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Wrapper design for the reuse of a bus,
network-on-chip, or other functional
interconnect as test access mechanism

A.M. Amory, K. Goossens, E.J. Marinissen, M. Lubaszewski and F. Moraes

Abstract: A new core test wrapper design approach is proposed which transports streaming test
data, for example scan test patterns, into and out of an embedded core exclusively via (some of)
its functional data ports. The latter are typically based on standardised protocols such as AXI,
DTL, and OCP. The new wrapper design allows a functional interconnect, such as an on-chip
bus or network-on-chip (NOC) to transport test data to embedded cores, and hence eliminates
the need for a conventional dedicated test access mechanism (TAM), such as a TestRail or test
bus. The approach leaves both the tester, as well as the embedded core and its test unchanged,
while the functional interconnect can handle the test data transport as a regular data application.
The functional interconnect is required to offer guaranteed throughput and zero latency variation,
a service that is available in many buses and networks. For 672 example cases based on the ITC’02
System-on-Chip (SOC) Test Benchmarks, the new approach in comparison with the conventional
approach shows an average wrapper area increase of 14.5%, which is negligible at the SOC level,
especially since the dedicated TAM can be eliminated. Futhermore, the new approach decreases the
core test length by 3.8% on average.
1 Introduction

Modern semiconductor process technologies and design
tools enable the design and manufacturing of increasingly
complex SOCs. Such SOCs typically consist of a hetero-
genous mix of design blocks (cores) form a variety of
in-house and external sources. The traditional form of func-
tional interconnect between these cores is the on-chip bus
(an array of wires with multiple writers under a
mutual-exclusion control scheme). Typically, cores inter-
face with the bus through standardised protocols, such as
Advanced eXtensible Interface (AXI) [1] Device
Transaction Level (DTL) [2], and Open Core Protocol
(OCP) [3]. However, the common global on-chip bus is
becoming a bottleneck in communication bandwidth and
power dissipation. Multi-bus solutions have provided a tem-
porary alleviation, but for the longer-term, a scalable sol-
ution is a network-on-chip (NOC) [4-7]. A NOC consists
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of a network of shared communication links and routers,
which connect to the various cores through network inter-
faces (NIs). These NIs convert between the internal NOC
protocol on one side and the core’s protocol on the other
side. For reasons of compatibility and reuse, the latter is
typically one of the standardised bus protocols, such as
AXI, DTL, and OCP. A number of NOCs [8-12] offer com-
munication with guaranteed performance to implement real-
time application and to make SOC designs more robust [13].

Only a modular approach, in which the various cores are
tested as stand-alone units, effectively addresses the
manufacturing-test challenges of SOCs [14]. Modular
testing is enabled by on-chip design-for-test (DfT) hardware
[15] in the form of a core test wrapper [16–18] that switches
between functional mode and test mode access and isolation,
and a test access mechanism (TAM) [19] that transports the
test data from the SOC pins to the core terminals and vice
versa. An evident idea is to reuse the on-chip functional inter-
connect to double as a TAM in the test mode(s) of the SOC; it
saves the design effort and silicon costs associated with dedi-
cated TAMs. This idea has been tried for traditional buses
[20–25] as well as, more recently, NOCs [26–32].

This paper builds on the idea of reusing an on-chip bus,
NOC, or other functional interconnect as a TAM. Unlike
other papers, the focus here is on the core test wrapper
design that enables this. It is our objective to modify
neither the functional interconnect nor the core-under-test
or its test, to maximise their reuse. For the functional inter-
connect, ‘core test’ is a regular application, in which the bus
or NOC just transports data; it happens to be test data but
that is irrelevant to the functional interconnect. The dedi-
cated TAM ports of conventional wrappers are removed,
as test data is now transported through functional ports.
Most core tests are based on scan design, which is a real-
time streaming application for the bus or NOC (once
started, it needs to complete without interruption), but for
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which the required bandwidth can be chosen by adjusting
the number of parallel scan chains. The streaming nature
of scan test data requires a functional interconnect that pro-
vides uncorrupted, lossless, in-order data transport with
guaranteed throughput ant zero latency variation, such as
the Æthereal NOC [8]. We assume that the functional inter-
connect hardware is designed to functional specifications.
This given bus or NOC hardware is programmed for the
‘core test’ application using its regular design flow [33].
Subsequently, the bandwidth used for test is tuned to fit
the given functional interconnect, through adjustment of
the number of parallel scan chains for the core by means
of a new wrapper design optimisation algorithm.

This paper presents a test wrapper design method and
corresponding optimisation algorithm that allows cores to
be tested via on-chip functional interconnects that provide
guaranteed performance. Also, we demonstrate their use
with a NOC doubling as a TAM. They are equally appli-
cable to other functional interconnects, such as traditional
on-chip buses and crossbars. The remainder of this paper
is organised as follows. Section 2 provides an overview of
the related prior work. In Section 3, we list our assumptions
regarding the communication behaviour and standardised
protocol ports of the functional interconnect and formulate
our problem definition. Our new wrapper design procedure
is detailed in Section 4. Experimental results with respect to
area and test length impact are given in Section 5, while
Section 6 concludes this paper.

2 Related prior work

Reusing an existing functional interconnect as a means to
obtain test access to embedded cores is an natural idea.
Especially for functional tests, it is very natural to reuse
the on-chip bus as a TAM. Harrod [20] has described
ARM’s original test approach, which was based on func-
tional testing. The 32-bit advanced microcontroller bus
architecture (AMBA) transports test stimuli from the inte-
grated circuit (IC) pins via the external bus interface
(EBI) to the core-under-test (CUT), and test responses
back again. In test mode, a test interface controller acts as
a bus master. In other work [21–23] the existing on-chip
bus has been reused to apply functional tests from the
on-chip microprocessor to embedded cores. An advantage
of these approaches is the low additional area cost of the
TAM. However, they require that the entire path from the
tester (whether chip-external automatic test equipment
(ATE) or on-chip embedded microprocessor) via the func-
tional interconnect to the CUT is known and under full
control. In this paper, we remove this constraint, by allow-
ing any functional interconnect that offers guaranteed band-
width and latency communication to operate as a TAM.
Moreover, all approaches listed above depend on functional
tests, for which the detection qualities are hard to assess,
guarantee, and improve, and for which failure analysis is
nearly impossible. Hence, most semiconductor companies

Fig. 1 Conventional (a) and new (b) SOC test set-up
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prefer structural, scan-based tests instead. Feige et al. [24]
demonstrated that ARM’s functional-bus access approach
is difficult to combine with scan-based testing. Hughes
et al. [25] have described how ARM has moved from func-
tional bus-based testing to structural, scan-based testing via
a dedicated TAM.

An early paper to propose a NOC-like, packet switching
network to serve as a TAM is that of Nahvi and Ivanov [34].
The paper presented the network as a dedicated test infra-
structure, which obviously would imply high (but in their
paper unquantified) silicon area costs. Cota et al. [26] are,
to the best of our knowledge, the first to propose reusing a
functional NOC as a TAM. The paper mainly focused on
the scheduling of the test packets for the various cores in
order to minimise test time. The approach requires knowl-
edge of all kinds of NOC implementation details, such as
the network topology, number of routers, packet size, time
to unpack headers, and so on. Subsequent papers by the
same author team [27, 28] take maximum power dissipation
during the test into account as an additional scheduling
constraint. Further extensions by Liu et al. include
built-in self-test (BIST) and precedence constraints [29],
variable-rate clocking and power constraints [30], and
thermal constraints [31]. Also, Kim et al. [32] have
suggested reuse of an existing functional NOC for test
access purposes. Finally, Hosseinabady et al. [35] have
recently focused on testing NOC switches through the
network, but they did not detail the implementation of the
switch under test, nor how the NOC remains operational
while some of its switches are being tested.

None of the above papers describe how the streaming
scan test data requirement is matched to the possibly
bursty or packetised bus or NOC traffic. They do not
specify how the communication protocol between the bus
or NOC and the CUT is supported in order to keep the
data flowing while the core is in its test mode. Also, the
details of their test wrapper designs and the differences
with conventional test wrappers such as TestShell [16, 17]
and IEEE Std. 1500 [18] have not been disclosed.

3 Assumptions and problem statement

During SOC testing, the ATE needs to be connected to the
CUT to load test stimuli and unload test responses. In a con-
ventional SOC test set-up, the ATE and the CUT are con-
nected by a dedicated on-chip TAM [19]. This set-up is
schematically depicted in Fig. 1a. The test wrapper con-
nects the CUT’s test inputs via the TAM to the ATE stimu-
lus channels; similarly, the wrapper connects the CUT’s test
outputs via the TAM to the ATE response channels. Fig. 1b
depicts the new SOC test set-up under consideration in this
paper. The test data transport from the ATE to the CUT and
vice versa is now handled by the functional interconnect,
(e.g. in the form of an on-chip bus, cross-bar, or NOC).
This approach makes a dedicated TAM superfluous.
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007



The following two sections introduce the methods of
achieving this, viz. abstracting from the functional intercon-
nect implementation through guaranteed communication,
and translating functional port protocols into a test protocol.

3.1 Guaranteed communication and test

Most tests have a streaming nature, that is once started, they
need to complete without interruption. This is particularly
true for scan-based, structural tests. If a scan operation is
interrupted, the scan chains lose their content of stimuli
and responses, unless additional DfT features are provided
to freeze the scan content. Examples of such DfT features
are stoppable clock signals, or scan flip-flops with a hold
mode implemented by means of a feedback loop. These
DfT features increase silicon area and negatively impact
SOC performance and design flow, and are therefore
undesirable. Also, most ATEs treat test stimuli and
responses as streaming data, and are only capable of
real-time comparison of the actual with the expected
responses (possibly with an abort-on-fail in the case of a
mismatch) and capturing responses. ATEs are typically
not capable of more complex interactions with the SOC.

In order to keep the design flows of the functional inter-
connect, cores, and their tests unchanged, it is our objective
to keep the streaming nature of the core test and the ATE
intact, while at the same time using the functional intercon-
nect in its normal mode of operation to transport test data as
regular payload data. This requires the functional intercon-
nect to provide uncorrupted, lossless, in-order data transport
with guaranteed throughput and zero latency variation. If
this is the case, the functional interconnect can be modelled
as two connections (or ‘virtual wires’) with a given constant
bandwidth and latency. One connection (from the tester to
the CUT) is used for test stimuli, the other (from the CUT
to the tester) carries test responses.

Fortunately, many functional interconnects already provide
performance guarantees for several other reasons. Guarant-
eeing the communications of a core makes it independent
from the rest of the system; it can then be designed in isolation,
which benefits compositional design. Furthermore, many cores
operate on real-time data, for which guarantees are required.
NOCs that can give performance guarantees include
Æthereal [8], Mango [9], Nostrum [10], and Sonics [12].

Using connections with guaranteed performance allows
us to abstract from the implementation of the interconnect
(bus, cross-bar, NOC, etc). This is valuable because inside
the functional interconnect, the traffic might not be trans-
ported in a streaming manner at all. For example, a bit-
stream may be sent in bursts over a bus. Similarly, NOCs
typically transport data in packets, which internally intro-
duces data overhead and gaps in the transport [36].
Connections with guaranteed fixed bandwidth and latency
allow us to ignore these details.

3.2 Functional port protocols and test

In the functional mode, the interconnect structure connects
to each of the cores via one or more ports. As a precondition
to core and interconnect reuse, it is common practice for
these ports to use a standard protocol, such as AXI [1],
DTL [2], or OCP[3]. In test mode, (a subset of) the same
ports are reused to transport test data to and from the
CUT. This approach requires that the ATE can be connected
to the functional interconnect; in this paper, we assume that
this is the case.

Functional port protocols define a number of signals and
their semantics. For all major standard protocols, signals
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007
are divided in three groups: command, write, and read.
Each group consists of zero or more signals, which are
either input or output. An initiator port sends out the
command and hence initiates the communication; a target
port receives the command. A write port communicates
data in the same direction as the command (i.e. from initiator
to target), while a read port communicates data in the oppo-
site direction; read-write ports can communicate data in both
directions, although not all such bidirectional ports support
simultaneous (full-duplex) read and write communication.

Fig. 2 illustrates the above for an example core with two
DTL ports. Both ports in our example are DTL MMBD
read-write ports. MMBD stands for memory-mapped
block data, the most complex profile of the DTL protocol
[2]. Our proposed method also applies to the other DTL pro-
files. The left-hand port is a target, while the right-hand port
is an initiator. The signal names indicate the partitioning of
the port signals into three groups; command, write, and
read. All three signal groups have their own valid and
accept signals that regulate the handshake process for
data transfer. In addition, the command group has three
more signals, that indicate address, read/write direction,
and block size.

To transport test data over the functional interconnect to a
core, that core needs to have at least one port that can serve
as a test stimulus input and at least one port that can serve as
a test response output. The test stimulus input role can be
enacted by an initiator read or read-write port, or a target
write or read-write port. Similary, a test response output
role can be enacted by an initiator write or read-write
port, or by a target read or read-write port. The example
core in Fig. 2 has two ports that both can serve as a test
input and a test output port, as both are read-write ports.
An example of a valid scenario is to use the (left-hand)
target port as a test input port and the (right-hand) initiator
port as a test output port.

Every protocol port is used in one or more functional
applications, with possibly different bandwidth and latency
requirements. For example, an output port may generate
standard-definition video in one application and high-
definition video in another. The functional interconnect, and
in particular the buffering capacity of ports, is dimensioned
to support all required applications. Reusing the functional
hardware, the connection between the ATE and a certain
port has a bandwidth that we consider given.

We aim to let the functional interconnect transport test
data as a regular application. Consequently, we only use
the data signals for this task. In our example, test stimuli
are input via dtl_wr_data[32] of the (left-hand)
target port, while test responses are output via
dtl_wr_data[32] of the (right-hand) initiator port. In
addition, it is important that the functional protocol is exe-
cuted correctly. For example, the command and the block
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size must be signalled, and the valid/accept handshakes
must be completed. This is one of the requirements on our
modified test wrapper design.

3.3 Problem statement

We assume a SOC containing a functional interconnect such
as an on-chip bus or NOC and one or more cores. We focus
on testing one core at a time. We assume also that an ATE is
able to connect to the functional interconnect without
specifying the details of that connection here. Via the
functional interconnect, the ATE is able to send data to
one or more of the CUT’s protocol ports, while likewise
the ATE is able to receive data from one or more of the
CUT’s protocol ports. Connections between the ATE and
the CUT provide uncorrupted, lossless, in-order data trans-
port, with guaranteed throughput and zero latency variation.

In our problem definition, the core will use exactly one
protocol port as test input and exactly one other protocol
port as test output. As not all bidirectional ports support full-
duplex communication, read-write ports are used in only
one direction, in order to allow scan-in and scan-out
operations during test to overlap in time. Consequently,
the core will need to have at least two protocol ports: one
to serve as a test input and one to serve as a test output
port. In the remainder of this paper, we will assume that
at least two suitable ports are available.

For the CUT all information is given about its protocol
ports through which it can communicate with the ATE.
For each such protocol port i is specified the protocol,
profile, direction of the port, data word width w(i),
maximum sustainable input bandwidth from the ATE
bin(i), output bandwidth to the ATE bout(i), and correspond-
ing transaction block size s(i) [37]. Note that for a
write-only or read-only port i, bin(i) ¼ 0 _ bout(i) ¼ 0.

Furthermore the data is given as specified for the cores in
the ITC’02 SOC Test Benchmarks [38]: all other inputs and
outputs, that are not belonging to the protocol ports, the
number of core-internal scan chains and their length, and
the number of test patterns. Also specified is the test
frequency f of the CUT, which might be different from
the normal-operation frequencies of either the CUT or the
functional interconnect.

We need to determine the design of a core test wrapper,
which enables the CUT to be tested by the ATE via the
functional interconnect, at test frequency f, without modify-
ing the ATE, the interconnect, the CUT, or its test. The
design of the wrapper is optimised such that the CUT’s
test length is minimised and we make best use of the
offered bandwidth of the functional interconnect.
200
4 Wrapper design

4.1 Wrapper design overview

Fig. 3 shows overviews of both the conventional (Fig. 3a)
and new (Fig. 3b) IEEE Std. 1500 [18, 39] compliant
design, and illustrates their differences. In the INTEST
mode of the conventional wrapper, the access of all
functional inputs and outputs to the core is intercepted by
the wrapper boundary register (WBR), indicated by
dashed arrows, while ports to dedicated TAMs provide
test access. In the new wrapper design, there is no dedicated
TAM. Test access to the core is provided via a subset of the
functional inputs and outputs, viz. via one selected input
protocol port and one selected output protocol port.
Functional inputs and outputs that do not belong to the
selected protocol ports are intercepted by the WBR, and
are again shown with dashed arrows.

The algorithm to design a core test wrapper and optimise its
corresponding test length consists of the following five steps.

1. Selection of test input and output ports: In the case when
multiple protocol ports are available that could serve as test
input or test output ports, exactly one input port and exactly
one test output port are selected. To minimise the resulting
test length, we select two disjunct ports i and o (with i = o)
of the CUT connected to the ATE such that the resulting test
bandwidth btest is maximised with

btest ¼ min (bin(i), bout(o)) (1)

As per (1), the test bandwidth is determined by the
minimum of the bandwidths of the selected input and
output port, as the bandwidths of the wrapper scan input
and output need to be equal.
2. Calculation of the number of wrapper chains: Wrapper
chains are the scan chains through the wrapped core,
built-up from wrapper cells and core-internal scan chains
[17]. At the core’s test frequency f, the functional interconnect
can deliver at most bbtest/f c test stimulus bits per clock cycle
via the selected test input port, and receive an equal amount of
test response bits via the selected test output port. Hence, the
wrapper should contain wc wrapper chains with

wc ¼
btest

f

� �
(2)

to make maximal usage of the test bandwidth provided by the
functional interconnect.
3. Calculation of parallel-to-serial loading and
serial-to-parallel unloading characteristics: Stimulus bits
WBY

WIR

dedicated
TAM

 functional
data

dedicated
TAM

functional
data

Wrapper

WSI

WPI

WSO

WPO

WIP

a b

W
B

R

Core

SelectWIR

scan chain

scan chain

W
B

R

test test

func func

WBY

WIR

other
inputs

 protocol
port

other
outputs

protocol
port

Wrapper

WSI WSO

WIP

W
B

R

SelectWIR

fu
nc

tio
na

l d
at

a functional data

test test

func

W
B

R

Core

scan chain

scan chain

func

Fig. 3 Overview of the (a) conventional and (b) new IEEE Std. 1500 compliant wrapper design
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Table 1: Example classification of port terminals

Class Test input port: DTL.MMBD.T.RW Test output port: DTL.MMBD.I.RW

SDI dtl_wr_data[29:0] —

RSDI dtl_wr_data[31:30] —

SDO — dtl_wr_data[29:0]

RSDO — dtl_wr_data[31:30]

DI — dtl_rd_data[31:0]

DO dtl_rd_data[31:0] —

CI dtl_cmd_valid, dtl_cmd_addr[31:0],

dtl_cmd_read, dtl_cmd_blocksize[5:0],

dtl_wr_valid, dtl_rd_accept

dtl_cmd_accept, dtl_wr_accept, dtl_rd_valid

CO dtl_cmd_accept, dtl_wr_accept dtl_cmd_valid, dtl_rd_valid, dtl_cmd_addr[31:0],

dtl_cmd_read, dtl_cmd_blocksize[5:0],

dtl_wr_valid, dtl_rd_accept
arrive strictly periodically in words ofw(i) bits at the selected
test input port i. There, they are equally divided over the wc
wrapper chains and serially shifted into the wrapper and
core. This process is repeated every p(i) clock cycles, with

p(i) ¼
w(i)

wc

� �
(3)

Note that of the w(i) data bits in each parallel word, only
bw(i)=wcc � wc are actually used to carry stimulus bits;
the remaining (w(i) mod wc) bits carry unused data, and
consequently will be assigned special wrapper cells in
Step 4. The response side is handled likewise where every
p(o) ¼ bw(o)=wcc clock cycles, p(o) response bits are
unloaded in parallel from the test output port o of each of
the wc wrapper chains.
4. Core terminal classification: Based on their role in the
test operation, core terminals are classified. The classifi-
cation determines the actual wrapper design in Step 5 (i.e.
the type of wrapper cell for the terminal, the position of
the wrapper cell in a wrapper scan chain, and the control
signals to the wrapper cell). The core terminal classification
is described in more detail in Subsection 4.2.
5. Actual wrapper design: Based on the outcome of the
core terminal classification, the wrapper is instantiated,
according to the following sub steps.
† Assign wrapper cells to individual core terminals, as
described in Subsection 4.3.
† Partition and order the wrapper cells and core-internal
scan chains over the wc wrapper chains, as described in
Subsection 4.4.
† Connect the control logic to the various wrapper cells.

4.2 Core terminal classification

Conventional wrapper design [17] distinguishes four classes
of core terminals: functional inputs (FI), functional outputs
(FO), scan inputs (SI), and scan outputs (SO). In the new
approach, in which test data reaches the core via reused
functional protocol ports, we add eight new classes, for
the terminals of the functional protocol ports.

† SDI, SDO: Selected data inputs and outputs, that is the
data terminals of the functional protocol port that have
been selected to serve as test input (output) and carry
actual stimulus (response) data.
† RSDI, RSDO: Remaining selected data inputs and
outputs, that is those (w(i) mod wc) data bits of the selected
IET Comput. Digit. Tech., Vol. 1, No. 3, May 2007
test input port i and (w(o) mod wc) data bits of the selected
test output port o that carry unused data.
† DI, DO: Data inputs and outputs, that is the data term-
inals of the remaining functional protocol ports not selected
to carry test data.
† CI, CO: Control inputs and outputs, that is the non-data
terminals of all functional protocol ports.
† FI, FO: Functional inputs and outputs, that is, all func-
tional terminals that are not part of any functional protocol
ports.
† SI, SO: Scan inputs and outputs.

The twelve classes provide a complete partitioning for all
digital data terminals of the core, that is all classes are
mutually exclusive and their union equals all terminals.

The classification of the functional protocol port term-
inals of the example in Fig. 2 is shown in Table 1. For
both ports, the dtl_wr_data[31:0] terminals are
selected as test input (output) ports and hence are classified
as SDI and SDO respectively. Assuming wc ¼ 3, both
selected ports have (w mod wc) ¼ (32 mod 3) ¼ 2 unused
terminals, say dtl_wr_data[31:30], which are then
respectively moved into the RSDI and RSDO classes. The
dtl_rd_data[31:0] terminals are not selected as test
input and output ports, and hence are left as DI and DO.
The sets CI and CO include all control terminals, that is
all command signal group terminals and the valid and
accept signals of the write and read signal groups.

4.3 Wrapper cell design and assignment

In our wrapper, we use two types of IEEE Std. 1500 compli-
ant wrapper cells. All terminals use a ‘regular’ wrapper cell,
except for the CO-type terminals, which use a special
variant of the ‘regular’ wrapper cell. Any IEEE Std. 1500
compliant wrapper cell can serve as a ‘regular’ wrapper
cell. We prefer IEEE Std. 1500 wrapper cell

Fig. 4 Implementation of wrapper cells (a) WC_SDI_COI and
(b) WC_SDI_COT_G
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Table 2: Control generator parameters for test output port DTL.MMBD.I.RW

Terminal Parameters(v, p) Description

dtl_cmd_valid (1, s(o)� p(o)) Every s(o) words, a new command is issued

dtl_cmd_addr[31:0] ‘0’ ¼ (0, 1) Address is not used and hence kept at ‘0’

dtl_cmd_read ‘0’ ¼ (0, 1) Only the write side of this port is used and hence read ¼ 0

dtl_cmd_blocksize[6] (s(o), 1) Block size is s(o)

dtl_wr_valid (1, p(o)) Every p(o) clock cycles, a new word with test responses is available

dtl_rd_accept ‘0’ ¼ (0, 1) The read size of this port is not used and hence accept ¼ 0
WC_SD1_COI [18], as depicted in Fig. 4a. This wrapper
cell is small (one flip-flop only) and the combined activation
of INTEST and EXTEST modes guarantees full test
coverage of the wrapper cell itself, as the captured signal
is tapped off after the functional multiplexer.

The CO-type core terminals require a special variant of
the ‘regular’ wrapper cell because they need to assure
that, as far as the on-chip bus or NOC is concerned, also
in test mode, the functional port protocol is handled as
normal, such that the transport of test data is not interrupted.
For example, the valid/accept handshakes of the
command, write, and read groups of a DTL port need to
be completed as usual. The special wrapper cell for
CO-type terminals consists of a generic part and a terminal-
specific part. The generic part is a guarded variant of the
‘regular’ wrapper cell. For our preferred wrapper cell
WC_SD1_COI, the guarded variant is IEEE Std. 1500
wrapper cell WC_SD1_COI_G as depicted in Fig.4b.
Its functional output can be set to the value of signal
prot-value. The circuitry that generates prot-value
is specific for each CO terminal.

The generic version of the control generator has a periodic
output behaviour, which is characterised by a binary-coded
output value v and a period p. For p – 1 consecutive clock
cycles, the output value is �v, while for the next clock cycle,
the output is v. The hardware implementation uses a
simple counter. Some CO terminals require hard-coded
‘0’or ‘1’ signals; this is captured by (v, p) ¼ (0, 1) and
(v, p) ¼ (1, 1), respectively. The control generator
implementation for these signals uses tie-off-cells.

Table 2 describes for the selected test output port of our
example in Fig. 2 which output signals are required on its
CO-type terminals in order to keep the functional port pro-
tocol running. The port is used as an output via its
dtl_wr_data terminals, and hence dtl_cmd_read is
kept at a hard-coded ‘0’. Every p(o) clock cycles, a new
word with test responses is available for parallel read-out
from the scan chains. To write this word to the interconnect
dtl_wr_valid is ‘l’ every p(o) clock cycles. The speci-
fied bandwidth bout(o) is achieved for a given block size
s(o). Hence, the binary six-bit equivalent of s(o) is output
on dtl_cmt_blocksize[6]. Every (s(o) � p(o))
cycles, a block of s(o) words has been output, and this
initiator port should issue a new command, in order to
instruct the bus or NOC to accept another block. Terminals
dtl_cmd_addr[31:0] and dtl_rd_accept are not
used, and hence kept at hard-coded ‘0’.

4.4 Partitioning and ordering of wrapper chain
items per wrapper chain

Wrapper chains are made up from wrapper cells and
core-internal scan chains. We need to construct wc
wrapper chains, but typically many more than wc wrapper
chain items exist. Hence, we need to partition the wrapper
cells and core-internal scan chains over the wc wrapper
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chains, and subsequently determine the order of the items
per wrapper chain. Our approach to do this is a modification
of the conventional wrapper design optimisation algorithm
of [17].

In conventional wrapper design, the test length Tconv for a
wrapped core is defined as

Tconv ¼ (1 þ max (si, so)) � pat þ min (si, so) (4)

where pat denotes the number of test patterns, and si and so
denote the scan-in and scan-out length for the wrapped core,
respectively [17]. To minimise Tconv, both si and so must be
minimised. All wrapper input cells and all core-internal
scan chains participate in a scan-in-operation and hence
might contribute to si; likewise, all wrapper output cells
and core-internal scan chains participate in a scan-out oper-
ation and therefore might contribute to so. The conventional
partitioning algorithm in [17] first addresses the NP-hard
problem of partitioning the core-internal scan chains over
the available number of to-be-constructed wrapper chains,
before partitioning the wrapper input and output cells.
This approach aims to minimise both si and so. The sub-
sequent step of ordering of wrapper items per wrapper
chain is done such that the wrapper input cells are followed
by the core-internal scan chains, which in turn are followed
by the wrapper output cells. A schematic view of the result-
ing conventional wrapper chain is depicted in Fig. 5a.

A schematic view of the wrapper chains resulting from
our new wrapper design approach is shown in Fig. 5b.
The main differences are formed by the category of SDI
wrapper input cells, through which stimuli are loaded into
the wrapper chain in a parallel fashion, and the category
of SDO wrapper output cells, through which responses are
unloaded from the wrapper chain in a parallel fashion.

† The test stimuli of a test pattern arrive at regular intervals
of p(i) clock cycles at the SDI wrapper input cells. All of them
are shifted into the wrapper chains, apart from the last word,
which can be directly consumed in parallel for testing.

Fig. 5 Schematic view of conventional (a) and new (b) ordering
of wrapper items per wrapper
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Similarly, for each test pattern the first word of responses is
directly transported away in parallel from the SDO wrapper
output cells, after which the subsequent words are shifted
out of the wrapper chains at regular intervals of p(o) clock
cycles. Hence, the test length Tnew is redefined as

Tnew ¼ (1 þ max (ti, to)) � pat þ min (ti, to) (5)

with

ti ¼
si
p(i)

� �
� 1

� �
� p(i) þ 1 (6)

to ¼
so
p(o)

� �
� 1

� �
� p(o) þ 1 (7)

† In order to minimise the test length Tnew, the wrapper
items should be partitioned such that all SDI cells and
all SDO cells are evenly distributed over the wc
to-be-constructed wrapper chains.
† For wrapper item ordering, it is important that all SDI cells
are placed at the start of the wrapper chain, as they are the
entry point of stimuli into the wrapper chain, otherwise,
some wrapper chain items are unreachable for scan access.
Similarly, all SDO cells should be placed at the end of the
wrapper chain.

Algorithmically, the partitioning of wrapper items is done
in a five-step approach, which is clearly based on the three-
step approach in [17].

1. Assign the core-internal scan chains to the wc wrapper
chains, such that the maximum sum of scan lengths assigned
to a wrapper chain is minimised. Algorithms like LPT and
COMBINE can be used [17]. The resulting partition is
named Ps

2. Assign the wrapper input cells in RSDI < DI < CI < FI
to the wc wrapper chains on top of Ps , such that the
maximum scan-in length of all wrapper chains is mini-
mised. The resulting partition is named Pin

wc

3. Assign the wrapper input cells in SDI to the wc wrapper
chains on top of Pin

wc. The resulting partition is named Pin .
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4. Assign the wrapper output cells in RSDO < DO <
CO < FO to the wc wrapper chains on top of Ps , such
that the maximum scan-out length of all wrapper chains is
minimised. The resulting partition is named Pout

wc

5. Assign the wrapper output cells in SDO to the wc
wrapper chains on top of Pout

wc . The resulting partition is
named Pout.

5 Experimental results

5.1 Simplified illustrative example

We have implemented our wrapper design for a simplified
illustrative example core and NOC. The NOC is an
automatically generated, simple Æthereal network [8], con-
sisting of one router and four network interfaces, based
on a 32-bits data DTL protocol [2]. As depicted in Fig. 6a,
two NOC ports connect to the ATE source and sink,
respectively, while the two other ports connect to the CUT.

The CUT has two DTL ports, Port 1 and Port 2, with 133
terminals each and a functional data word width w ¼ 32.
Besides the two ports, the CUT has no other functional
terminals. The CUT has five internal scan chains of
lengths 123, 123, 50, 50, and 23 flip-flops, and pat ¼ 10.
Port 1 is selected to receive stimuli and Port 2 is selected
to send out responses. The test data flow for stimuli is
from the source through the NOC into the CUT via
Port 1, while test responses flow from the CUT’s Port 2
via the NOC into the sink. bin(1) ¼ 1600 Mbits/s,
bout(2) ¼ 2400 Mbits/s, and f ¼ 500 MHz, and (as per
Equation (2)), we can afford a wrapper with wc ¼ 3
wrapper chains. As per Equation (3), test data arrives with
period p(1) ¼ p(2) ¼ 10 clock cycles. For Port 1:
jSDIj ¼ 30, jRSDIj ¼ 2, jDOj ¼ 32, jCIj ¼ 62, and
jCOj ¼ 7. For Port 2: jSDOj ¼ 30, jRSDOj ¼ 2,
jDIj ¼ 32, jCIj ¼ 7, and jCOj ¼ 62. The wrapper chain
scan lengths are si ¼ so ¼ 168. The resulting wrapper
design is shown in Fig. 6b. As per Equation (5), test
length Tnew ¼ 1781 clock cycles. Note that this represents
a 4.1% test length reduction compared to a conventional
wrapper design with three wrapper chains, which would
Fig. 6 Illustrative example consisting of a NOC and CUT and b the detailed wrapper design for the CUT
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have a test length Tconv ¼ 1858 clock cycles. This reduction
is because of the fact that the last stimulus word of each
pattern is loaded in parallel into the SDI wrapper cells
and does not require any further shifting in, and likewise
the first response word of each pattern is loaded in parallel
into the SDO wrapper cells.

Our example was implemented in register-transfer-level
VHDL and verified through simulation. The experiment
showed a modest area increase for the new wrapper in
comparison to a conventional wrapper. The number of gate-
equivalents required to implement all wrapper cells went
from 2910 to 3000 (an increase of þ3.1%), while 489 gate-
equivalents were required to implement the additional
control logic to complete correct protocol operation. The
total relative wrapper area increase was þ19.9%. Note
that wrappers are typically small compared to the overall
SOC size, and hence, this area impact is negligible at the
SOC level.

5.2 Wrapper area and core test length impact

In this section, we present wrapper area and core test length
results from our new wrapper design approach in compari-
son with conventional wrapper design, obtained on a large
subset of cores in the ITC’02 SOC test benchmarks [38].
A wrapper design and optimisation tool as described in
this paper has been developed in Cþþ; it uses the
COMBINE wrapper design routine [17] as a basis. The tool
calculates the required number of gate-equivalents to
design the wrapper and the resulting test length in clock
cycles. We do this for both the conventional wrapper
design approach, which relies on a dedicated TAM, as
well as for our new wrapper design approach, which
reuses the functional protocol ports of the core.

The cores in the ITC’02 benchmarks do not have func-
tional protocol ports (or, at least, they are not specified),
while our method critically depends on their presence.
Hence, we assume that every core has two DTL ports,
of which one serves as a test input and the other as a
test output. The assumed DTL test input port has 32
SDI terminals, 45 CI terminals, and 2 CO terminals.
The assumed DTL test output port has 32 SDO terminals,
2 CI terminals, and 45 CO terminals. For the two DTL
ports, each core needs 79 input terminals and 79 output
terminals. Some of the 186 cores in the ITC’02 bench-
marks do not have that many terminals and hence are
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not considered in our evaluation. Cores with
bi-directional terminals are also not considered. This
still leaves 42 cores for our experiments, which are
listed in Table 3.

We assume that bandwidths bin(i) and bout(o) and test
frequency f are such that the maximum affordable
number of wrapper chains wc ¼ 16. As
w(i) ¼ w(o) ¼ 32, wc ¼ 16 implies that p(i) ¼ p(o) ¼ 2.
However, it is also possible to implement fewer, but
longer wrapper chains, which means that we are not
using the bandwidth to its maximum, and consequently
accept a longer test length.

For all 42 cores considered and for a number of wrapper
chains wc ranging from 1 to 16, we have calculated the
number of gate-equivalents required to implement a
wrapper and the corresponding test length in clock
cycles, for both the conventional wrapper design algorithm
[17] and our new approach. In total, this involves
42 � 16 � 2 ¼ 1344 wrapper calculations. Fig. 7 shows
the average relative gate-equivalent count increase and the
relative test length increase. The horizontal axes refer to
cores with numbers in the order in which they are listed
in Table 3.

Fig. 7a shows the increase in the number of gate-
equivalents required to implement the new wrapper, relative

Table 3: List of considered ITC’02 SOC test benchmarks
[17] cores

SOC Cores considered

a586710 2, 3, 4, 7

d281 7

d695 2

f2126 1, 2

g1023 1, 2, 3, 4, 10, 11, 12, 14

h953 1

p22810 27

p34392 2, 10, 18

p93791 10, 32

q12710 1, 2, 3, 4

t512505 1, 2, 4, 8, 9, 14, 15, 16, 17, 23, 24,

25, 26, 29, 31
Fig. 7 Proposed new wrapper design, compared to the conventional wrapper design, for 42 ITC’02 SOC test benchmark cores and
wc [ [1. . .16]

a Average relative wrapper’s gate-equivalent count increase
b Relative core’s test length increase
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to what was required for a conventional wrapper design.
These numbers show only around 1% variation for
varying values of wc, and hence we have decided to show
the average increase for 1 � wc � 16. The average
wrapper area increase over all 672 cases is 14.5%, which
is negligible at the SOC level. Fig. 7b shows that the test
length impact of the new approach varies between 227.4
and þ7.2% with, on average over all 672 cases, a test
length decrease of 3.8%.

6 Conclusion

In this paper, we have proposed a core test wrapper design
that allows test data to be transported via functional protocol
ports, such as AXI, DTL, and OCP ports. This approach
allows test data transport via an existing functional
on-chip bus, NOC, or other functional interconnect. We
have assumed that the functional interconnect connects to
the test source and sink, be it either an external ATE, or
on-chip BIST engine. We have required that the bus,
NOC, or other functional interconnect provide guaranteed
bandwidth and constant latency, which is necessary to
operate streaming scan tests. We have exploited the avail-
able functional bandwidth as much as possible in order to
minimise the core’s test length.

Our new wrapper design no longer relies on a dedicated
TAM, and hence has no dedicated TAM ports. Instead,
the test data is transported via selected functional protocol
ports. This requires careful wrapper design, such that the
number of wrapper chains is tuned to the available test
data bandwidth; the functional protocols are correctly exe-
cuted while the test is running; and the protocol port
wrapper cells are positioned at the head and tail of the
various wrapper chains.

Although other papers have described the reuse of func-
tional buses and NOCs as a TAM, no previous papers
have worked out the details of the wrapper design for this
scenario. The benefits of our approach are that no dedicated
TAM is required, that test access to the embedded cores
is guaranteed, and that the test expansion becomes
simpler. By using guaranteed communication services, our
approach hides any internal details of the functional inter-
connect. For the functional interconnect, the transport of
test data is just another application, enabling unchanged
re-use of the functional interconnect design flow.

The implementation of the new wrapper design for 672
example cases based on the ITC’02 SOC test benchmarks
showed an average wrapper area increase of 14.5%, com-
pared to a conventional wrapper. Note that at the SOC
level, this area increase is negligible. The same 672
example cases show an average reduction of test length
of 3.8%.
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