
Communication-centric SoC Debug
using Transactions

Bart Vermeulen�, Kees Goossens�y, Remco van Steedenz, and Martijn Bennebroekx�NXP Semiconductors Research / SOC Architectures and Infrastructure
5656 AE Eindhoven, The Netherlands, Email:fBart.Vermeulen,Kees.Goossensg@nxp.comyComputer Engineering, Technical University Delft, The NetherlandszTestable Design and Test of Integrated Systems, Technical University of Twente, The NetherlandsxPhilips Research, IC Design Group, Eindhoven, The Netherlands

Abstract— The growth in System-on-Chip complexity puts pressure
on system verification. Due to limitations in the pre-silicon verification
process, errors in hardware and software slip through to thestage when
silicon and the complete software stack are first brought together. Finding
the remaining errors at this stage is becoming increasing difficult. We
propose that debugging should be communication-centric atfirst and
based on transactions. We combine run-time, on-chip abstraction of
system data to the transaction level, with system-level debug control
over the communication infrastructure. We prove our concepts and
architecture with a gate-level implementation that includes a Network-
on-Chip, breakpoint monitors, clock and reset control (allprogrammable
through an IEEE 1149.1 TAP), and give a quantification of the associated
hardware cost.

I. I NTRODUCTION

The functional requirements for high-volume, electronic appli-
ances have been and continue to be the main drive behind the
introduction and use of process technologies with ever decreasing
feature sizes. Because of the consumer demand for more features
in a single product, and for cost benefits, the number of transistors
that are integrated on a single die doubles every 18 months. Over
three decades the semiconductor industry has sustained this increase
in transistor density. This large number of transistors is used to
implement both programmable processor cores, which can execute
embedded software, and dedicated peripheral functions, which either
implement interfaces for standard communication protocols (e.g.
USB, I2C, and PCI Express), or hardware accelerators for common
and configurable processing tasks (e.g. MPEG2 video and MP3 audio
encoding and decoding, audio up- and down-sampling, and video
scaling).

The industry has however not only seen an exponential increase in
number of transistors per die, but also a similar exponential increase
in the number of source code lines in the embedded software stack,
required to access and control all device features in a user-friendly
manner. These exponential trends are putting a significant burden
on system verification [1]. On the one hand because the number
of system use cases is rapidly growing, and on the other hand
because the Time-to-Market is under continuous pressure toensure
newer products are delivered to the market on time and ahead of the
competition.

During pre-silicon verification, e.g. using simulation or emulation,
models have to be used that may be inaccurate with respect to the
physical characteristics of the final silicon. Verificationresources
always lag by one processor generation and/or process technology,
forcing a trade-off between modeling accuracy and number ofuse
cases that can be extensively verified. As a result, errors inhardware
and software slip through to the stage when silicon and the complete
software stack are first brought together. Finding the remaining errors
at this stage is becoming increasingly difficult. The high level of

integration causes a significant reduction in internal observability,
hampering debug methods in observing and determining the root
cause of any undesired behavior. A comprehensive system debug
methodology is required to effectively and efficiently find these root
causes. As embedded systems consist of embedded software and
hardware, the debug requirements for both software and hardware
need to be considered.

Support for debugging software on a single processor core has been
in use for a very long time. With increasing integration, solutions are
now becoming commercially available that support the debugging
of software applications, distributed over several, possibly heteroge-
neous processor cores [2], [3]. These solutions provide rudimentary
multi-processor debug features, such as cross-breakpoints (i.e. routing
a breakpoint from one processor core to one, a subset of, or all other
processor cores), and real-time processor trace (to outputperformance
statistics on for example the number of cache misses, CPU stall
cycles, and conditional jumps that change the software execution
flow). The amount of system-level debug support required to facilitate
debug of software that runs on multiple processor cores is however
still a topic of research. To determine how much an application
developer really benefits from these debug support functions still
requires further study, as systems that incorporate them are only now
appearing in the market.

Many hardware debug features have been reported on in the past
[4], [5]. The two most commonly used features are (a) non-intrusive
hardware trace, and (b) run-stop control. In the non-intrusive, hard-
ware trace method, key signals inside the hard-wired IP cores are
selected at design time, and brought out onto dedicated chippins via
a dedicated interconnect. Alternatively these signals canbe internally
stored in an embedded trace buffer, for read-out at a later point in
time. The advantages of this method is that the behavior of key
internal signals can be observed in real-time, preventing especially
timing bugs from escaping detection. A clear drawback of this method
is that these signals need to be selected up-front, at SoC design
time, limiting the flexibility in observability once silicon has been
manufactured. Research is currently on-going to help determine the
best signals to select for observation using this real-timetrace method.
It is to be expected that this hardware trace method will in future
SoCs be merged with the real-time processor trace method described
above, to reduce the amount of dedicated, on-chip routing resources
required for debug.

Figure 1 shows a high-level overview of traditional run-stop
debug methods. Shown are two IP cores, with a communication
interconnect. A breakpoint is programmed in one of the monitors
observing the IP to determine the point in time at which the execution
of that IP core has to be stopped. The rest of the system is stopped
in response using a debug control interconnect. Once the system has



stopped its execution, intrusive access methods can be applied to
query and, if required, modify the system state.

Fig. 1. Traditional Computation-centric Debug Control

One popular method for intrusive access is the re-use of the
manufacturing test scan chains [6]. The reason for the popularity
of this method lies in the fact that these scan chains (1) are already
required for high-quality manufacturing test, and (2) can be easily
accessed in a system environment via a standard IEEE 1149.1 Test
Access Port (TAP) [7] with only a small amount of additional,on-
chip hardware. After state examination, the system execution can be
resumed, or restarted. Obtaining state dumps at several points during
the execution of a failing scenario allows engineers to morequickly
zoom in on the time and location of the failure’s root cause. This
method however suffers from drawbacks related to the low-level at
which the debug information becomes available.

Firstly, when the scan chains are used as the access mechanism, the
complete chip state is returned as a large number of individual bits.
Debug tools are then required to back-annotate and help correlate
this data to the design database and abstraction levels designers are
familiar with. Advances have been made to bring this information
back to the RTL and system transaction level [8], [9], [10], which
makes the interpretation of this data and the subsequent explanation
of any undesired system behavior easier. Secondly, this information
is often extracted at the level of individual clock cycles. Thirdly,
modern SoCs typically contain multiple clocks, running at different
frequencies and phases. One problem that has to be addressedat this
low level is the non-determinism and divergence in state data between
multiple runs using the same breakpoint setting [11], [12].

In this paper, we contribute a new, run-control-based debug
methodology that remedies this non-determinism, by combining run-
time, on-chip abstraction of system data to the transactionlevel
with appropriate, system-level debug control over the communication
infrastructure. This methodology forms a natural complement to the
existing, state-of-the-art methods that debug software and hardware in
isolation, and when combined provide the foundation for a consistent
and complete SoC software and hardware debug framework.

The remainder of this paper is organized as follows. SectionII
present the two key concepts of our SoC debug approach. In
Section III we introduce the key components of a Network-on-Chip,
which in Section IV is used to explain how our approach improves the
debugability of SoCs. Finally, this paper concludes with Section V.

II. T RANS-ACTION-LEVEL

COMMUNICATION -CENTRICDEBUG

Existing software and hardware debug methods cannot be effi-
ciently combined in the same debug framework due to the large
distance between the abstraction level used for debugging by the
application software programmer and the one used by the hardware

designer. The application software programmer analyzes and debugs
erroneous behavior by examining an application’s source code in
a software debug tool that provides (1) a view of the state of
the programmer’s model of the processor (e.g. including register
file content, and condition flags), (2) processor execution control
(e.g. start, stop, and single step at the level of source codelines),
and (3) a limited view on the state of the hard-wired peripherals,
restricted to those peripheral registers accessible from the processor
through, for example, MMIO reads and writes. The hardware designer
debugs erroneous behavior of a hard-wired peripheral preferably by
examining waveforms traces of internal signals, states of internal state
machines, and, when scan chains are reused [6], even individual
flipflop bits. A hardware debug tool can correlate these bits to
appropriate flipflops and back-annotate this data to either gate-level
or RTL descriptions of the design [10].

A. Transaction-level Debug

The recent introduction of the concept of transactions for pre-
silicon system verification [13] provides an intermediate abstraction
level between those traditionally used by the application programmer
and hardware designer. Using the transaction level, software engineers
and hardware designers can share a common abstraction levelat
which they can both contribute to the process of locating theroot-
cause of a system error for SoC debug.

For software engineers, the transaction level is the lowestlevel at
which the embedded processors can be programmed by issuing read
and/or write instructions. These read and write instructions cause
transactions on the on-chip communication infrastructure, through
translation to transaction commands using the appropriatecommu-
nication protocol. The communication architecture transports these
commands to one or more targets, which implement the actual write
and/or read operation. As such, there is a natural correspondence
between read and write instructions in software, and transactions
within the system’s communication infrastructure.

A hard-wired target is designed to respond to read and write
commands on its communication interface that is connected to
the system’s communication infrastructure. When a read or write
command is delivered to the target, the hardware designer knows
how this target should react to this command. For example, when
the target in question is a memory core, and the command is a write
command, then the appropriate reaction of the target to the delivery of
this write command is to store the command’s data at the command’s
address.

The system can be viewed at the level of transactions, with the
processors initiating read and write transactions, peripherals reacting
to these transactions when they are delivered, and the communication
infrastructure linking the initiators and targets together and transport-
ing these transactions. Each transaction has an associatedinitiator
and intended (set of) target(s). Inspecting transactions and detecting
either missing transactions or transactions with incorrect attributes
(such as address or data values), enables a quick identification of a
suspect initiator and suspect target(s). By extending the debug scope
further to include the communication infrastructure, the transaction
level does not only allow the identification of the suspect initiator
and target(s), but also a suspect path through the communication
infrastructure. This identification allows for a large set of on-chip IP
cores to be quickly discarded as the potential source of the problem,
thereby greatly speeding up the debug process.

What remains is the required control over the communicationpath
between the suspect initiator, through the communication infrastruc-
ture on the suspect communication path, to the suspect target(s). In



case of read instructions, also the complete return path hasto be con-
sidered. To reach this point in the debug process, our approach relies
on appropriate execution control of the communication infrastructure
itself.

B. Communication-centric Debug

When the abstraction level for software and hardware debug is
raised to the transaction level, it turns out to be extremelyuseful to
extend the on-chip debug execution control to include not only the
programmable processors, but also the communication infrastructure
(see Figure 2).

Fig. 2. Communication-centric SoC Debug

Control over the communication infrastructure allows finer-grain
control over the generation, transportation, and deliveryof transac-
tions, thereby helping in the localization and isolation ofsuspect
components. Figure 2 shows a (set of) monitor(s) to specifically
observe the transactions that occur inside or at the edge of the
communication infrastructure. Upon the detection of a transaction
with specific characteristics (e.g. with a specific destination target,
data value, address value, or frequency of occurrence), themonitor
can signal to the debug control unit that the interconnect has to stop
the transportation of transactions. When this breakpoint occurs, the
communication infrastructure no longer accepts any read orwrite
commands from the initiators (i.e. it prevents transactiongeneration),
and it no longer delivers any read and write transactions to the tar-
geted peripherals. It is up to the implementation of the communication
infrastructure whether it still transports on-going transactions within
the interconnect or whether this is also stopped.

In a properly designed system, i.e. where the SoC communication
infrastructure uses communication protocols based on handshakes to
interface with initiators and targets (as the commonly usedAXI [14],
OCP [15], and DTL [16] protocols do), each individual IP core
will automatically stop its execution as well after the commu-
nication infrastructure has stopped. On the next interaction with
the communication infrastructure, the IP core no longer is granted
permission to communicate. As such all IP cores, and in fact the entire
system reaches a functionally idle mode, where initiators and targets
are waiting for the acceptance, respectively delivery of commands
and data by the communication infrastructure. This acceptance can
subsequently be controlled from, for example, external SoCdebugger
software, allowing very fine-grain, transaction-level control over the
communication that takes place inside the SoC.

When the entire system is held in a functionally idle mode, it
is safe to stop the functional clocks without danger of upsetting
any functional communication. After the SoC has been completely
stopped, i.e. when all transaction traffic is functionally halted, and the
functional clocks are switched off, a core-based scan method [17]
can be applied to efficiently inspect the complete internal state of

the system to facilitate debugging. Such an architecture reuses the
available IEEE 1149.1 TAP and associated controller [7] to configure
all on-chip scan chains into a single, serial shift register. The content
of this serial register can be scanned out through the TAP’s TDO
pin. The SoC state data that is obtained in this manner can be back-
annotated to the SoC’s design database (at gate-level or RTL) using,
for example, the method described in [10].

III. N ETWORK-ON-CHIP

To validate our concepts on transaction-level, communication-
centric debug, we applied our methodology to an SoC with a
Network-on-Chip [18] as the communication infrastructure. A NoC
was chosen for the following reasons:� NoCs are commonly considered to be the most promising

solution for the scalability issues in the SoC interconnectfor
deep sub-micron process technologies.� Choosing a NoC as the SoC communication infrastructure helps
magnify any problems related to methods that want to control
the on-chip communication infrastructure. As such, a NoC more
clearly exposes any problems with parallelism, latency, and
scheduling, that might not become apparent in a single or multi-
layered bus system.� A NoC-based solution for efficient and effective debug com-
munication control can more readily be ported to a single or
multi-layered bus system, than the other way around.

A generic block diagram of the NoC architecture we used is given
in Figure 3.

Fig. 3. Generic block diagram of an Æthereal NOC.

In Figure 3, a master IP core can initiate a transaction, contain-
ing command (cmd) and write data (wdata) and communicate it
to a Network Interface (NI) using a particular interface protocol.
The NI packs the transaction information in one or more network
packets for transport through the network. These network packets
are subsequently communicated from the NI to a set of routers.
The routers are responsible for delivering the network packets to
the NI, connected to the transaction’s target IP core. The NIat
the destination collects these network packets and reconstructs the
original request made by the master IP core. This reconstructed
request is applied to the communication interface of the target IP core
using an appropriate interface protocol. The same process is followed
for possible responses (rdata) from the target slave IP core. These
responses are communicated via a slave-side NI and result innetwork
packets that are sent to the master IP core, through the routers and
master NI. The propagation of packets through our network occurs
at the granularity of flits. Each flit contains three 32-bit words with
2-bits of sideband information. When available, a flit is transported
from one NoC component to another in three clock cycles. Thisthree
clock cycle latency is relevant in relation to the distribution of key
debug signals, as we discuss below.



Figure 4 shows the hardware modifications and extensions required
to apply our transaction-level, communication-centric debug method-
ology to an SoC with this generic NoC architecture.

Fig. 4. Example NoC used in experiments.

Note that Figure 4 has intentionally been simplified, as it only
shows the communication path from a single master IP core, through
two network interface and two routers, to a single slave IP core. The
return path naturally also exists, containing similar debug logic, and
in practice, several more master and slave IP cores would typically
be connected to the NoC, and more NIs and routers would be used
inside the NoC.

NoC breakpoint signals are generated by a set of breakpoint
monitors that monitor network connections [19], [20] and can be
programmed either via an IEEE 1149.1 TAP or via the network itself.
Monitoring inside the NoC helps reduce the number of monitors
required when the number of NI ports is large, and also increases
debugability of the NoC itself. Naturally monitors can alsostill be
placed on the interface between the IP cores and the NoC. A stop
module is added per NoC router. The connectivity of the stop modules
uses the same topology as the router network, which allows the
detection of a breakpoint condition anywhere in the networkto be
distributed to all stop modules as quickly and efficiently aspossible.
A fast distribution of the breakpoint signal is essential tominimize
the chance of loosing, potentially crucial, debug information. In our
implementation, the breakpoint signal travels from the breakpoint
module, through the stop modules, to all network interfaces, at a
rate of one clock cycle per network component. This is the highest
possible transfer rate without imposing special constraints on the
placement of pairs of network components in the design layout. Given
that the network data itself is transfered with a latency of three clock
cycles per network component, our implementation ensures us that
we can always stop the NoC with the data that causes the breakpoint
condition still present in the NoC itself. This is necessarywhen we
want to validate and debug the delivery and subsequent processing
of that data by its target slave IP core.

Inside the network interfaces, the breakpoint signal prevents trans-
action requests from any master IP core from being accepted (by
keeping the accept signal inactive), and causes any data forany slave
IP cores to be withheld (by keeping the valid signal inactive). This
essentially freezes the functional communication betweenthe IP cores
and the NoC.

Some breakpoint monitors are traditionally added to the master, and
occasionally also slave, IP cores to generate a breakpoint signal on

a programmable, internal condition. Known examples are instruction
and data address breakpoints in processor cores. In our approach these
monitors are reused, and their breakpoint output signals combined
with the breakpoint signals from the NoC. These breakpoint signals
are then processed in a global Cross Trigger Module (CTM), which
may either halt or stop one or more SoC components. Halting a
component refers to keeping the components in a functionally idle
mode, whereas stopping the component refers to gating its functional
clock(s). Halting for example a microprocessor could involve forcing
it to execute No-Operation (NOP) instructions. Halting a NoC could
involve freezing the functional communication between theIP cores
and the NoC, as we describe above.

Within the NoC we make a further distinction, on whether the
Network Interfaces stop accepting data from the initiatorsonly or
whether they also stop providing data to their targets. We will refer
to the former method as transaction-level stopping, and to the latter
method as message-level stopping. Message-level stoppingis more
fine-grain than transaction-level stopping, and can be usedduring
debug to determine which SoC component produces incorrect data
or no data at all; the master IP core, the NoC, or the slave IP core.

Once all components are in a functionally idle mode, their clocks
can be safely switched off. This is necessary when the scan chains
are to be used to scan out the system state. Activating the scan chains
while the functional clocks are still running, might cause glitches in
the clock or data signals that corrupt the system state and render it
useless. By first switching the clocks off, this condition isavoided.
Figure 5 shows the scan-based debug architecture that is used to
implement this system state access mechanism.

Fig. 5. Scan-based Debug Architecture.

To access the scan chains, the circuit mode is switched from
functional mode to a test mode using a Test Control Block (TCB),
accessible from an IEEE 1149.1 TAP. Once the test mode has been
activated, all internal scan chains are concatenated into one long shift
register that behaves as a user-defined Data Register of the chip-level
TAP controller. A Clock Control Slice (CCS) allows the application
of the TAP’s TCK clock signal to the functional flipflops, which
causes this register to shift its system state out onto the TAP’s TDO
pin on subsequent TCK cycles.

Figure 5 also shows our method for programming the breakpoint
monitors through the use of a Test Point Register (TPR), which is
another user-defined Data Register of the chip-level TAP controller,
and the possibility to force a system stop from the IEEE 1149.1 TAP
by asserting the jtagstop signal from the TAP controller, using a
special TAP instruction.



IV. EXPERIMENTAL RESULTS

We have integrated our transaction-level communication-centric
debug methodology in the Æthereal design flow. When an Æthereal
NoC instance is generated from its high-level specification, the flow
now also automatically instantiates the required debug modules.
Breakpoints can be programmed in the NoC breakpoint monitors
through an IEEE 1149.1 TAP.

Figure 6 shows three sets of signal traces, each of which shows
the debug architecture in action in different use cases. Themaster IP
core communicates with a slave IP core through DTL ports, viatwo
NIs and two routers, as is shown in Figure 4. The signal tracesshow
the request and response signals at the master-side NI port (MNIP)
and at the slave-side NI port (SNIP).

The signal trace at the top of Figure 6 showsnormal operation
where the MNIP accepts four commands from the master IP core,
as is shown by the four marked pulses on the dtlcmd accept signal
immediately below the clock signal. The first and third command
are write commands (as dtlreadcmd is low), the other two are read
commands. Each command transfers eight data words (wdata, and
rdata respectively). The write command and data are transported from
the MNIP to the SNIP and offered to the slave (dtlcmd valid is
high), as illustrated by the solid arrows. Similarly, as is illustrated
with the dashed arrows, the read command is accepted by the
MNIP, transported to the SNIP and then offered to the slave IPcore
(dtl cmd valid is high). The slave responds with read data (“rdata”),
which is transported and offered to the master (dtlrd valid). The
master IP core accepts the read data before offering anotherwrite
and read command.

In a transaction-leveldebug scenario (refer to the middle set of
signal traces in Figure 6), the monitor at the router connected to the
slave NI triggers an event and generates a stop signal for allNIs. The
event is raised immediately after the first read command. Nowonly
the master NI reacts to the stop signal (stopin, in dashed circle). Thus
the write and read commands are still offered to the slave, which in
turn reacts as it did during normal operation. The master also still
accepts this read data, and thus finishes all outstanding transactions.
The NI tracks the completion of messages and does not accept any
new commands after the stop event, not even when the master offers
a new write command (dtlcmd valid is high). This is illustrated by
the absence of the second set of write and read commands.

Using the TAP, external debugger software can poll the stateof the
stop modules and the NI’s blocked signal to determine whether there
no longer is any activity in the NoC. The NoC clock is then gated
and replaced by the TAP’s TCK clock signal for subsequent scan out
of the complete SoC state using the scan chains on the TAP’s TDO
pin. This breakpoint detection and scan out phase could unfortunately
not be shown in 6 due to lack of space.

The bottom set of signal traces in Figure 6 shows amessage-level
debug scenario. The same event is raised but now results in a stop
signal to both master and slave NIs. The stop signal originates from
the router that is closer to the slave NI, and therefore reaches the
slave NI earlier than the master NI. As explained, this signal reaches
the slave NI before the write command and data do. As a result,
the message handshake is not initiated, and the NI keeps the write
command and data in its FIFOs and does not offer them to the slave.
This is evident from the absence of a pulse on the dtlcmd valid.

Our debug architecture requires only small changes to the func-
tional architecture, and mainly involves adding the monitors and the
event distribution interconnect. We have synthesized our example
SoC using a commercially-available synthesis tool and a production-
quality 130 nm CMOS technology library. The additional hardware

area cost turned out to be around 4.5% of the NoC area, and less
than 0.2% of the complete SOC area.

V. CONCLUSION

In this paper we addressed the debugging of complex SoCs with
a novel, transaction-level, communication-centric debugmethodol-
ogy. Operating at the transaction level during debug, allows both
application developers and hardware engineers to more easily con-
tribute to the debug process. In addition, by extending existing,
computation-centric debug architectures with debug control over
the communication infrastructure, the difficulties of stopping and
examining a multiple-clock SoC are avoided as functional clocks
can now be safely stopped when the interconnecting communication
infrastructure is functionally idle. We have proven these concepts and
architecture with a gate-level implementation of a small SoC, which
includes a NoC. Signal traces illustrate the capabilities to debug at
both transaction and message level. We are currently extending this
work by further validating these debug concepts on an FPGA NoC
setup. In future we also intend to apply and evaluate this debug
methodology to existing bus-architecture-based SoCs.

REFERENCES

[1] B. Bailey, “A new vision of ’scalable’ verification,”EETimes, Mar. 2004.
[2] CoreSight: V1.0 Architecture Specification, ARM.
[3] R. Leatherman and N. Stollon, “An embedded debugging architecture

for SoCs,” IEEE Potentials, vol. 24, no. 1, pp. 12–16, Feb-Mar 2005.
[4] D. D. Josephson, S. Poehhnan, and V. Govan, “Debug methodology for

the McKinley processor,” inProceedings of the IEEE International Test
Conference. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 451–460.

[5] A. Hopkins and K. McDonald-Maier, “Debug support for complex
systems on-chip: A review,”IEE Proceedings Computers and Digital
Techniques, vol. 153, no. 4, pp. 197–207, July 2006.

[6] K. Holdbrook, S. Joshi, S. Mitra, J. Petolino, R. Raman, and M. Wong,
“microSPARC: A case study of scan-based debug.” inProceedings IEEE
International Test Conference (ITC), 1994, pp. 70–75.

[7] IEEE Computer Society,IEEE Standard Test Access Port and Boundary-
Scan Architecture-IEEE Std 1149.1-2001. IEEE Press, 2001.

[8] Y. Hsu, B. Tabbara, Y. Chen, and F. Tsai, “Advanced techniques for rtl
debugging,” inProceedings of the Design Automation Conference, 2003,
pp. 362–367.

[9] B. Tabbara and K. Hashmi, “Transaction-level modellingand debug of
socs,” inProceedings of the IP SOC Conference, 2004.

[10] B. Vermeulen, Y.-C. Hsu, and R. Ruiz, “Silicon debug,”Test and
Measurement World, pp. 41–45, Oct. 2006.

[11] S. K. Goel and B. Vermeulen, “Hierarchical data invalidation analysis
for scan-based debug on multiple-clock system chips,” inProceedings
IEEE International Test Conference (ITC), Oct. 2002, pp. 1103–1110.

[12] P. Dahlgren, P. Dickinson, and I. Parulkar, “Latch Divergency in Micro-
processor Failure Analysis,” inProceedings of the IEEE International
Test Conference, September/October 2003, pp. 755–763.

[13] B. Tabbara and K. Hashmi, “Transaction level modeling:Verification
leaps ahead,”EDA Tech Forum, pp. 14–17, Mar. 2005.

[14] AMBA AXI Protocol Specification, ARM, June 2003.
[15] OCP International Partnership, “Open core protocol specification,” 2001.
[16] Device Transaction Level (DTL) Protocol Specification. Version 2.2,

Philips Semiconductors, July 2002.
[17] B. Vermeulen, T. Waayers, and S. Goel, “Core-based ScanArchitecture

for Silicon Debug,” inProceedings IEEE International Test Conference
(ITC), Baltimore, MD, USA, Oct. 2002, pp. 638–647.

[18] K. Goossens, J. Dielissen, and A. Rădulescu, “The Æthereal network on
chip: Concepts, architectures, and implementations,”IEEE Design and
Test of Computers, vol. 22, no. 5, pp. 414–421, Sept-Oct 2005.

[19] C. Ciordaş, T. Basten, A. Rădulescu, K. Goossens, andJ. van Meerber-
gen, “An event-based monitoring service for networks on chip,” ACM
Transactions on Design Automation of Electronic Systems, vol. 10, no. 4,
pp. 702–723, Oct. 2005.

[20] C. Ciordaş, K. Goossens, A. Rădulescu, and T. Basten,“NoC monitor-
ing: Impact on the design flow,” inProc. Int’l Symposium on Circuits
and Systems (ISCAS), May 2006, pp. 1981–1984.



Fig. 6. Gate-level signal traces.


