
Undisrupted Quality-of-Service during Reconfiguration of Multiple Applications

in Networks on Chip

Andreas Hansson1, Martijn Coenen2 and Kees Goossens2

1Eindhoven University of Technology, Eindhoven, The Netherlands
2Research, NXP Semiconductors, Eindhoven, The Netherlands

m.a.hansson@tue.nl, martijn.coenen@nxp.com, kees.goossens@nxp.com

Abstract

Networks on Chip (NoC) have emerged as the design

paradigm for scalable System on Chip (SoC) communica-

tion infrastructure. Due to convergence, a growing number

of applications are integrated on the same chip. When com-

bined, these applications result in use-cases with different

communication requirements. The NoC is configured per

use-case and traditionally all running applications are dis-

rupted during use-case transitions, even those continuing

operation.

In this paper we present a model that enables partial re-

configuration of NoCs and a mapping algorithm that uses

the model to map multiple applications onto a NoC with

undisrupted Quality-of-Service during reconfiguration. The

performance of the methodology is verified by comparison

with existing solutions for several SoC designs. We apply

the algorithm to a mobile phone SoC with telecom, multime-

dia and gaming applications, reducing NoC area by more

than 17% and power consumption by 50% compared to a

state-of-the-art approach.

1 Introduction

Systems on Chip (SoC) grow in complexity with an in-
creasing number of processors, memories and accelerators
integrated on a single chip. These heterogeneous high-
complexity chips are programmable and integrate a rich set
of applications [5, 20], e.g. PDA phones with mp3 players,
cameras, radios and gaming.

The individual applications are combined into use-cases.
Figure 1 shows six use-cases, u0 through u5, of a mo-
bile phone SoC. As seen in the figure, applications typi-
cally span multiple use-cases, e.g. roam continues as the
foreground applications, mp3 play and mpeg play, change.
The different use-cases have different traffic patterns and
Quality-of-Service (QoS) requirements, e.g. bandwidth and
latency constraints that the communication infrastructure
must efficiently accommodate.

Networks on Chip (NoC) have emerged as the design
paradigm for scalable on-chip communication architectures,

providing better structure and modularity [1, 3, 8, 21]. By
offering QoS guarantees to individual flows between cores,
NoCs decouple computation from communication [19]. De-
coupling enables independent design and validation of ev-
ery part of the SoC by ensuring that real-time requirements
are met independent of other parts of the system [8]. Ap-
plication guarantees are, however, traditionally only given
within a use-case and do not cover use-case transitions.

Existing approaches to multi-application NoC de-
sign [15, 16] cannot give QoS guarantees to applications
across use-cases as the binding of flows to network re-
sources is done per use-case. Even if the application re-
quires the same service, e.g. phone in u0 and u1, the re-
sources used to provide the requested service are potentially
different before and after reconfiguration.

As the label global reconfiguration in Figure 1 illustrates,
traditionally a transition from use-case ui to ui+1 involves:
1) tearing down the flows of all applications in ui, and then
subsequently 2) instantiating all flows in ui+1 by program-
ming the NoC with a new configuration that decides the
binding of flows to buffers, paths and time-slots. Also the
applications spanning both ui and ui+1 thus have their flows
closed and later re-opened. Not only does this cause a dis-
ruption in delivered services, but it leads to unpredictable re-
configuration times as in-flight transactions must be allowed
to finish when tearing down flows between cores [12, 17].

In many domains, e.g. consumer electronics, medical
IT and automotive, there are inherent demands for seam-
less use-case switches for certain applications. The only

reconfiguration
global

a
p
p
lic

a
ti
o
n
s

u0 u2u1 u3 u4 u5 time

phone roam

take pictures

mp3 play

resource manager

mpeg play

Figure 1. Multi use-case SoC design.

a
p
p
lic

a
ti
o
n
s

time

phone roam

take pictures

mp3 play

resource manager

mpeg play

{u0, u1, u2, u3, u4, u5}

c0

(a) Worst-case

a
p
p
lic

a
ti
o
n
s

{u2, u3}{u0, u1} time

phone roam

take pictures

mp3 play

resource manager

mpeg play

{u4, u5}

c′0 c′1 c′2

(b) Compound modes

a
p
p
lic

a
ti
o
n
s

timeu5u4u3u2u1u0

resource manager

mp3 play mpeg play

take pictures

roam

c′′2

c′′3

phone

c′′1

c′′0 c′′4

c′′5

(c) Partial reconfiguration

Figure 2. Comparison of reconfiguration models.

way to provide this using traditional approaches to NoC de-
sign is to avoid reconfiguration altogether. This is achieved
by mapping and configuring for a synthetic worst-case use-
case covering the requirements of all use-cases [15]. While
delivering application guarantees, requirements are over-
specified with a costly NoC design as the result [16]. More-
over, if the architecture of the NoC is given, it may not be
possible to find a configuration that meets the worst-case
use-case requirements, even though configurations exist for
each use-case individually.

In this work we address the problem of mapping multi-
ple QoS-constrained applications onto a NoC that provides
resource virtualisation (e.g. connections). We present: 1)
a theoretical framework that applies to any such NoC, and
2) a mapping algorithm that exploits the partial reconfigura-
tion capabilities of our NoC. This enables QoS guarantees
for applications across use-cases without using the synthetic
worst-case configuration, reducing NoC area by more than
17% and power consumption by 50% for a mobile phone
SoC with telecom, multimedia and gaming applications.

The remainder of the paper is structured as follows. We
start by introducing related work in Section 2. Next, the
problem domain is described in Section 3 and formalised in
Section 4. The algorithm, which solves the NoC mapping
and configuration problem under multiple application con-
straints, is described in Section 5. Experimental results are
shown in Section 6. Finally, we conclude in Section 7.

2 Related work

Methodologies for dynamic run-time reconfiguration of
NoCs are presented in [17, 22]. Both works assume little
or no design time knowledge about the applications and de-
fer mapping decisions to run time. While offering maximal
flexibility, guaranteeing that an application can be given the
requested QoS or even be instantiated at all is difficult due
to possible resource fragmentation over time. Mitigating the
problem necessitates complex migration schemes with large
unpredictable delays [17].

Much work is focused on complete NoC design flows [2,
8] and the problem of mapping cores onto NoC architec-
tures for a single pre-defined use-case [9,11,14,18,23]. All
works are limited to a single set of communication con-
straints, obtained either from a single use-case or from a
single trace containing multiple use-cases.

NoC design for multiple use-cases is addressed in [15]
by generating a synthetic worst-case use-case. The result
is one NoC configuration spanning all potential use-cases,
illustrated by c0 in Figure 2(a). In [16], the lack of scal-
ability in the synthetic worst-case solution is addressed by
introducing aggregated use-cases, called compound modes.
As seen in Figure 2(b), configuration is done per compound
mode. Undisrupted QoS is provided within the constituent
use-cases, but not during reconfiguration.

Existing design approaches distinguish only one axis of
configuration granularity, namely time, at which the whole

NoC is reconfigured. The temporal granularity ranges from
a single use-case [9, 14] to a synthetic worst-case [15] with
compound modes in between [16]. In this work we intro-
duce a second axis (the vertical axis in Figure 2) distinguish-
ing between different spatial granularities. While the afore-
mentioned related works reconfigure globally (time only),
this work considers reservations on a per-application basis
(time plus space).

This work is, to the best of our knowledge, the first to
provide application QoS guarantees during NoC reconfig-
uration. The model we propose differs from existing re-
search in that it assigns (virtual) resources to applications
rather than to use-cases. As we shall see, this model to-
gether with our mapping algorithm enables partial reconfig-
uration of the NoC and undisrupted QoS at a low cost.

3 Problem description

We assume static applications, defined at design time,
with non-migratory tasks already mapped onto cores, such
as processors and accelerators. The bandwidth and latency
constraints of the communication flows are determined be-
forehand by static analysis or simulation. The use-cases
(combinations of applications) are assumed to be given to-
gether with a specification of which applications are per-

sistent, i.e. that require undisrupted QoS during use-case
transitions.

Our goal is to derive: 1) a core port to network interface
(NI) port mapping (if not already specified by the designer),
and 2) a number of pre-computed compositional NoC con-
figurations that fulfil the QoS requirements of the applica-
tions. These configurations bind the logical flows to physi-
cal buffers in the NIs, to paths through the router network,
and to time slots on the network links.

2

By deriving configurations per application, the different
applications are associated with their own virtual resources,
multiplexed in time and space, and can be removed or added
independently of one another. Consider the schematic ex-
ample in Figure 3 where the resources used by different ap-
plications are shaded in different colours1. If the phone ap-
plication is stopped and replaced by roam, then the other
running applications remain unaffected. Not only does this
enable undisrupted QoS, it is also beneficial from a scalabil-
ity point of view as the reconfiguration operation and coor-
dination can be distributed, e.g. a reconfiguration processor
(CPU) per subsystem.

NI
R R R

RR NI

NI

NI

memory

dedicated IP

DSP

CPU

memory

VLIW

NI

cellular cameraLCD

NINI

mp3 play resource manager

take picturesphone

NI

Figure 3. Network virtualisation.

Configurations are created and verified at design time.
Hence, run time choices are confined to choosing from the
set of fixed configurations. While limiting the run-time
choices to a set of predefined use-cases, this is key as it
enables us to guarantee, at compile time, that all application
constraints are satisfied once a configuration is instantiated.

The computed configurations are stored in for exam-
ple off-chip memory. A run-time configuration manager
then instantiates these configurations as a result of trigger
events [17]. The actual protocol for reconfiguration is out-
side the scope of this paper.

Note that the suggested methodology does not exclude
the possibility of using unclaimed residual resources to in-
stantiate additional applications at run time. These applica-
tions are however limited to best-effort services.

4 Problem formulation

Inter-core communication is specified on the level of ap-
plications, characterised as graphs.

Definition 1. From the perspective of the NoC, an applica-
tion a is a directed multigraph, a(Pa, Fa), where the ver-
tices Pa represent the core ports, and the arcs Fa represent
the set of flows between the ports. Each flow in the appli-
cation f ∈ Fa is associated with a minimum throughput
constraint, t(f), and a maximum latency constraint, l(f).
Source and destination of f are denoted s(f) and d(f).

1The channels and buffers are time-multiplexed between flows but only
the spatial division of resources is shown.

The set of applications is denoted A. We define the
complete set of core ports P as the union over all appli-
cations, P =

⋃
a∈A

Pa. Similarly, the complete set of flows
F =

⋃
a∈A

Fa.
A use-case u ⊆ A is defined by the applications that run

simultaneously, e.g. u0 = {phone, take pictures, resource

manager} in Figure 1. The set of use-cases U ⊆ P(A)
grows exponentially with the number of applications if there
are no limitations on which applications can be combined.
However, some applications, such as phone and roam are
inherently mutually exclusive. Others, like mp3 play and
mpeg play, might be infeasible to instantiate simultaneously
because they use the same resources. An undirected graph,
as shown in Figure 4, expresses which applications may run
in parallel. Every fully connected subgraph corresponds to
a use-case, with six of them shown in Figure 2. Let Ua ⊆ U
denote the set of use-cases containing an application a.

roam mpeg play

phone mp3 play

resource manager

take pictures

Figure 4. Use-case specification.

NoCs are represented by interconnection network
graphs.

Definition 2. An interconnection network graph g is a
strongly connected directed multigraph, g(N,E). The set
of vertices N is composed of two mutually exclusive sub-
sets, NR and NNI containing routers (R) and network inter-

faces (NI) respectively.
The set of edges E represent the physical network chan-

nels. More than a single physical channel is allowed to con-
nect a given pair of routers, but an NI is always connected to
a single router through one egress and one ingress channel.
Source and destination of e are denoted s(e) and d(e).

A path π ∈ seq E from source ns ∈ NNI to destina-
tion nd ∈ NNI is a sequence of channels in the set of all
possible paths Π(ns, nd). Slot tables in the NIs govern al-
location of channel capacity by time division multiplexing

(TDM). These tables are used to set up pipelined virtual

circuits and divide bandwidth between flows [19]. The cir-
cuits are pipelined in the sense that if a flow reserves slot s
on a channel, then slot s + 1 must be reserved to the same
flow on the succeeding channel in the path. The same slot
table size |S| is used throughout the entire network.

The realisation of the applications on the interconnec-
tion network is determined by the mapping function map :
P → NNI that maps core ports to NI ports, and the bind-
ing of flows to paths and time slots, captured in configura-

tions. Existing work use the same temporal granularity of
reconfiguration, determined by the compound modes, for all
applications. Because of this, going from a use-case ui to

3

ui+1 in Figure 2(b), is either done without any change (for
the NoC) or requires global reconfiguration. An important
contribution of this work is the specification of configura-

tion units on a per application basis.

Definition 3. The configuration units Υa of an application
a determine the temporal granularity of reconfiguration. Υa

is a partition of the set of use-cases containing a, Ua =
{ua

0 , . . . , ua
n}, into jointly exhaustive and mutually exclusive

subsets. Applications that are persistent, with no disruption
in QoS allowed, have Υa = {Ua} whereas non-persistent

applications have Υa = {{ua
0}, . . . , {u

a
n}}.

The partitioning Υa allows any granularity, but to sim-
plify specification for the user, we only classify applications
as either non-persistent or persistent. The latter is exem-
plified in Figure 2(c) where all applications have a single
configuration unit.

A configuration c : F × Υa → seq E × P(S) asso-
ciates each flow with a path π and a set of time slots for
a given configuration unit. The time slots are given rela-
tive to head π but are reserved on the entire path. Together
with the mapping function, the aforementioned function is
refined as the algorithm progresses, i.e. initially no core
ports are mapped to NIs and no paths or time slots are al-
located. For notational clarity we refrain from subscripting
and refer the reader to [9] for details on the successive re-
finement and proof of algorithm termination.

The contribution of the proposed model is shown in Fig-
ure 5, illustrating the transition from use-case u1 to u2 with
and without partial reconfiguration. With configuration on
the granularity of the entire NoC [16], the transition goes via
the empty configuration ∅, and all flows must be stopped
which requires a time that is unknown or difficult to bound
as the flows must reach a quiescent state [12]. With partial
reconfiguration, the common applications are unchanged.

→

→

∅ →

→

u2

c′1

time

Compound modes, Figure 2(b), ([16])

Partial reconfiguration, Figure 2(c), (this paper)

c′0

u1

c′′1 ∪ c′′2 ∪ c′′3 ∪ c′′4c′′1 ∪ c′′2 ∪ c′′3c′′0 ∪ c′′1 ∪ c′′2 ∪ c′′3

Figure 5. Instantiated configurations.

The general definition of configuration units does not ex-
clude the possibility of having the same partitioning across
all applications. The methodologies of [15,16] are thus sub-
sumed in this more general framework.

5 Unified Mapping and Configuration

The objective of the NoC design flow [8] is to design
the minimal NoC that satisfies the design constraints of all
the use-cases. To accomplish the latter we enclose the pro-
posed mapping and configuration algorithm in a topology

selection loop where a cost function decided by the SoC de-
signer is used to assess the cost, e.g. silicon area or power
consumption, of the solutions.

We use a heuristic algorithm as already the problem of
graph mapping with static routing and without TDM slot
assignment is NP-hard [10]. In our approach, the mapping
process is combined with the NoC configuration, resulting
in quick pruning of the solution search space [9]. The core
of the proposed algorithm for mapping of multiple appli-
cations onto a NoC is outlined in Algorithm 5.1 and intro-
duced here, whereafter further explanations follow in Sec-
tions 5.1 and 5.2.

The overall idea is to: 1) Choose the most critical flow
that is not yet assigned a path and time slots and poten-
tially has source and destination ports not yet mapped to
an NI, 2) derive the resources that are available in all use-
cases spanned by the flow, and 3) allocate resources such
that QoS requirements are met and then distribute the reser-
vation across the data structures of the affected use-cases.

The body of the algorithm is iteration over the monoton-
ically decreasing set of unallocated flow and configuration
unit pairs F ′ =

⋃
a∈A

Fa × Υa. Note, that mapping and
configuration is done across all use-cases in parallel [16].
In every iteration the most critical flow f is allocated in its
corresponding configuration unit υ. We never backtrack to
re-evaluate an already allocated flow, resulting in low time
complexity at the expense of optimality.

First, a path (that also determines the core port to NI port
mapping [9]) and a set of time slots are selected for f in
Step 2a. Then in Step 2b, the mapping map and configura-
tion c(f, υ) are refined to reflect the new state. The proce-
dure is repeated until all flows are allocated. The resulting
algorithm has polynomial time complexity with a run time
dominated by the path selection algorithm. Note that once
a solution is found the design space can be explored further
by swapping vertices [14].

Algorithm 5.1 Allocation of all flows F

1. Let the set of unallocated flows F ′ :=
⋃

a∈A
Fa × Υa

sorted in decreasing criticality(f, υ)

2. While F ′ 6= ∅:

(a) Select a path in Π(s(f), d(f)) and time-slots
from the residual resources, r(f, υ), such that
t(f) and l(f) are fulfilled

(b) Refine c(f, υ) and map.

(c) F ′ := F ′ \ {(f, υ)}

5.1 Flow traversal order

The order in which flows are allocated in Algorithm 5.1,
i.e. their criticality, takes two different measures into ac-
count. In order of priority: 1) the number of use-cases that
the configuration unit of the flow spans and 2) an aggregate
of the throughput and latency requirements [23].

4

The first heuristic asserts that flows spanning many use-
cases are allocated early. Hence, the flows of the resource

manager in Figure 2(c) are allocated first, followed by the
roam flows. This ordering aims to reduce resource fragmen-
tation between configurations as a configuration unit span-
ning several use-cases may only use time-slots that are not
reserved in any of the associated configurations.

The secondary sort key ensures that flows with low
throughput requirements but with tight latency constraints
are given priority over those with high throughput require-
ment and relaxed latency constraints.

5.2 Path selection

Evaluation and selection of QoS constrained paths in
Step 2a of Algorithm 5.1 is done by A*Prune [13]. We use
path length as the optimisation criterion as power consump-
tion scales with the hop count [11,23]. Path pruning is based
on time-slot availability [9] to assert that performance guar-
antees are fulfilled [6].

When allocating a flow f in a configuration unit υ, the
function r : F × Υa returns the intersection between resid-
ual resources across all u ∈ υ. The outcome is translated
into an interconnection graph with a slot table per chan-
nel. The spatial and temporal routing algorithm uses this
graph, and hence needs no knowledge about the multiple
use-cases. A resource in the graph is unoccupied only if it
is not reserved in any of the use-cases in υ. That is, r(f, υ)
returns resources not reserved in any configuration c(f ′, υ′)
where the two configuration units υ and υ′ overlap in time,
υ ∪ υ′ 6= ∅. For example, when allocating a flow of the ap-
plication mp3 play in Figure 2(c) only slots not yet reserved
in c′′0 , c′′1 , c′′2 , c′′3 and c′′4 are available.

6 Experimental results

To evaluate the performance of our methodology, we ap-
ply it to a mobile phone SoC design and a range of synthetic
benchmarks. The latter are structured in two classes, follow-
ing the communication patterns of real SoCs. First, spread
communication, representing SoCs with on-chip memo-
ries and point-to-point communication. Second, bottleneck
communication, characterising designs with shared off-chip
memory, involving a few cores in most communication.

NI buffer sizes are derived using analytical models [6]
and silicon area requirements are based on the model pre-
sented in [7], assuming a 0.13 µm CMOS process. Total
NoC area is used as the optimisation criterion.

6.1 Synthetic benchmarks

To evaluate the performance of our proposed methodol-
ogy we compare three methods. First, the algorithm pre-
sented in [16], referred to as unconstrained, which uses a
global configuration per use-case. Second, the methodol-
ogy presented in this paper. Third, the synthetic worst-case
approach introduced in [15], denoted worst-case. To show

 0

 1

 2

 3

 4

 5

 6

 7

 8

U
nconstrained

25%
 persistent

50%
 persistent

75%
 persistent

100%
 persistent

W
orst-case

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
ro

u
te

rs

(a) Average router count

 0

 5

 10

 15

 20

25%
 persistent

50%
 persistent

75%
 persistent

100%
 persistent

W
orst-case

R
e
la

ti
v
e
 i
n
c
re

a
s
e
 i
n
 N

o
C

 a
re

a
 (

p
e
rc

e
n
t)

0.1% 0.3%

2.0%

3.9%

14.6%

(b) Relative NoC area

Figure 6. Uniformly spread communication.

the impact of the number of persistent applications we gen-
erate four different NoCs with partial reconfiguration. One
where 25% of the applications are persistent, one with 50%,
one with 75% and lastly one design where all applications
are persistent. Note that only that latter and the worst-case
approach deliver undisrupted QoS.

The NoC is operating at 500 MHz with a link width of
32 bits. All benchmarks have 40 cores with a master and
slave port. For every benchmark 16 applications are gen-
erated with 10-30 flows each. Bandwidth and latency re-
quirements are varied across 4 bins respectively. This re-
flects for example a video SoC where video flows have high
bandwidth requirements, audio have low bandwidth needs,
and the control flows have low bandwidth needs but are la-
tency critical. The applications are combined into use-cases
according to a randomised graph, as in Figure 4. Half of
the possible edges are present, with at most 8 applications
allowed to run at once. A total of 100 benchmarks are gen-
erated per communication pattern. For all the benchmarks,
the different methods produce the results in a few minutes
when run on a Linux workstation.

Figure 6 shows the result of applying the three meth-
ods to benchmarks with uniformly spread communication.
The router count increases with the addition of constraints,
as more resources are needed to reduce contention. Look-
ing at the total NoC area, dominated by the buffering re-
quirements [7], we also see an increase with the number
of constraints. Providing all applications undisrupted QoS
increases the total NoC area by 4%. This is still 10%
cheaper than the alternative approach of mapping the syn-
thetic worst-case onto a NoC.

In Figure 7 the corresponding results for bottleneck com-
munication are shown. The increase in area for the NoC
when all applications have undisrupted QoS is below 8%.
This is to be compared with a 40% increase for the alterna-
tive approach using a synthetic worst-case.

The different methodologies have different requirements
on the amount of memory needed to store the configura-
tions. For the worst-case and partial reconfiguration ap-
proach only one configuration needs to be stored per flow,
resulting in a mere 1.5 kB (40 bits per flow and about

5

 0

 1

 2

 3

 4

 5

 6

 7

 8

U
nconstrained

25%
 persistent

50%
 persistent

75%
 persistent

100%
 persistent

W
orst-case

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
ro

u
te

rs

(a) Average router count

 0

 10

 20

 30

 40

 50

25%
 persistent

50%
 persistent

75%
 persistent

100%
 persistent

W
orst-case

R
e
la

ti
v
e
 i
n
c
re

a
s
e
 i
n
 N

o
C

 a
re

a
 (

p
e
rc

e
n
t)

1.3% 2.2%

4.8%

7.6%

40.9%

(b) Relative NoC area

Figure 7. Bottleneck communication.

300 flows). With one configuration per use-case [16], this
amount scales with the number of use-cases, resulting in
several MBs of configuration data.

6.2 Mobile phone SoC

A phone SoC with telecom, storage, audio/video decod-
ing, camera image encoding, image preview and 3D gaming
constitutes our design example. The system has 13 cores
(27 ports distributed across an ARM, a TriMedia, two DSPs,
a rendering engine etc.), one off-chip DDR memory, one on-
chip SRAM plus a number of peripherals. Communication
is done via memory, running at 117 MHz with a word width
of 64 bits. As the native word width of our NoC is 32 bits
we choose to let the NoC run at double the frequency, 235
MHz, thus offering the same gross bandwidth.

We compare the NoC architecture generated by the un-
constrained mapping, partial reconfiguration with 100% of
the applications persistent, and the worst-case approach. Ta-
ble 1 shows the resulting NoC designs for the three meth-
ods, optimising on total area (mm2). While the worst-case
methodology increases the NoC area with more than 23%,
the methodology introduced in this paper delivers undis-
rupted application QoS with an area increase below 2%.
Similarly for the power consumption, calculated according
to the model in [4], the average increase across all use-cases
is 129% for the worst-case methodology whereas it is only
3% with partial reconfiguration. For all use-cases the power
consumption of our methodology is less than half of that
of the worst-case methodology. This stems from having a
network with half the amount of routers and shorter paths.

Table 1. Comparison of methodologies.
NI Router Total Area Power

Methodology Mesh Slots area area area diff diff

unconstrained 1×3 29 1.8 0.2 2.0 ref ref

100% persistent 1×3 29 1.9 0.2 2.1 +2% +3%

worst-case 2×3 15 2.0 0.5 2.5 +23% +129%

From the experiments we conclude that the area cost in-
curred by resource fragmentation is only a few percent, even

when all applications are persistent. Compared to the alter-
native worst-case approach, this work results in NoC de-
signs that are considerably smaller.

7 Conclusion and future work

In this paper we present a model that enables partial re-
configuration of Networks on Chip (NoC) and an algorithm
that uses the model to map multiple applications onto a
NoC, delivering undisrupted Quality-of-Service during re-
configuration. By distinguishing between different spatial

as well as temporal granularities of reconfiguration, the dif-
ferent applications are associated with their own virtual re-
sources and can be removed or added independently.

The performance of the methodology is verified by com-
parison with existing solutions for several SoC designs. We
apply the algorithm to a mobile phone SoC with applica-
tions like telecom, multimedia and gaming, reducing NoC
area by more than 17% and power consumption by more
than 50% compared to a state-of-the-art design approach.

Future work includes evaluating the proposed methodol-
ogy in combination with a run-time configuration manager.

References

[1] L. Benini and G. de Micheli. Networks on chips: A new SoC paradigm. IEEE
Comp., 35(1), 2002.

[2] D. Bertozzi et al. NoC synthesis flow for customized domain specific multi-
processor systems-on-chip. IEEE Trans. on Par. and Distr. Syst., 16(2), 2005.

[3] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. In Proc. DAC, 2001.

[4] J. Dielissen et al. Power measurements and analysis of a network-on-chip.
Technical Report NL-TN-2005-0282, Philips Research Laboratories, 2005.

[5] S. Dutta et al. Viper: A multiprocessor SOC for advanced set-top box and
digital TV systems. IEEE Des. and Test of Comp., pages 21–31, 2001.

[6] O. P. Gangwal et al. Dynamic and Robust Streaming In And Between Con-
nected Consumer-Electronics Devices, chapter 1. Kluwer, 2005.

[7] S. González Pestana et al. Cost-performance trade-offs in networks on chip:
A simulation-based approach. In Proc. DATE, 2004.

[8] K. Goossens et al. A design flow for application-specific networks on chip
with guaranteed performance to accelerate SOC design and verification. In
Proc. DATE, 2005.

[9] A. Hansson et al. A unified approach to constrained mapping and routing on
network-on-chip architectures. In Proc. CODES+ISSS, 2005.

[10] J. Hu and R. Mărculescu. Energy-aware mapping for tile-based NoC archi-
tectures under performance constraints. In Proc. ASP-DAC, 2003.

[11] J. Hu and R. Mărculescu. Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures. In Proc.
DATE, 2003.

[12] J. Kramer and J. Magee. The evolving philosophers problem: Dynamic
change management. IEEE Trans. on Soft. Eng., 16(11), 1990.

[13] G. Liu and K. G. Ramakrishnan. A*Prune: An algorithm for finding K short-
est paths subject to multiple constraints. In Proc. IEEE INFOCOM’01, 2001.

[14] S. Murali et al. Mapping and physical planning of networks on chip architec-
tures with quality of service guarantees. In Proc. ASP-DAC, 2005.

[15] S. Murali et al. Mapping and configuration methods for multi-use-case net-
works on chips. In Proc. ASP-DAC, 2006.

[16] S. Murali et al. A methodology for mapping multiple use-cases on to networks
on chip. In Proc. DATE, 2006.

[17] V. Nollet et al. Centralized run-time resource management in a network-on-
chip containing reconfigurable hardware tiles. In Proc. DATE, 2005.

[18] A. Pinto et al. Efficient synthesis of networks on chip. In Proc. ICCD, 2003.
[19] E. Rijpkema et al. Trade offs in the design of a router with both guaranteed

and best-effort services for networks on chip. IEE Proc. Comp. and Dig.
Techn., 150(5), 2003.

[20] M. Rutten et al. Dynamic reconfiguration of streaming graphs on a heteroge-
neous multiprocessor architecture. IS&T/SPIE Electron. Imag., 5683, 2005.

[21] M. Sgroi et al. Addressing the system-on-a-chip interconnect woes through
communication-based design. In Proc. DAC, 2001.

[22] L. T. Smit et al. Run-time mapping of applications to a heterogeneous recon-
figurable tiled system on chip architecture. In Proc. FPT, 2004.

[23] K. Srinivasan et al. An automated technique for topology and route generation
of application specific on-chip interconnection networks. In Proc. ICCAD,
2005.

6

