Communication-centric SoC Debug
using Transactions

Bart Vermeuleh, Kees Goosseis, Remco van Steedénand Martijn Bennebroék
*NXP Semiconductors Research / SOC Architectures and tnfictare
5656 AE Eindhoven, The Netherlands, EmgiBart.Vermeulen,Kees.Goossé@nxp.com
TComputer Engineering, Technical University Delft, The INetands
{Testable Desi%n and Test of Integrated Systems, Technic@ketsity of Twente, The Netherlands
3Philips Research, IC Design Group, Eindhoven, The Nethdsla

Abstract— The growth in System-on-Chip complexity puts pressure
on system verification. Due to limitations in the pre-silicm verification
process, errors in hardware and software slip through to thestage when
silicon and the complete software stack are first brought togther. Finding
the remaining errors at this stage is becoming increasing €ficult. We
propose that debugging should be communication-centric afirst and
based on transactions. We combine run-time, on-chip abstion of
system data to the transaction level, with system-level deiy control
over the communication infrastructure. We prove our conceps and
architecture with a gate-level implementation that includes a Network-
on-Chip, breakpoint monitors, clock and reset control (allprogrammable
through an IEEE 1149.1 TAP), and give a quantification of the asociated
hardware cost.

|. INTRODUCTION

The functional requirements for high-volume, electrongpléa
ances have been and continue to be the main drive behind
introduction and use of process technologies with ever edesing

integration causes a significant reduction in internal ol®lity,
hampering debug methods in observing and determining tbe ro
cause of any undesired behavior. A comprehensive systemgdeb
methodology is required to effectively and efficiently firitese root
causes. As embedded systems consist of embedded softwdire an
hardware, the debug requirements for both software andwaaed
need to be considered.

Support for debugging software on a single processor ca®éan
in use for a very long time. With increasing integration,uioins are
now becoming commercially available that support the dgingy
of software applications, distributed over several, gagdheteroge-
neous processor cores [2], [3]. These solutions providémewtary
multi-processor debug features, such as cross-breakp@igitrouting
a breakpoint from one processor core to one, a subset of| othalr
tirecessor cores), and real-time processor trace (to opéofarmance
statistics on for example the number of cache misses, CPIU sta

feature sizes. Because of the consumer demand for morerdeatigycles, and conditional jumps that change the software uixac
in a single product, and for cost benefits, the number of istors flow). The amount of system-level debug support requireddcdifate
that are integrated on a single die doubles every 18 montiier Odebug of software that runs on multiple processor cores \igeher
three decades the semiconductor industry has sustaireththease still a topic of research. To determine how much an applcati
in transistor density. This large number of transistors seduto developer really benefits from these debug support funstistil
implement both programmable processor cores, which caousxe requires further study, as systems that incorporate thenoray now
embedded software, and dedicated peripheral functionghvdither appearing in the market.
implement interfaces for standard communication prowo@.g. Many hardware debug features have been reported on in the pas
USB, I’C, and PCI Express), or hardware accelerators for comm4], [5]. The two most commonly used features are (a) norusive
and configurable processing tasks (e.g. MPEG2 video and M&® a hardware trace, and (b) run-stop control. In the non-inteyshard-
encoding and decoding, audio up- and down-sampling, andovidware trace method, key signals inside the hard-wired IPscare
scaling). selected at design time, and brought out onto dedicatedpthgpvia
The industry has however not only seen an exponential iserea a dedicated interconnect. Alternatively these signalsheaimternally
number of transistors per die, but also a similar exponkimiiaease stored in an embedded trace buffer, for read-out at a latiet o
in the number of source code lines in the embedded softwao,st time. The advantages of this method is that the behavior gf
required to access and control all device features in afdsedly internal signals can be observed in real-time, preventsgeeally
manner. These exponential trends are putting a significardeln timing bugs from escaping detection. A clear drawback af thethod
on system verification [1]. On the one hand because the numlierthat these signals need to be selected up-front, at Soigndes
of system use cases is rapidly growing, and on the other hathe, limiting the flexibility in observability once siliao has been
because the Time-to-Market is under continuous pressuemdare manufactured. Research is currently on-going to help deter the
newer products are delivered to the market on time and ahiethet 0 best signals to select for observation using this real-timaee method.

ke

competition.
During pre-silicon verification, e.g. using simulation an@ation,

It is to be expected that this hardware trace method will iturki
SoCs be merged with the real-time processor trace methaulilded

models have to be used that may be inaccurate with respebeto above, to reduce the amount of dedicated, on-chip routingurees

physical characteristics of the final silicon. Verificatioesources
always lag by one processor generation and/or processdecyn
forcing a trade-off between modeling accuracy and numbeunsef
cases that can be extensively verified. As a result, errongiidware
and software slip through to the stage when silicon and thepéete
software stack are first brought together. Finding the ramgierrors
at this stage is becoming increasingly difficult. The higkieleof

required for debug.

Figure 1 shows a high-level overview of traditional rungsto
debug methods. Shown are two IP cores, with a communication
interconnect. A breakpoint is programmed in one of the noosit
observing the IP to determine the point in time at which thecexion
of that IP core has to be stopped. The rest of the system ipediop
in response using a debug control interconnect. Once thersysas

stopped its execution, intrusive access methods can beedpia
query and, if required, modify the system state.

interconnect

Fig. 1. Traditional Computation-centric Debug Control

designer. The application software programmer analyzdsdebugs
erroneous behavior by examining an application’s sourcde co
a software debug tool that provides (1) a view of the state of
the programmer’s model of the processor (e.g. includingsteg
file content, and condition flags), (2) processor executiontrol
(e.g. start, stop, and single step at the level of source tods),
and (3) a limited view on the state of the hard-wired periplsgr
restricted to those peripheral registers accessible ftarptocessor
through, for example, MMIO reads and writes. The hardwagiger
debugs erroneous behavior of a hard-wired peripheral atetfe by
examining waveforms traces of internal signals, statestefmal state
machines, and, when scan chains are reused [6], even individ
flipflop bits. A hardware debug tool can correlate these hits t
appropriate flipflops and back-annotate this data to eithés-pvel

or RTL descriptions of the design [10].

One popular method for intrusive access is the re-use of tRe Transaction-level Debug

manufacturing test scan chains [6]. The reason for the poipyl
of this method lies in the fact that these scan chains (1) laeady
required for high-quality manufacturing test, and (2) candasily

The recent introduction of the concept of transactions fi@- p
silicon system verification [13] provides an intermediabsteaction
level between those traditionally used by the applicatimgmmmer

accessed in a system environment via a standard IEEE 1148t1 hnd hardware designer. Using the transaction level, soéteagineers

Access Port (TAP) [7] with only a small amount of additionah-
chip hardware. After state examination, the system exacuwtan be
resumed, or restarted. Obtaining state dumps at severatspairing
the execution of a failing scenario allows engineers to nyuiekly
zoom in on the time and location of the failure’s root causkisT
method however suffers from drawbacks related to the lustlat
which the debug information becomes available.

Firstly, when the scan chains are used as the access meunh#ms
complete chip state is returned as a large number of indiidits.
Debug tools are then required to back-annotate and helglater
this data to the design database and abstraction levelgnéesiare
familiar with. Advances have been made to bring this infdiama
back to the RTL and system transaction level [8], [9], [10hiet
makes the interpretation of this data and the subsequetdreatfpn
of any undesired system behavior easier. Secondly, thignretion
is often extracted at the level of individual clock cycleshir@ly,
modern SoCs typically contain multiple clocks, running dfedent
frequencies and phases. One problem that has to be addegdbésl
low level is the non-determinism and divergence in stata batween
multiple runs using the same breakpoint setting [11], [12].

and hardware designers can share a common abstraction devel
which they can both contribute to the process of locating ria-
cause of a system error for SoC debug.

For software engineers, the transaction level is the lobesst at
which the embedded processors can be programmed by is®adg r
and/or write instructions. These read and write instrudticause
transactions on the on-chip communication infrastructtineough
translation to transaction commands using the appropdatemu-
nication protocol. The communication architecture tramspthese
commands to one or more targets, which implement the acttitd w
and/or read operation. As such, there is a natural correlgmme
between read and write instructions in software, and ticitsss
within the system’s communication infrastructure.

A hard-wired target is designed to respond to read and write
commands on its communication interface that is connected t
the system’s communication infrastructure. When a read orew
command is delivered to the target, the hardware designewkn
how this target should react to this command. For examplesnwh
the target in question is a memory core, and the command ista wr
command, then the appropriate reaction of the target todteedy of

In this paper, we contribute a new, run-control-based debtgis write command is to store the command’s data at the cordima

methodology that remedies this non-determinism, by combirun-
time, on-chip abstraction of system data to the transacikwel
with appropriate, system-level debug control over the comigation
infrastructure. This methodology forms a natural compleirie the
existing, state-of-the-art methods that debug softwadehandware in
isolation, and when combined provide the foundation for rsizient
and complete SoC software and hardware debug framework.

address.

The system can be viewed at the level of transactions, with th
processors initiating read and write transactions, perglbs reacting
to these transactions when they are delivered, and the caioation
infrastructure linking the initiators and targets togetaed transport-
ing these transactions. Each transaction has an assodidtietor
and intended (set of) target(s). Inspecting transactimusdetecting

The remainder of this paper is organized as follows. Sedfion either missing transactions or transactions with incaredtributes

present the two key concepts of our SoC debug approach.

Section Il we introduce the key components of a Network&iip,
which in Section IV is used to explain how our approach impsothe
debugability of SoCs. Finally, this paper concludes witlctiom V.

Il. TRANS-ACTION-LEVEL
COMMUNICATION-CENTRICDEBUG

(Buch as address or data values), enables a quick identificaft a
suspect initiator and suspect target(s). By extending éieigl scope
further to include the communication infrastructure, thensaction
level does not only allow the identification of the suspedtiator
and target(s), but also a suspect path through the comntigmica
infrastructure. This identification allows for a large séba-chip IP
cores to be quickly discarded as the potential source of thielgam,

Existing software and hardware debug methods cannot be effiereby greatly speeding up the debug process.
ciently combined in the same debug framework due to the largeWhat remains is the required control over the communicagpii

distance between the abstraction level used for debugginthé
application software programmer and the one used by theraaed

between the suspect initiator, through the communicatidrastruc-
ture on the suspect communication path, to the suspectt(sghn

case of read instructions, also the complete return pattohiaes con-
sidered. To reach this point in the debug process, our appnaies
on appropriate execution control of the communicationasifructure
itself.

B. Communication-centric Debug

the system to facilitate debugging. Such an architectusse® the
available IEEE 1149.1 TAP and associated controller [7]awfigure
all on-chip scan chains into a single, serial shift regisié&e content
of this serial register can be scanned out through the TAP® T
pin. The SoC state data that is obtained in this manner caratie b
annotated to the SoC'’s design database (at gate-level oy &5ihg,

When the abstraction level for software and hardware debugfer example, the method described in [10].

raised to the transaction level, it turns out to be extrenusigful to
extend the on-chip debug execution control to include ndy ¢me
programmable processors, but also the communicationsinfreture
(see Figure 2).

initiator target

Master IP

monitor

Slave IP

monitor

Fig. 2. Communication-centric SoC Debug

Control over the communication infrastructure allows figeain
control over the generation, transportation, and delivafryransac-
tions, thereby helping in the localization and isolation spispect

components. Figure 2 shows a (set of) monitor(s) to speltifica
observe the transactions that occur inside or at the edgeéheof t

communication infrastructure. Upon the detection of a daation
with specific characteristics (e.g. with a specific destimatarget,
data value, address value, or frequency of occurrence)mtivator
can signal to the debug control unit that the interconnesttbastop
the transportation of transactions. When this breakpoaturs, the
communication infrastructure no longer accepts any readvrite
commands from the initiators (i.e. it prevents transactjieneration),
and it no longer delivers any read and write transactiondéotar-
geted peripherals. It is up to the implementation of the comigation
infrastructure whether it still transports on-going tractsons within
the interconnect or whether this is also stopped.

I11. N ETWORK-ON-CHIP

To validate our concepts on transaction-level, commuitinat
centric debug, we applied our methodology to an SoC with a
Network-on-Chip [18] as the communication infrastructudeNoC
was chosen for the following reasons:

« NoCs are commonly considered to be the most promising
solution for the scalability issues in the SoC interconrfect
deep sub-micron process technologies.

« Choosing a NoC as the SoC communication infrastructureshelp
magnify any problems related to methods that want to control
the on-chip communication infrastructure. As such, a No@emo
clearly exposes any problems with parallelism, latencyd an
scheduling, that might not become apparent in a single otimul
layered bus system.

« A NoC-based solution for efficient and effective debug com-
munication control can more readily be ported to a single or
multi-layered bus system, than the other way around.

A generic block diagram of the NoC architecture we used ismgiv

in Figure 3.

[}
Network
' O . Interfaces

master Network

rdata

IPs Interfaces

Fig. 3. Generic block diagram of an Athereal NOC.

In Figure 3, a master IP core can initiate a transaction, aont

In a properly designed system, i.e. where the SoC commimicating command (cmd) and write data (wdata) and communicate it

infrastructure uses communication protocols based ondhakes to
interface with initiators and targets (as the commonly usi¢[14],

to a Network Interface (NI) using a particular interface tpoml.
The NI packs the transaction information in one or more netwo

OCP [15], and DTL [16] protocols do), each individual IP corgackets for transport through the network. These networdkegia
will automatically stop its execution as well after the comm are subsequently communicated from the NI to a set of rauters

nication infrastructure has stopped. On the next intevactiith
the communication infrastructure, the IP core no longerrantgd
permission to communicate. As such all IP cores, and in fecentire
system reaches a functionally idle mode, where initiatocs @rgets
are waiting for the acceptance, respectively delivery ahemnds
and data by the communication infrastructure. This acoegtaan
subsequently be controlled from, for example, external 8eligger
software, allowing very fine-grain, transaction-level tohover the
communication that takes place inside the SoC.

When the entire system is held in a functionally idle mode,
is safe to stop the functional clocks without danger of upsgt
any functional communication. After the SoC has been cotalyle
stopped, i.e. when all transaction traffic is functionalijted, and the
functional clocks are switched off, a core-based scan ndefth@]
can be applied to efficiently inspect the complete internatesof

The routers are responsible for delivering the network ptcko
the NI, connected to the transaction’s target IP core. Theall
the destination collects these network packets and retmibstthe
original request made by the master IP core. This recortettuc
request is applied to the communication interface of thgetaP core
using an appropriate interface protocol. The same prosdsdiowed
for possible responses (rdata) from the target slave IP. ddrese
responses are communicated via a slave-side NI and reswtivork
packets that are sent to the master IP core, through thersoanel
inaster NI. The propagation of packets through our netwoduisc
at the granularity of flits. Each flit contains three 32-bitrd® with
2-bits of sideband information. When available, a flit isnsported
from one NoC component to another in three clock cycles. e
clock cycle latency is relevant in relation to the distribatof key
debug signals, as we discuss below.

Figure 4 shows the hardware modifications and extensionsresh
to apply our transaction-level, communication-centribwe method-
ology to an SoC with this generic NoC architecture.

master IP core

(partial) MNIP.

Internal
breakpoint

accept

Network
Interface

cquest ¢ [
—_ Network NS Router NoC
Interface 1 1
'
1
1
i
'
Stop] Breakpoint :
! Module Monitor 1 1
I
! 1
! t !
Clock] |
Controller . |
| |]
]
A . Stop || || Breakpoint i
i Module Monitor2 | |
w i
valid [\ ! 1
w i
1
! 1
1
! 1
|

slave IP core (partial) SNP

Fig. 4. Example NoC used in experiments.

a programmable, internal condition. Known examples areunton
and data address breakpoints in processor cores. In owappthese
monitors are reused, and their breakpoint output signatsbared
with the breakpoint signals from the NoC. These breakpagnads
are then processed in a global Cross Trigger Module (CTM)ghvh
may either halt or stop one or more SoC components. Halting a
component refers to keeping the components in a functipridlé
mode, whereas stopping the component refers to gatingritgifunal
clock(s). Halting for example a microprocessor could imediorcing
it to execute No-Operation (NOP) instructions. Halting aO\Noould
involve freezing the functional communication between lfRecores
and the NoC, as we describe above.

Within the NoC we make a further distinction, on whether the
Network Interfaces stop accepting data from the initiatongy or
whether they also stop providing data to their targets. We refier
to the former method as transaction-level stopping, andhéoldtter
method as message-level stopping. Message-level stojpingpre
fine-grain than transaction-level stopping, and can be whethg
debug to determine which SoC component produces incoriaget d
or no data at all; the master IP core, the NoC, or the slave . co

Once all components are in a functionally idle mode, thescks$
can be safely switched off. This is necessary when the scaimsh

Note that Figure 4 has intentionally been simplified, as ilyon are to be used to scan out the system state. Activating timecbeans

shows the communication path from a single master IP coreuigjn
two network interface and two routers, to a single slave Ie.cthe
return path naturally also exists, containing similar delagic, and
in practice, several more master and slave IP cores wouldatijyp

while the functional clocks are still running, might caudices in
the clock or data signals that corrupt the system state amikerat
useless. By first switching the clocks off, this conditionaigided.
Figure 5 shows the scan-based debug architecture that is tose

be connected to the NoC, and more Nls and routers would be usegblement this system state access mechanism.

inside the NoC.

NoC breakpoint signals are generated by a set of breakpoint

monitors that monitor network connections [19], [20] andh dze
programmed either via an IEEE 1149.1 TAP or via the netwaddfit

Monitoring inside the NoC helps reduce the number of mositor
required when the number of NI ports is large, and also ira@®a

debugability of the NoC itself. Naturally monitors can akstill be

placed on the interface between the IP cores and the NoC. A sto

module is added per NoC router. The connectivity of the stodutes

uses the same topology as the router network, which allows th

detection of a breakpoint condition anywhere in the netwiorlbe
distributed to all stop modules as quickly and efficientlypassible.
A fast distribution of the breakpoint signal is essentialmmimize
the chance of loosing, potentially crucial, debug inforiarat In our
implementation, the breakpoint signal travels from theakp®int
module, through the stop modules, to all network interfacgsa
rate of one clock cycle per network component. This is thdéug
possible transfer rate without imposing special constsaon the
placement of pairs of network components in the design tay@iven
that the network data itself is transfered with a latencyhoéé clock
cycles per network component, our implementation ensusethat

chip with boundary scan HW/|
chip

network core|
network|

dbg_so
tpr_tdo

c
trst_n

jtag_stop

Stop
Module

TAP
Controller | (i

Breakpoint

teh_tdo

L
tek
Clock G 1t [I CCS I :
:
Reset Generat i EEEEEEEE

IPcores |

Fig. 5. Scan-based Debug Architecture.

To access the scan chains, the circuit mode is switched from
functional mode to a test mode using a Test Control Block (J;CB
accessible from an IEEE 1149.1 TAP. Once the test mode has bee

we can always stop the NoC with the data that causes the lmietikp activated, all internal scan chains are concatenated imtdang shift

condition still present in the NoC itself. This is necessatyen we
want to validate and debug the delivery and subsequent gsinge
of that data by its target slave IP core.

Inside the network interfaces, the breakpoint signal prev&rans-
action requests from any master IP core from being accefitgd
keeping the accept signal inactive), and causes any datmjoslave
IP cores to be withheld (by keeping the valid signal inagtiviéhis
essentially freezes the functional communication betvieenP cores
and the NoC.

Some breakpoint monitors are traditionally added to thetenaznd
occasionally also slave, IP cores to generate a breakpigindlson

register that behaves as a user-defined Data Register dfiifiiéevel
TAP controller. A Clock Control Slice (CCS) allows the ajmgliion
of the TAP's TCK clock signal to the functional flipflops, whic
causes this register to shift its system state out onto tHe'STADO
(Pin on subsequent TCK cycles.

Figure 5 also shows our method for programming the breakpoin
monitors through the use of a Test Point Register (TPR), kvisc
another user-defined Data Register of the chip-level TARrober,
and the possibility to force a system stop from the IEEE 114®\P
by asserting the jtagtop signal from the TAP controller, using a
special TAP instruction.

IV. EXPERIMENTAL RESULTS area cost turned out to be around 4.5% of the NoC area, and less

We have integrated our transaction-level communicatiemsic than 0.2% of the complete SOC area.
debug methodology in the Athereal design flow. When an Aghere

NoC instance is ggneratgd from. its high-level §pe0|f|caﬁba flow In this paper we addressed the debugging of complex SoCs with
now also automatically instantiates the required debug utesd . o .
a novel, transaction-level, communication-centric delogthodol-

Breakpoints can be programmed in the NoC breakpoint manitor . .)
through an IEEE 1149.1 TAP. ogy. Operating at the transaction level during debug, aldeth

Figure 6 shows three sets of signal traces, each of which sho%?p"ca“o” developers and hardware engineers to moréy easi-

the debug architecture in action in different use cases.niagter IP tribute to. the depug process. l.n addition, .by extending tiegs
. i . computation-centric debug architectures with debug ocbntwver
core communicates with a slave IP core through DTL portstwia

NIs and two routers, as is shown in Figure 4. The signal trabes/ the communication infrastructure, the difficulties of gio and

V. CONCLUSION

the request and response signals at the master-side NINIbHP] examining a multiple-clock SoC are avoided as functionaicks$
and at the slave-side NI port (SNIP).

The signal trace at the top of Figure 6 shom@mal operation
where the MNIP accepts four commands from the master IP core
as is shown by the four marked pulses on thecdtd accept signal
immediately below the clock signal. The first and third comuha
are write commands (as dttadcmd is low), the other two are read
commands. Each command transfers eight data words (wdada, a
rdata respectively). The write command and data are tratespfrom
the MNIP to the SNIP and offered to the slave (dthd.valid is
high), as illustrated by the solid arrows. Similarly, as llsstrated [
with the dashed arrows, the read command is accepted by thg
MNIP, transported to the SNIP and then offered to the slaveoile [3]
(dtl_cmd.valid is high). The slave responds with read data (“rdata"),[4]
which is transported and offered to the master _(dtl/alid). The
master IP core accepts the read data before offering anottier
and read command.

In a transaction-leveldebug scenario (refer to the middle set of [5]
signal traces in Figure 6), the monitor at the router coretetd the
slave NI triggers an event and generates a stop signal foisllThe
event is raised immediately after the first read command. Woly
the master NI reacts to the stop signal (sbepin dashed circle). Thus
the write and read commands are still offered to the slavegiwin [7]
turn reacts as it did during normal operation. The mastey atl (8]
accepts this read data, and thus finishes all outstandingéactons.

The NI tracks the completion of messages and does not acogpt a
new commands after the stop event, not even when the magtes of [l
a new write command (dgmd.valid is high). This is illustrated by

. [10]
the absence of the second set of write and read commands.

Using the TAP, external debugger software can poll the stitiee
stop modules and the NI's blocked signal to determine whdtrere
no longer is any activity in the NoC. The NoC clock is then date
and replaced by the TAP’s TCK clock signal for subsequent stda
of the complete SoC state using the scan chains on the TAPG TD
pin. This breakpoint detection and scan out phase couldtumately [13]
not be shown in 6 due to lack of space.

The bottom set of signal traces in Figure 6 showsessage-level [1‘5‘]
debug scenario. The same event is raised but now results tiopa 16}
signal to both master and slave Nlis. The stop signal orig;&bm
the router that is closer to the slave NI, and therefore msmdhe
slave NI earlier than the master NI. As explained, this digeaches
the slave NI before the write command and data do. As a res htg]
the message handshake is not initiated, and the NI keepsritee w
command and data in its FIFOs and does not offer them to tke.sla
This is evident from the absence of a pulse on thecuitlvalid. [19]

Our debug architecture requires only small changes to the-fu
tional architecture, and mainly involves adding the masitand the
event distribution interconnect. We have synthesized ocample
SoC using a commercially-available synthesis tool and dyartion-
quality 130 nm CMOS technology library. The additional haade

(6]

[11]

[12]

[17]

[20]

can now be safely stopped when the interconnecting comratioic
infrastructure is functionally idle. We have proven thesaaepts and
architecture with a gate-level implementation of a smalCSahich
intludes a NoC. Signal traces illustrate the capabilit®sl¢bug at
both transaction and message level. We are currently exignhis
work by further validating these debug concepts on an FPG& No
setup. In future we also intend to apply and evaluate thisugleb
methodology to existing bus-architecture-based SoCs.

REFERENCES

B. Bailey, “A new vision of 'scalable’ verification,EETimes Mar. 2004.
CoreSight: V1.0 Architecture SpecificatjioARM.

R. Leatherman and N. Stollon, “An embedded debuggindnitecture
for SoCs,”|IEEE Potentials vol. 24, no. 1, pp. 12-16, Feb-Mar 2005.
D. D. Josephson, S. Poehhnan, and V. Govan, “Debug melbgy for
the McKinley processor,” ifProceedings of the IEEE International Test
Conference Washington, DC, USA: IEEE Computer Society, 2001,
pp. 451-460.

A. Hopkins and K. McDonald-Maier, “Debug support for cplex
systems on-chip: A review,JEE Proceedings Computers and Digital
Techniquesvol. 153, no. 4, pp. 197-207, July 2006.

K. Holdbrook, S. Joshi, S. Mitra, J. Petolino, R. Ramand &1. Wong,
“microSPARC: A case study of scan-based debugPiiaceedings IEEE
International Test Conference (ITC)994, pp. 70-75.

IEEE Computer SocietyfEEE Standard Test Access Port and Boundary-
Scan Architecture-IEEE Std 1149.1-2001EEE Press, 2001.

Y. Hsu, B. Tabbara, Y. Chen, and F. Tsai, “Advanced teghas for rtl
debugging,” inProceedings of the Design Automation Conferer293,
pp. 362-367.

B. Tabbara and K. Hashmi, “Transaction-level modelliagd debug of
socs,” inProceedings of the IP SOC Conferen@®04.

B. Vermeulen, Y.-C. Hsu, and R. Ruiz, “Silicon debugdléest and
Measurement Worldpp. 41-45, Oct. 2006.

S. K. Goel and B. Vermeulen, “Hierarchical data invation analysis
for scan-based debug on multiple-clock system chips,Piaceedings
IEEE International Test Conference (ITG)ct. 2002, pp. 1103-1110.
P. Dahlgren, P. Dickinson, and I. Parulkar, “Latch Dgency in Micro-
processor Failure Analysis,” iRroceedings of the IEEE International
Test ConferengeSeptember/October 2003, pp. 755-763.

B. Tabbara and K. Hashmi, “Transaction level modeliigrification
leaps ahead,EDA Tech Forumpp. 14-17, Mar. 2005.

AMBA AXI Protocol SpecificatippARM, June 2003.

OCP International Partnership, “Open core protoceicification,” 2001.
Device Transaction Level (DTL) Protocol Specification. sien 2.2
Philips Semiconductors, July 2002.

B. Vermeulen, T. Waayers, and S. Goel, “Core-based $eahitecture
for Silicon Debug,” inProceedings IEEE International Test Conference
(ITC), Baltimore, MD, USA, Oct. 2002, pp. 638-647.

K. Goossens, J. Dielissen, and A. Radulescu, “The fEdienetwork on
chip: Concepts, architectures, and implementatioHSZE Design and
Test of Computersvol. 22, no. 5, pp. 414-421, Sept-Oct 2005.

C. Ciordas, T. Basten, A. Radulescu, K. Goossens,Janvdn Meerber-
gen, “An event-based monitoring service for networks orp£hACM
Transactions on Design Automation of Electronic Systeois 10, no. 4,
pp. 702-723, Oct. 2005.

C. Ciordas, K. Goossens, A. Radulescu, and T. BastéoC monitor-
ing: Impact on the design flow,” ifProc. Int'l Symposium on Circuits
and Systems (ISCASYlay 2006, pp. 1981-1984.

B B wesssnaa | MNIP
=3

otk
B aemiomw
CIF eoma reen
S aemavan
Sl ademet

Bo moam
BS e
ES acara
B awscop

L™

wdata |,

read '

maanais reveeeiey

Nl !
write read

write

S e
I g
ED s toekea
b v teama
S5 aswein
i
B B st
af
Sl emd o
ES aemisa
B aemivaa
B aram
B o
of arede
v T
S aw s

I s

A . oo om

[}

& I [}

B awus
B aiwsma
o aswen

CIE Jm—

Ol a
B amawen
i
2B maaa
=3
[~
B
B+
B
e
=3
=3
B
=
=3
d=h

L]

Shvamide_NLshel
K

a_ema et
a_ema o
a_emd_wtd
o8 sovopt
i it

e2)

i um
A wid
A_w_ gt

B
GETPLELOTTTLE

i o
a_w st
a_w_a

Ap

B B e st

=8

i
BB sweo s
2w

[.

Ao

Sf e
B oo st - n !
T = LU
g atoma i f) 7 \V
B ,,;{:F data P === Y Pommer // N e 1o rdata
B aoet [
BY aaws o _1
o = —1
o oawi_cita. data pr o= e £ o
ﬁ e wdata I’ \W()OO(H}FW
SF aw . 1
B voan . \
T reermtern 1 \%"gswv,in

ampr

B aienda
BY amawan
B>t ugt

JF aman
S s
SF s
SE e

ﬁo Hw_chata
By awm
ED aiwau

=1

Ao

AWAN

LN

% ﬂ!:(llll)tm#“
N~~~

BN CE)

1

oooocoeT

| |97-°"°“= , 1e0oat:

no new write

i
PR s (// o=
\ ﬂ
wddtd (m@{m;_;(a,mm
~
\LI
“A stop_in

X

TV

SINCEEL @ L]
T

\ g?()read

*(xmmw

L

=

wdata |

1 \ N7
I \
e &I W ooyemr
stop_in §] &
| |97.cm|= |93‘ux:-= |wm= 1eq000n=.
write read no new write

N-X

; \
; n \ no write
f \ -
| rdata r Hmm \\
o L1 \
iy i —
| wdata r

Fig. 6. Gate-level signal traces.

