchronization technique for multi-

processor systems on-chip,” in Proc. MEDEA, 2005.
[31] A. Kumar et al., “An FPGA design flow for reconfigurable network-

based multi-processor systems on chip,” in Proc. DATE, 2007.
[32] M. Dales, “SWARM – Software ARM,” 2000,

http://www.cl.cam.ac.uk/˜mwd24/phd/swarm.html.


