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Abstract— The behaviour of systems on chip (SOC) is com-
plex because they contain multiple processors that interact
through concurrent interconnects, such as networks on chip
(NOC). Debugging such SOCs is hard. Based on a classification
of debug scope and granularity, we propose that debugging
should be communication-centric and based on transactions.
Communication-centric debug focusses on the communication
and the synchronisation between the IP blocks, which are im-
plemented by the interconnect using transactions.

We define and implement a modular debug architecture, based
on NOC, monitors, and a dedicated high-speed event-distribution
broadcast interconnect. The manufacturing-test scan chains and
IEEE1149.1 test access ports (TAP) are re-used for configuration
and debug data read-out.

Our debug architecture requires only small changes to the
functional architecture. The additional area cost is limited to the
monitors and the event distribution interconnect, which are 4.5%
of the NOC area, or less than 0.2% of the SOC area. The debug
architecture runs at NOC functional speed and reacts very quickly
to debug events to stop the SOC close in time to the condition
that raised the event. The speed at which data is retrieved from
the SOC after stopping using the TAP is 10 MHz.

We prove our concepts and architecture with a gate-level
implementation that includes the NOC, event distribution inter-
connect, and clock, reset, and TAP controllers. We include gate-
level signal traces illustrating debug at message and transaction
levels.

I. INTRODUCTION

Today’s high-performance systems on chip (SOC) contain

many intellectual property (IP) blocks, such as memories,

dedicated hardware blocks, and programmable processors.

Applications are implemented by a number of concurrent com-

putations threads running on the (programmable) IP blocks.

The threads communicate through the SOC interconnect.

In the past, the SOC interconnect was single-threaded. As a

result, all computation threads were effectively serialised by

processing one transaction at a time, offering a simple linear

view on the SOC. Today, however, SOC interconnects, such

as multi-layer Amba [1] and networks on chip (NOC) [2],

[3], support multiple concurrent transactions. As a result, a

single thread of control no longer exists in the interconnect,

and transactions between different computation threads are not

constrained to any particular order in time.

Because SOCs comprise multiple programmable processors

that interact through a concurrent programmable interconnect

their behaviour is very complex, and designing right-first-

time SOC hardware and software has become difficult [4],

[5]. In this paper we address the challenge of debugging

Fig. 1. Computation-centric debug (a) vs. communication-centric debug (b).

SOCs. Debugging involves observing the SOC in its target

environment and controlling its execution (stopping, single

stepping, etc.) to efficiently and effectively locate the root

cause of any undesired behaviour. We propose a new debug

methodology that is centred on communication and based on

transactions. We discuss these aspects in turn.

A. Communication-centric debug

Monitoring and debugging computation, especially of a

single processor, is a mature area for which tools already

exist [6], [7]. However, debug of multiple (programmable) IP

blocks on a SOC is an emerging research field. Debugging IP

blocks by themselves is not enough, because the complexity

of the SOC increasingly resides in the interactions between

the IP blocks [4], [8]. Therefore, debug must be conducted

at a higher system level, where the computation threads

and communication threads interact. Because the interconnect

implements the communication, and hence the synchronisation

between the IP blocks it is the natural locus for system-level

debug, where all transactions can be observed concurrently,

(partially) ordered, or fully sequentialised.

Figure 1(a) illustrates conventional computation-centric de-

bug, where IP blocks with their threads are monitored, trigger-

ing events. Based on these events the debug control can stop

and inspect the state of the IP blocks. Instead, we propose to

focus on monitoring the communication between the IP blocks

(Figure 1(b)), where the debug control manages the interaction

between the IP blocks by controlling the interconnect. (Of

course, the IP blocks can still be monitored and controlled

too, as shown by the dashed lines.)

B. Transaction-based debug.

Processor software is typically debugged at either the source

code, or the processor instruction level. The latter is the lowest

level that is still meaningful for the programmer. Processor



instructions constitute a natural abstraction level between the

software and the processor hardware.

But (software) threads also communicate with each other

via the interconnect, using transactions. Transactions are the

result of processor instructions (such as load and store) that

cause activity on the interconnect and other IP blocks such

as memories. Transactions therefore are a natural interface

between computation and communication. The instruction ab-

straction is important for integrated hardware/software debug,

while the concept of a transaction is fundamental for system-

level debug (i.e. multiple IP cores). This is confirmed by the

use of transaction-level modelling (TLM) for interconnects and

SOCs. Transactions allow us to recuperate a globally consistent

view on the SOC, as described next.

Consistent SOC view. A globally consistent view on both

SOC hardware and software is desirable, but has been hard to

achieve for the following reasons. First, software debug takes

place at instruction level or above, while hardware debug is

typically performed at the level of clock cycles. Experience

shows that it is hard to correlate the information at these levels.

Second, as Figure 2(a) illustrates, there may be no globally

consistent state at any point in time (clock cycle). Due to e.g

GALS, SOCs are no longer fully synchronous, which gives rise

to non-determinism at the level of clock cycles. IP2 and IP3 are

in different clock domains that may never have simultaneous

clock edges. Moreover, cross-clock-domain synchronisation

may be non-deterministic, such that there may not be a single

point in time at which the entire SOC (chip) is in a global state

that can be correlated with pre-silicon simulation models and

test benches [9]. Finally, there may be no point in time where

all processors have finished their instructions, as illustrated in

Figure 2(a).

Transaction-based debug. By abstracting the view on the

SOC from clock cycles to transactions, the dark lines in

Figure 2(b) may be interpreted as “transaction cycles” instead

of clock cycles. Alternatively, the transaction cycles can be

enforced as shown in Figure 2(c), by inserting idle cycles or

stretching the clocks. In the example, the entire SOC advances

in lock step at the level of transactions. This transaction trace

can be correlated to processor instructions, is deterministic, is

globally consistent, and can be faster than simulation at the

clock or instruction level. The notion of consistency will be

further elaborated in Sections II and III.

C. Main contributions

This paper addresses the problem of debugging of complex

multi-processor SOCs with concurrent interconnects.

We introduce the new concept of communication-centric

transaction-based debugging. Based on a model of transac-

tions and of multi-hop interconnects, we introduce a detailed

classification of debug scope and granularity. Processor and

interconnect monitoring and debug coincide at a few points:

the instruction/flit level, which is the smallest grain of control;

the message level where interactions between master and slave

IP blocks are visible, and the transaction level, where master

behaviour alone is traced.

We further define a general debug architecture, based on

monitors, IEEE1149.1 test access port (TAP), and several debug

interconnects. We apply the debug architecture to the Æthereal

NOC [10], monitors [11], [12], and the debug infrastructure

of [13]. In particular, we distribute events raised by monitors

using a fast dedicated broadcast interconnect. It stops transac-

tion valid/accept handshakes between the network interfaces

(NI) and IP blocks, after which the manufacturing-test scan

chains are accessed using the TAP controller to read out the

NOC and IP state.

Our debug architecture requires no changes to IP, routers,

or NI kernels, and very few changes to NI shells. Given that

the scan chains and TAP controller are already present in the

SOC the additional area cost is limited to the monitors and

the event distribution interconnect, which are only 4.5% of

the NOC area.

The debug architecture reacts very quickly to debug events

(it runs at NOC functional speed) to stop the SOC close in

time to the condition that raised the event, and to not lose

data. The speed at which data is retrieved from the SOC after

stopping is acceptable (10 MHz test clock). To scan out around

43000 registers in our example NOC takes approximately 4

milliseconds.

Finally, three example gate-level signal traces are included

of a debug example at message and transaction levels, to

illustrate that the debug concepts and architecture function.

In the remainder of this paper we first introduce models

for transactions and interconnects (Section II). In Section III

we identify and classify scopes and levels of abstraction in

the architecture at which debug can take place. We define a

general debug architecture in Section IV, which is refined in

Section V. We present our results in Section VI and related

work in Section VII, and conclude in Section VIII.

II. TRANSACTION AND INTERCONNECT MODELS

In this section we define the general model for transactions,

and an interconnect model tuned for NOCs. The models serve

as input for the classification of debug scopes and abstractions

of Section III.

A. Transaction Model

IP blocks interact on ports, either directly or using an

interconnect, and use transactions. A transaction is initiated

by a master port, by sending a request that is executed by the

IP block attached to the receiving slave port. (For brevity, in

the remainder for “master” read “master port,” and for “slave”

read “slave port.”) The execution may result in a response

that the slave sends to the master. A message is a request or a

response. Typical requests include read and write commands;

read data and write acknowledgements are typical reponses.

Both communication protocols based on distributed shared

memory (e.g. DTL [14], AXI [15], and OCP [16]) and message

passing (no responses) fit within this model.

The master and slave are connected by an intermediate

interconnect, as shown in Figure 3. Between every pair of

blocks, a request is passed from the initiator to the target; the



Fig. 2. Globally consistent state of a SOC, is absent at clock-cycle level (a), but is possible at the transaction level (b) and (c).

response travels in the opposite direction. Hence, the master is

the first initiator and the slave the last target. Requests and re-

sponses can be transferred independently, using a valid-accept

handshake.1 The initiator offers a request to the target by

driving the valid signal high. The target in turn indicates that

it has accepted the request by driving the accept signal high.

For responses, the roles of initiator and target are reversed. A

transaction starts when the master signals that the request is

valid, and is in progress until the transaction completes, which

is when the master has accepted the response. Depending on

the protocol, transactions may either be split (the request and

response handshakes are independent, e.g. AXI) or not (request

and response handshakes coincide, e.g. APB). In addition,

split transactions can either be pipelined (i.e. allow multiple

outstanding requests, e.g. AXI), or not.

The transaction model describes the interactions between

the IP blocks and the interconnect. Next, we turn our attention

to the details of transaction transportation.

B. Interconnect Model

In this section we describe a general multi-hop inter-

connect model. It covers connection-oriented NOCs such as

Mango [17], Nostrum [18], Æthereal [10], and FAUST [19],

and connection-less NOCs [20], [21], [22], but also hierarchical

busses [23], [15].

A NOC configuration (or use case) [24] is a set of con-

nections [25]. A configuration is either explicitly declared in

connection-oriented NOCs or implicitly defined by the master-

slave communication pattern in connection-less NOCs. Trans-

actions between a single master and one or more slaves take

place on a connection. All transactions on a single connection

are ordered. This means that the order of the requests offered

to the NOC by the master, and the order of the requests

offered to each slave by the NOC, are equal to the order of

1To be more precise, the request and response can be subdivided in signal

groups; for e.g. AXI, the request comprises the command group and the
write data group, and the reponse comprises the read data group. The valid-
accept handshake then typically takes places per word and independently
for each signal group. Depending on the protocol there may be restrictions
on interleaving, ordering, and pipelining. For example, the write data may
come before the write command in AXI, but not in AHB. AXI allows
message interleaving, where DTL and AHB do not. In this paper, to simplify
presentation, we use the handshake at the level of messages instead of signal
groups. Our concepts apply unchanged also to signal groups.

Fig. 3. Architecture model.

the responses offered to the master by the NOC.2 (We assume

that on a connection, the slave offers responses in the same

order as it accepted the requests, regardless of the precise

order in which it executes them.) There is no execution order

specified between transactions of different slaves on the same

connection, nor between transactions on different connections.

In the former case, executions can be forced to be in order

by disallowing multiple outstanding transactions to different

slaves. In the latter case, however, no ordering can be enforced

due to the concurrent nature (distributed arbitration) of NOCs.

Multi-hop interconnects are composed internally of multiple

stages (“hops”), as shown in Figure 3. NOCs are mostly packet

based, which means that messages (requests or responses)

are internally transported in (almost always) smaller packets.

Routers transport packets, and network interfaces (NIs) convert

messages to and from packets. Inside the kernel and router

network packets are usually split in smaller units, called flits,

which consist of a fixed number of words.

A NI is often split into separate components, the NI kernel

and the NI shell [26]. The kernel and routers perform the

OSI [27] network layer functions, i.e. move data from one NI

kernel to another. The shells implement the OSI transport layer,

which in the present context could be called the transaction

layer. The shells convert IP transactions received on master or

slave NI ports into serial data for the kernel. All knowledge

regarding IP protocols (and possible conversions) resides in

the shells. As a result, kernels are highly re-used, even across

IP-block protocols, and shells are re-usable in systems that

2A number of protocols require in-order reads and in-order writes, but allow
re-ordering between them. This does not essentially change the argument.



Fig. 4. Transaction ordering and interleaving.

utilize the same IP-block protocols.

Packet boundaries are always aligned with flit boundaries.

Most NOCs also align messages and packets, i.e. where a

message header is always immediately preceded by a packet

header, at the cost of packetisation efficiency [26]. Sometimes

message and packet headers are even merged to increase effi-

ciency. In both cases, kernel and shell functions are combined

at the expense of easy re-use. Æthereal does not align message

and packet boundaries, which complicates debug [12].

To avoid buffer overflows and possible data loss in the NI

kernels and routers, NOCs use link-level flow control (LLFC):

an initiator (router or NI kernel) sends a flit to the target (router

or NI kernel) only if there is space in the target buffer. To avoid

data loss and deadlock, end-to-end flow control (E2EFC) is an

independent mechanism that ensures that connection buffers

in the NI kernels do not overflow. That is, data only leaves a

sender’s NI kernel buffer when there is space in the receiver’s

NI kernel buffer.

All NOCs offer a best-effort service (BE) and a number of

NOCs also offer a guaranteed service (GS) [17], [18], [10], [19].

LLFC is used by all NOCs except Nostrum for BE. E2EFC is

used by SPIN for BE, and by Æthereal and FAUST for BE &

GS. Note that Æthereal and Nostrum do not use LLFC for GS,

because contention is guaranteed to be absent.

In the next section, we classify debug activities based on

the transaction and interconnect models. First, we illustrate

the transaction model.

C. Example

Figure 4 shows an example of the concepts introduced

above. Master 1 uses split pipelined transactions because it

sends request 2 before response 1 has arrived. Requests and

responses may overlap; e.g. response 1 and request 3 in

Figure 4[A]. Requests 1-3 of master 1 are executed by different

slaves: 1, 2, and 1, respectively. Slave 2 executes request 2

before slave 1 executes request 1 (Figure 4[B]), even though

the latter was accepted earlier by the NOC. This can occur

when request 1 took longer to arrive than request 2 (e.g. due

to a longer path, more congestion, less reserved bandwidth,

or lower QoS), or when slave 1 is slower than slave 2.

Whatever the execution order, responses are always offered to

the master in the correct order (Figure 4[C]). However, note

that transactions of different connections are unordered. For

example, request 2 of master 1 and request 4 of master 2 are

Fig. 5. Scope and granularity of debugging.

executed and completed in the reverse order of acceptance

by the NOC, cf. Figure 4[D]. Finally, note that master 2

does not use split transactions: transaction 4 completes before

transaction 5 is started.

III. SOC AND NOC DEBUG

In this section we define various scopes of debug: SOC, IP,

and NOC. Then we define the temporal granularity at which

we can debug, e.g. clock cycles, flits, messages, and trans-

actions. We show that communication-centric debug based on

transactions offers a good combination of spatial and temporal

localisation of SOC problems.

A. Debug scope

Until now, SOCs have been debugged predominantly by

concentrating on the computation, through monitoring and

debugging of the programmable processors. However, SOC

complexity is shifting from computation on a single pro-

cessor to the interaction between the multiple processors.

In addition, interconnects are increasingly complex, and no

longer impose a single thread of control through transaction

serialisation. The scope of debug therefore extends beyond

the traditional debugging of processors, to include debugging

of the interconnect, and system-level debug that concentrates

on the interactions between IP blocks. Therefore, acting on

events from the monitors, we control the interaction between

IP blocks through the interconnect (Figure 1(b), instead the

internal behaviour of the IP blocks (Figure 1(a)).

B. Debug granularity

In the following we restrict our discussion to NOCs and other

multi-hop interconnects. We can distinguish various levels of

granularity at which a NOC can be debugged. The horizontal

axis in Figure 5 shows a number of levels at which a NOC can

be monitored and potentially stopped. First, we discuss each

of the cycle, flit, link-level flow control (LLFC), packet, end-

to-end flow control (E2EFC), message, and transaction levels

in turn. Then we discuss the vertical axis of processor debug

granularity.

Stopping a NOC at the clock cycle or flit granularity halts all

BE and GS data in the NOC in situ, i.e. in the NIs and routers.

Both stop methods function well in synchronous NOCs, and



the latter also in asynchronous NOCs, where NIs and routers

handshake at least at the level of flits. The former method can

be achieved by gating the NOC clock, the latter method by

masking the flit handshake between routers (forcing the flit

valid signal to ‘0’).

Stopping a NOC at the level of LLFC can be implemented

by masking the LLFC credit counters to 0. As a result NIs and

routers do not send data anymore because it seems as if all

receiving buffers are full. The flit granularity coincides with

the LLFC granularity when all traffic types use LLFC. This is

not the case for Æthereal and Nostrum that do not use LLFC

for GS traffic. Stopping LLFC stops all BE traffic in situ, but

all GS traffic continues to be transported.

Stopping a NOC at the granularity of packets is only useful

in two degenerate cases. First, if LLFC is performed at packet

level (store and forward), reducing it to LLFC granularity.

Second, if packets and messages coincide, when it corresponds

to the message level, described below.

Stopping a NOC at the granularity of E2EFC by masking

E2EFC allows all packets that are in the router network to

continue to their destination NIs, but prohibits packets from

leaving the NIs. This flushes the router network, and all useful

state remains in the NIs. However, E2EFC is often performed at

the granularity of words, and masking the E2EFC can therefore

result in messages being split over the sender and receiver

NIs. NOCs that perform the local E2EFC [28] at the level of

messages do not suffer from this problem.

By stopping a NOC at the level of messages, i.e. requests and

responses, we intend that packets, LLFC, and E2EFC continue

to operate. The NOC finishes message handshakes that are in

progress with the IP blocks. This can happen at four places (cf.

Figure 3): the request at the master, the request at the slave,

the response at the slave, and the response at the master. This

may in fact take a number of clock cycles (see footnote 1).

For example, the NOC continues with master requests until

all write data words have been accepted. This method may

be implemented by masking the valid and/or accept of the

request and response at the master and slave to ‘0’. We give

more details in Section V-B.

The coarsest granularity of stopping is at the level of trans-

actions, i.e. when all outstanding messages have completed. In

this case, essentially the NOC and all slaves continue operating.

This may be implemented by masking the request accept to

‘0’ at the master NI ports: no new transactions are accepted

by the NOC, and all outstanding transactions are completed.

Figure 2(c) is an example of a trace where all IP blocks execute

a single transaction at a time. However, this level is limited for

two reasons. First, if an IP block uses pipelined transactions

(e.g., master 1 in Figure 4), then there may be no time at

which all transactions have completed because the IP block

wants to issue a request before accepting a response. Second,

the complexity of SOCs resides in the synchronisation of IP

blocks, i.e. in the concurrency and interleaving of transactions.

Message-level debug exposes the ordering of messages at both

masters and slaves. But transaction-level debug exposes the

ordering of transactions at the masters only, which could also

be obtained from IP-block debug alone.

Therefore, because not all NOCs are synchronous, many

NOCs do not have E2EFC, and not all NOCs use LLFC for

all traffic classes, the most generally useful NOC debug gran-

ularities are the flit level and the message level. At the flit

granularity the data is stopped in situ, i.e. in the routers & NIs,

whereas at the message level, the router network is flushed and

all messages gather in the NIs. The former is required to debug

the NOC, and the latter is most suited to debug the SOC, i.e.

the interactions between the IP blocks and the interconnect.

Processors: Although a fine-grained distinction can be

made for processors, like we have done for NOCs, here we

restrict ourselves to processor debug at the level of clock cy-

cles, instructions, messages, and transactions (vertical axis in

Figure 5). Instructions are the lowest level that a programmer

can relate to, messages expose the interleaving of master and

slave threads, whereas transactions show only the master view.

Conclusion: The important conclusion that can be drawn

from Figure 5 is that processor and interconnect monitoring

and debug coincide at a few points that are marked in Figure 5:

the instruction/flit level, which is the smallest grain of control;

and the message level where interactions between master and

slave IP blocks are visible. The other points serve to debug

either the NOC or processors internally, or debug only the

master IP blocks.

C. Debug actions

To debug, relevant parts of the system must be monitored.

Monitors generate an event whenever something interesting

is observed. The debug infrastructure can react on events by

sending information out of the chip, stopping (part of) the

SOC, etc. When the SOC is stopped its state can be read out

and/or changed, before continuing operation. Traditionally, it

may be possible to continue by performing a single step on

all or some of the clocks (or IP blocks), or by resuming full

operation. Because we focus on the communication rather than

the computation, we can enforce “single stepping” on any

of the debug granularities described before. As an example,

consider Figure 4. If the NOC stops accepting new messages

from initiators and stops offering new messages to targets at

“message time” 1, then requests 1, 2, and 4 have been accepted

from the masters, but not yet been offered to the slaves. By

allowing a single message step on both slaves we advance to

message time 2. Another single step on the slaves executes

request 4 and advances to time 3, and so on. In this paper, we

define and implement the functionality that enables stopping,

single-stepping, etc., but leave the use of this infrastructure for

future work.

IV. GENERAL DEBUG ARCHITECTURE

In this section we give an overview of the general

communication-centric debug architecture. The details follow

in the next section. Figure 6 shows the hardware debug

architecture, with the functional NOC at the centre. For clarity

only the request signals between master, NOC, and slave are

shown. The response architecture is similar.



Fig. 6. Hardware debug architecture.

A. Components

Monitors [29], [11] can be attached to any SOC component

or connection (wires) between components. Monitors extract

information from the component they are attached to without

changing the operation of the component, as suggested by the

dashed arrows. Monitors can be programmed to trigger on

certain (combinations of) events, such as a packet on a certain

connection, a message of a given type within a given address

range, and so on. When a monitor generates an event, its stop

module [29] and the event distribution interconnect distribute

the event to other debug components, which take appropriate

further action.

Possible actions include generating an interrupt on a pro-

grammable processor in the SOC, generating an event on the

off-chip trace or debug bus, stopping parts of the SOC (IP

and/or interconnect), downloading or uploading information,

etc. Many of these actions involve stopping the clocks of the

IP blocks and/or the NOC. This is implemented by the clock

controller and specific debug blocks such as the TAP controller,

discussed in detail in Section V.

B. Interconnects

We can distinguish four interconnects in Figure 6: the

functional interconnect, the event distribution interconnect

(EDI), the debug data interconnect (DDI), and the debug control

interconnect (DCI). In the remainder we assume that the

functional interconnect is a NOC.

The event distribution interconnect (EDI), which comprises

the stop modules, must quickly distribute events raised by

monitors to all stop modules, clock controller, and other debug

components. Events must be reacted on quickly enough to not

lose the data that caused the monitor to trigger the event. For

example, if the debug granularity is at the clock cycle level

(“after a certain event, stop the NOC in the next clock cycle”),

then the event must reach all NOC components and the clock

controller within one clock cycle. If the granularity at which

the NOC must be stopped is a message, the event must reach

all stop modules before the message on which the monitor

triggered has left the NOC (finished its handshake).

Downloading from or uploading of information to the

stopped NOC and/or IP blocks takes place via the debug

data interconnect (DDI). Programming of monitors and stop

modules takes place via the debug control interconnect (DCI).

Both can be implemented with a dedicated interconnect or

by re-using an existing interconnect, such as the NOC or the

manufacturing-test scan chains.

V. MESSAGE- AND TRANSACTION-BASED DEBUG

To prove the concepts described above, we implemented

message-level debug, where, based on events generated by

monitors, on-going message handshakes are finished before

stopping the communication between NOC and IP blocks.

We also implemented transaction-level debug, where no new

transactions are accepted instead. Following this, the state of

the NOC (and/or IP blocks) can be read out and/or modified

via the manufacturing-test scan chains. Our experiments are

based on the following:

• The Æthereal NOC.

• The monitors are attached to the routers.

• The EDI is a dedicated multi-hop broadcast interconnect,

mirroring the topology of the NOC.

• The DDI and DCI re-use the manufacturing-test scan

chains and are accessible via the test access port (TAP)

on the chip pins.

Below, we provide further details on each of these.

A. NOC and monitors

In the context of debug, the Æthereal NOC is interesting

(cf. Section II-B) because it does not use LLFC for its GS

traffic, and because it uses E2EFC for both BE and GS traffic.

Moreover, because message and packet boundaries are not

necessarily aligned, it may be difficult for monitors to trigger

on messages. A solution to this problem is given in [12] but in

our experiments we use a simplified version of their monitors.

We use the raw and connection-based modes, where it is

possible to detect patterns in data passing on the links between

the routers and/or NIs. Besides the 32 data wires, the pattern

includes the two side band control bits that indicate word

valid, flit QoS (BE/GS), packet header, and packet tail [26].

For example, all packets of a given connection are caught by

matching on a packet header with the path from source to

destination (rotated by the number of hops until now) and

the destination queue identifier. The monitor raises an event

to its stop monitor one cycle after data on the link matches

a pattern. The match can occur on any word in a flit or

message, which gives tight timing constraints, as discussed

below. The dashed arrow [X] from the routers, NIs, and IP

blocks indicate that monitoring is not intrusive, i.e. does not

change the behaviour of the components that are observed.

The monitors are programmed via the DCI, to enable or disable

them, and to define the patterns.

B. NI shells

Message-based debug relies on stopping the handshakes of

requests between the (1) master and the master NI port (MNIP),



and (2) between slave NI port (SNIP) and slave; similarly for

responses between (3) slave and SNIP, and (4) between MNIP

and master. As shown in Figure 6 by the two AND gates,

this is accomplished by masking the request accept signals

at the MNIP (1) and the request valid signal at the SNIP (2).

Omitted from the figure is the similar masking of the response

accept signal at the SNIP (3), and the reponse valid signal

at the MNIP (4). The signals are masked when an event has

been received on the EDI (more on this below), and when the

finite state machine of the NI port in the NI indicates that the

message is complete. The latter information (“end of message”

or EOM in the figure) is already present in NI for transaction-

safe connection reconfiguration [26], [30]. It is read out non-

intrusively by the stop module from the NI shell, as indicated

by the dashed arrow [Y]. The event distribution interconnect

determines when events arrive at the NIs, and hence when the

message handshakes are masked.

For transaction-level debug only the message handshake

between the master and the MNIP is masked, using the same

infrastructure, as soon as the current message has finished.

C. Event distribution interconnect

The event distribution interconnect (EDI) delivers events

from the monitors and other event generators, such as the

TAP controller, to the relevant debug components, such as the

NIs and TAP controller. Ideally, when an event is generated

anywhere in the SOC, all ongoing handshakes of messages

must be finished, and no new handshakes must be initiated.

Essentially, this requires global single-cycle event distribution,

which is not scalable and difficult to implement in lay-out. Our

EDI is the best alternative: events are broadcast synchronously

at the (high) NOC functional frequency by pipelined stop

modules. A stop module sends incoming events to all its

neighbours: to ensure the broadcast dies out it does not respond

to incoming events in the next cycle. The EDI is a scalable

solution, with minimal latency (1 cycle per stop module), to

minimise the number of new message handshakes starting

after the event occurred. Note that an asynchronous EDI

implementation is quite possible, and “cycle” is then replaced

by “handshake.”

The EDI uses the same topology as the NOC, and can be

placed and routed alongside the routers and NIs, to avoid

changes to the top-level lay out, and to ensure that it runs

at the NOC functional frequency. This is suggested in Figure 6

by positioning the related blocks vertically above one another.

With a flit size of three, the EDI propagates events three

times faster than the data that caused the event; this is quick

enough to distribute an event to all stop modules before the

message on which the monitor triggered can leave the NOC

(finish its handshake). The critical timing for this occurs when

a monitor is attached to the link between a router and the

destination NI. If the monitor triggers on the final word (in

a flit) of a message, then that message must be the last one

to complete its handshake on that NI port. This is achieved

because the next flit, part of the next message, has latency of

at least a two cycles before being offered to the IP block [26].

The event arrives at the NI shell also two cycles after it has

been generated, and is in time to mask the appropriate valid

or accept signal.

Stop modules tell the NI shells to finish ongoing messages

and then stop, as described previously. However, if an ongoing

message does not finish, e.g. due to a non-responsive / stopped

IP block, infinitely long message, or message-level interdepen-

dencies, a second stop signal can be used to forcefully stops

all ongoing messages. The first stop signal can be generated

by both monitors or the TAP controller, but the second stop

signal can be given only by the TAP controller. The stop

monitors contain a small FSM, which implements this stop

sequencing, and ensures that the broadcast dies out and that

multiple concurrent events are handled correctly. For example,

two monitors can trigger simultaneously. Or a monitor can

trigger after some or all of the NIs are already masking the

message handshakes because it may take some time to flush

the NOC, i.e. allow all data to arrive at the slave NI ports.

D. Debug data distribution interconnect

The debug data interconnect (DDI) can be a dedicated in-

terconnect, such as a bus. Alternatively, existing interconnects

can be re-used, such as the functional NOC, or manufacturing-

test scan chains accessible via an IEEE1149.1 test access port

(TAP) [31].

The functional NOC can be re-used as DDI, but the process

of flushing the NOC of functional data before it can be used

to transport debug data is non-trivial. If it has to be possible

to resume operation after stopping and debug, the functional

data that was flushed out of the NOC must be restored, which

is also difficult.

It is standard industry practice to use scan chains [32] to

test for manufacturing defects. The entire NOC (and all IP

blocks) will therefore typically contain scan chains. For this

reason, we use scan chains to implement the DDI, as proposed

by [33], [29], [13]. We use NXP’s standard design flow with

gate-level synthesis and scan-chain insertion for the NOC, with

an exception for the optimised hardware FIFOs used in the

routers [34] and NIs [26], which contain a dedicated test

infrastructure [35].

IEEE1149.1-compliant scan-based manufacturing-test and

debug infrastructure is accessed using a TAP. Using the TAP

data can be sent in and out of the chip over four or five

dedicated chip pins. The NOC and every IP block have a test

wrapper and test control block (TCB) to isolate and control

the block during manufacturing test, respectively. They also

have an access-control test point register (AC-TPR) to select

which internal scan chains to route to the TAP using the test

access mechanism. In this way, the infrastructure that is used

for manufacturing test is largely re-used for debug.

SOCs often have sophisticated programmable clock gen-

eration that allows modifying the clock signal per IP block

at run time. The clock controller switches each IP block’s

clock between off, one or more functional frequencies, one

or more test frequencies, and a debug frequency. The test

and debug infrastructures are independent from the functional



interconnect in terms of wiring. However, the test and debug

infrastructure cannot operate at the same time as the functional

interconnect because they access the same state (registers and

FIFOs) and because they operate at different frequencies (the

functional NOC frequency is much higher).

The TAP controller orchestrates the interactions between the

TCBs and clock controller 1) to manage the transition from

functional state and clock to the test or debug state and clock

for each block, 2) to obtain test or debug access to a block,

3) to use the AC-TPRs to select the chain chains of the block,

and 4) to use the TAP to transport the scan data into or out of

the chip.

The advantage of re-using the test and debug infrastructure

as DDI is that it comes at virtually no extra cost because all IP

blocks already contain the required hardware. The disadvan-

tage is the relatively low speed at which they run (10 MHz),

compared to a functional interconnect. Moreover, access to the

state is sequential per scan chain, where a dedicated functional

interconnect [36] could provide faster memory-mapped access,

although at a higher area cost. Reading and modifying the IP

and NOC state can be offered by both alternatives.

E. Debug control interconnect

In this section we describe how the monitors, EDI,

and DDI are programmed and together offer message-based

communication-centric debug.

The debug infrastructure (monitors, the DDI, clock con-

troller) is programmable at run time. To be precise, it contains

a number of programmable registers, to specify information

such as: the data pattern to be matched by the monitor [11],

[12], AC-TPR scan chain selection, the run / stop / second

forced stop state of the EDI, the run / stop state of each NI

shell and IP block, and the clock control registers.

The task of the DCI is to provide access to these registers

using the TAP. The DCI can be implemented with a dedicated

interconnect, such as a (low-speed) control bus (e.g. APB).

Alternatively, existing interconnects can be re-used, such as

the scan chains (extending [29], [37]) or the functional NOC

(proposed for monitors in [11]). In our experiments we use the

manufacturing-test scan chains for the DCI, like we did for the

DDI. All debug control registers are accessible via control scan

chains that are separate and independent from the (data) scan

chains containing the state of NOC and IP cores. The control

registers are readable and programmable also when the SOC

is in functional mode. The control scan chains are accessed

via the TAP at the debug clock frequency.

To program the monitors, and to read out NOC registers after

a monitor event caused the NOC to stop, the following steps

are performed:

1) On reset the TAP controller, TCBs, EDI and monitors are

disabled.

2) Using the TAP (Fig. 6[A]), from outside the chip at the

debug clock frequency, program the monitors with the

desired pattern to be matched.

3) An event generated by a monitor is indicated in a

monitor register, and is distributed by the EDI to all

NIs, and all relevant valid and accept signals are masked

(Fig. 6[B]).

4) At the same time, using the TAP and DCI poll from off-

chip if the event has already occurred by reading out

the stop module registers (Fig. 6[C]). Note that these

registers are in the (fast) functional clock domain, and

that they are polled from the (slow) debug clock domain

through the control scan chains. Polling takes place

independently from the NOC that continues to operate at

its functional frequency. This is not a problem because

once stopped, the debug state is stable.

5) When an event has been detected, wait until all ongoing

messages have terminated and the NOC is in a quiescent

state. This can be checked by polling the “stopped”

debug status registers in the NIs, like the stop modules

debug status registers.

Alternatively, a second stop can be sent via the TAP

controller (Fig. 6[A&C]) to forcefully stop all ongoing

message handshakes, whether they have finished or not.

Note that because the debug clock frequency is much

lower than the EDI frequency, the rising edge of this

TAP stop signal is detected and used to accomplish this

safely.

6) Then, the clock controller is programmed via the TAP

(Fig. 6[D]) to switch the NOC and/o IP blocks from the

functional to debug clock.

7) At this point, the TAP controller and the NOC and IP

blocks all operate at the debug clock frequency, and the

state of the NOC and IP blocks (registers and hardware

FIFOs) can be read out and/or modified (Fig. 6[F]) via the

TAP (Fig. 6[G]) after programming the AC-TPR registers,

which select the scan chains for scan out (Fig. 6[E]).

These steps are performed by off-chip debug software. All

steps except 5 are required for traditional computation-centric

debug. The following section illustrates some of these steps

with simulation results.

F. Design flow

To apply the debug concepts and architecture we use the

standard NXP design flow. The NOC is synthesised with gate-

level synthesis tools, resulting in a netlist. Scan chains are then

inserted in the netlist. The clock controller, reset controller,

and TAP controller are inserted, before the design lay-out can

be generated. In our example, we used register-based FIFOs

instead of the optimised hardware FIFOs, to simplify the design

flow.

VI. RESULTS

We applied the debug architecture described in the previous

section to a simple network containing two routers connecting

two masters and two slaves, each with a dedicated NI. We

focus on one master-slave pair, the other pair just generates

traffic on the shared link between the two routers. In general,

the number of monitors depends on the desired coverage of

NOC components and IP blocks [38]. Here, each router has a

monitor, which can observe all of its incoming links.



A. Performance and cost

Our proposed architecture is modular, and the monitors,

event and data and control interconnects can be dedicated or

re-used, and be different or the same. We have chosen for

a dedicated event distribution interconnect (EDI) to ensure a

quick reaction to event, to minimise missing data when the

NOC is stopped. The EDI makes use of the NOC clock and

lay-out, and therefore scales well in size. The data and control

distribution interconnects (DDI and DCI) re-use the existing

scan chains.

In terms of area, the cost of the monitors depends en-

tirely on the desired functionality. Our monitor occupies

0.006mm
2 in 0.13-micron CMOS, most of which is due to

its programmable registers. The EDI consists of as many stop

modules as there are routers, two in our example. The area of

a stop module is negligible (0.0002mm
2). The DDI, DCI, and

TAP controller do not add any area because they are present in

all designs. The total area of the simple NOC was 2.26mm
2,

and the debug infrastructure added 4.5%. If the NOC area is

around 4% of that of a SOC [39], the cost of SOC-level debug

is less than 0.2%.

Speed. The EDI operates at the NOC functional speed, or

500 MHz in 0.13 micron CMOS. It can run faster, but we

chose to share the NOC clock, for ease of integration. The

maximum time it takes the EDI to distribute an event is equal

to the the NOC functional clock period times the longest path

in the NOC, assuming monitors are attached to NIs and/or

routers. The entire test and debug infrastructure, i.e. DDI, DCI,

TAP, and TAP controller, runs at 10 MHz. To scan out the

43050 registers in our small NOC only takes 4.3 milliseconds.

In practice, the scan-out speed is much lower, around one

state dump per second, due to restrictions in memory size of

debugger hardware, and the low efficiency of board to PC

communication. This is sufficiently fast because the human

debugging the system usually requires more time.

B. Simulations

Figure 7 contains three sets of traces that show the de-

bug architecture in action. The master communicates with

a slave on DTL ports, via intermediate masterside NI shell,

masterside NI kernel, two routers, slaveside NI kernel, and

slaveside NI shell. The traces show the request and response

signals at the masterside NI shell port (MNIP) and at the

slaveside NI shell NI port (SNIP). The former is a target port,

the latter an initiator port.

Normal operation: The top trace in Figure 7 shows normal

operation, where the MNIP accepts four commands from the

master, shown by the four marked pulses on the dtl cmd accept

(labelled “write” and “read”) immediately below the clock

signal. The first and third command are writes (dtl read cmd is

low), the others are read commands. The last of the eight write

data words (“wdata”) of the first write command is signalled

by a ‘1’ on the dtl write last signal. The write command and

the write data are transported from the MNIP to the SNIP and

offered to the slave (dtl cmd valid is high), as illustrated by

the solid arrows. Note that the write data that was offered

contiguously to the MNIP arrives spread over time at the

slave, because the master and slave using a GS connection

that happens to use non-contiguous TDMA slots.

Similarly, as illustrated with the dashed arrows in Figure 7,

the read command is accepted by the MNIP, transported to the

SNIP and then offered to the slave (dtl cmd valid is high). The

slave responds with read data (“rdata”), which is transported

and offered to the master (dtl rd valid). The master accepts

the read data before offering another write and read command.

Note that the writes are posted, and that the write and read

commands are pipelined.

Transaction-level debug: In this scenario (Figure 7, middle

set of traces), the monitor at the router connected to the slave

NI triggers an event and generates a stop signal for all NIs.

The event is raised immediately after the first read command.

For transaction-level debug, only the master NI reacts to

the stop signal (stop in, in dashed circle). Thus, as during

normal operation, the write and read commands are offered

to the slave that reacts as before. The master also accepts the

read data, and thus finishes all outstanding transactions. As

explained in Section V-B, the NI shell tracks the completion of

messages. It does not accept any new commands after the stop

event, even when the master offers a new write (dtl cmd valid

is high). This is illustrated by the absence of the second write

and read commands.

The NI shell also tracks the number of outstanding trans-

actions (“livetrns”), which goes low after the first read has

completed. This, together with the asserted stop signal, blocks

the shell (“blocked” goes high, see dashed circle). The TAP

controller polls the blocked signal of the master NIs to observe

when there is no longer any activity in the NOC. At this point

it can lower the NOC clock from functional frequency to the

test frequency, and scan out all NOC state. This is not shown

in this and the next signal trace for lack of space.

Message-level debug: Message-level debug (Figure 7, bot-

tom set of traces) is similar to the transaction-level debug.

The same event is raised but now results in a stop signal to

both master and slave NIs. The stop signal originates from the

router that is closer to the slave NI, and therefore reaches the

slave NI earlier than the master NI. In fact, it reaches the slave

NI before the write command and data do. As a result, the

message handshake is not initiated, and the NI shell keeps the

write command and data in its FIFOs and does not offer them

to the slave. This is evident from the absence of a pulse on

the dtl cmd valid. Note that unlike for transaction-level debug,

the master NI shell does not enter a blocked state because the

write request remains pending at the slave NI.

VII. RELATED WORK

In the domain of multi-processors and their program-

ming [8], [40] describe a system to reproducibly replay

parallel program executions by saving traces between different

computation threads. [41], [42] aim for the same by focussing

on interactions using shared variables. These works focus on

post-hoc replay and analysis of parallel programs, whereas we

focus on actively controlling the concurrency.



Fig. 7. Gate-level signal traces.



A good overview of SOC debug can be found in [5].

Our work is based on TAPs, like [33], [29], [37], [13].

Their approach is computation-centric whereas our approach

is communication-centric instead.

[36] proposes TAP-based debug. In contrast to our DDI,

their TAP controller uses the functional interconnect to access

the state of processors. This assumes that the functional

interconnect is stateless, which is not the case for NOCs. The

NOC would have to be flushed of data before use by the TAP

controller, and even more difficult, the state would have to be

reinstated before single stepping or resuming operation.

[43] tackles the problem of debugging multiple processors

using simulation with instruction-set simulators. The intercon-

nect, or silicon debug are not considered.

[44] proposes synchro-tokens that are similar to our flit

handshake for test and debug of GALS SOCs. However, they

do not use their method for a communication-centric debug as

proposed here.

VIII. CONCLUSIONS

In this paper we addressed the debugging of complex SOCs.

This is hard because they contain multiple processors that

interact through concurrent interconnects, such as NOCs. We

classify the scope and temporal granularity of debug. We

show that the scope of debug extends beyond the traditional

debugging of processors, to include debugging of the in-

terconnect, and system-level debug that concentrates on the

interactions between IP blocks. Therefore, our debug method-

ology is communication-centric. Furthermore, processor and

interconnect monitoring and debug coincide at a few points:

the instruction/flit level, which is the smallest grain of control;

the message level where interactions between master and slave

IP blocks are visible, and the transaction level, where master

behaviour alone is traced.

Based on these insights we define and implement a modular

debug architecture, based on a NOC, monitors, and a ded-

icated high-speed event-distribution broadcast interconnect.

The data distribution interconnect (DDI) and debug control

interconnect (DCI) re-use the manufacturing-test scan chains

and IEEE1149.1 test access ports (TAP).

To apply our debug concepts of the functional SOC only the

NI shells require changes. The additional area cost for debug is

limited to the monitors and the event distribution interconnect,

which are 4.5% of the NOC area, or less than 0.2% of the SOC

area. The debug architecture runs at NOC functional speed and

reacts very quickly to debug events to stop the SOC close in

time to the condition that raised the event. The speed at which

data is retrieved from the SOC after stopping is 10 MHz, which

is sufficient.

We proved our concepts and architecture with a gate-level

implementation of a small SOC, consisting of behavioural IP

blocks, gate-level NOC with scan chains, the broadcast event

distribution interconnect, and clock, reset, and TAP controllers.

Gate-level signal traces illustrated debug at message and

transaction levels.
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