Congestion-Controlled Best-Effort Communication for Networks-on-Chip

J.W. van den Brand', C. Ciordas?, K. Goossens! and T. Basten?
1 NXP Research, 2 Eindhoven University of Technology
contact: jan.willem.v.d.brand @nxp.com

Abstract. Congestion has negative effects on network per-
formance. In this paper, a novel congestion control strat-
egy is presented for Networks-on-Chip (NoC). For this pur-
pose we introduce a new communication service, congestion-
controlled best-effort (CCBE). The load offered to a CCBE
connection is controlled based on congestion measurements
in the NoC. Link utilization is monitored as a congestion
measure, and transported to a Model Predictive Controller
(MPC). Guaranteed bandwidth and latency connections in
the NoC are used for this, to assure progress of link utilization
data in a congested NoC. We also present a simple but effec-
tive model for link utilization for the model-based predictions.
Experimental results show that the presented strategy is effec-
tive and has reaction speeds of several microseconds which
is considered acceptable for realtime embedded systems.

1. Introduction

Modern multimedia applications require extensive compu-
tation power. Chips with multiple processing units (IPs) can
provide this power. Networks-on-Chip (NoCs) provide these
so-called Multi Processor Systems-on-Chip (MP-SoCs) with
a scalable and flexible interconnect [8]. Examples of NoCs
are Athereal [10], Mango [4] and Xpipes [3].

NoCs provide communication services to IPs. Commu-
nication services with guarantees on throughput and latency
(GS) enable predictable system design. Guarantees are given
by reserving communication resources in the NoC (e.g. wires
and buffers). Although necessary for hard real-time applica-
tions, this results in poor resource utilization for applications
that require variable-bitrate (VBR) communication. Best-
effort (BE) is a communication service with no guarantees on
latency and bandwidth. It can give high resource utilization
by using unreserved or unused resources. However, BE traffic
is prone to network congestion. Athereal [10] and Mango [4]
are examples of NoCs that provide both GS and BE services.

Network congestion has a negative effect on network per-
formance [22]. The problem occurs in packet-switched net-

reserved bandwidth for
congestion limit ~ guaranteed traffic

L\

M best effort traffic

guaranteed traffic

100

shared resource utilization
(%)

time

Figure 1. Shared resource without CCBE.

2500

2000

1500

1000

connection latency (ns)

500 congestion limit

0 [t AN fl L L
400 600 800 1000 1200 1400 1600 1800 2000
offered load (MB/s)

Figure 2. Network latency of an Athereal BE con-
nection as a function of offered load.

works when resources, such as links, get saturated. The re-
sulting performance degradation is experienced by BE net-
work users as an increase of latency and loss of bandwidth.
Figure 1 shows a shared link transporting both constant-
bitrate (CBR) BE traffic and VBR GS traffic with the reserved
bandwidth depicted with a dashed line. BE traffic follows the
variations of the GS traffic. It improves resource utilization
but at certain moments the shared resource is congested.

Figure 2 shows network latency of a BE connection as a
function of offered load measured for a single connection in
a small Ethereal NoC instance. The graph shows that latency
is small and almost constant up to a certain turning point after
which the latency grows steeply. In this example, the latency
saturates at 2600 ns because queuing between IPs and net-
work interfaces is not taken into account.

Networks with BE services should have a strategy to avoid
congestion. However, without global knowledge of the net-
work state, such a strategy can never assert that the network
does not reach a congested state [22]. Therefore, a network
should also have a strategy for resolving congestion. Many
strategies for congestion control have been proposed for off-
chip networks [1, 15, 12, 22]. On-chip networks pose differ-
ent challenges. For instance, off-chip environments force net-
works to allow packet loss and dropping of packets is often
used as a means to control congestion [21]. The reliability
of on-chip wires and more effective link-level flow-control
allows NoCs to be loss-less. This allows use of a simple pro-
tocol stack which results in less traffic for the same amount
of useful data sent. Therefore, NoC congestion control is a
novel problem for the resource constrained on-chip designs.

We propose a strategy for controlling congestion for on-
chip networks. The strategy introduces a new communica-
tion service level, congestion-controlled best-effort (CCBE),
allowing control of offered load based on real-time shared

congestion limit ~ reserved bandwidth for

100 guaranteed traffic
: \
g CCBE traffic
e
)

2
e guaranteed traffic
3
5
%
time

Figure 3. Shared resource with CCBE.

resource utilization measurements. CCBE connections trade
bandwidth for constant and reduced latency. Figure 3 shows
a shared resource with CCBE and VBR GS traffic. It is also
possible to combine CCBE with regular BE connections. In
such a configuration, regular BE also benefits from the con-
trol efforts of CCBE and can be seen as a better quality ser-
vice because BE IP loads are not controlled.

We use link utilization as congestion measure. Measure-
ments are performed by hardware probes (as proposed in [6])
and are transported to a controller by GS connections in the
NoC to assure that this communication is not subject to con-
gestion. The path from controller to IP to communicate the
computed loads can be implemented in a similar way.

The controller, a Model Predictive Controller (MPC) [20],
determines the appropriate loads for the CCBE connections.
It uses a simple link model. Our method requires that routing
in the NoC is not dynamic.

The key contributions of this paper are:

i A new service, congestion-controlled best-effort (CCBE),
which bounds latency by controlling NoC load.

ii The use of Model Predictive Control for on-chip conges-
tion control.

iii A simple but effective model for link utilization.

The organization of the paper is as follows: related work
is discussed in Section 2. In Section 3 we introduce the con-
gestion control method, the controller inputs and its outputs.
Then, in Section 4, we quantify the cost of the presented
method. Section 5 experimentally demonstrates the effec-
tiveness of MPC for congestion control by showing reaction
speeds for different small MPC setups and an MPEG case.
Section 6 concludes.

2. Related work

Different solutions for dealing with congestion have been
proposed for off-chip networks. For instance, TCP [1] uses
a sliding window scheme where packets are allowed to enter
the network until packet drop is detected. NoCs are lossless
due to the reliability of the on-chip environment; therefore
this method can not be used.

Predictive control methods have been presented for off-
chip networks because of their ability to deal with uncertain
delays. Model predictive control (MPC) is proposed for con-
gestion control for asynchronous transfer mode (ATM) net-
works in [12]. Buffer filling is modeled in the presented ap-
proach. We propose to model link utilization, because link
contention is the root cause of congestion.

In [19], a prediction-based flow-control strategy for on-
chip networks is proposed where each router predicts fu-
ture buffer fillings to detect future congestion problems. The
buffer filling predictions are based on a router model. The
router buffer filling information is used for toggling the
sources. Our approach allows both toggling and fluent con-
trol of loads offered by IPs.

Dyad [14] deals with congestion by switching from de-
terministic to adaptive routing when the NoC gets congested.
The method can not guarantee that congestion is resolved (i.e.
the alternative paths might also be congested); our method al-
ways resolves congestion if all BE connections are CCBE.

In [2], an OS communication management scheme is pre-
sented that addresses congestion of a BE NoC. The work sep-
arates a data from a control NoC to guarantee that control data
is not affected by congestion. NI statistics are used as conges-
tion measure. Link-based congestion measurements are more
accurate because this is where congestion takes place.

3. NoC congestion control strategy

In this section, we present a novel communication service
for on-chip networks. This service, congestion-controlled
best-effort (CCBE), controls IP loads to resolve network con-
gestion based on real-time congestion measurements.

We use link utilization as congestion measure, model pre-
dictive control (MPC) as controller and IP load as means of
control. The principle of CCBE is shown in Figure 4. The
figure shows the MPC which gets measured link utilization
and desired link utilization as input. Based on these inputs
and model-based predictions the controller decides appropri-
ate offered load values for the CCBE connections. These load
values go to the cores that use the CCBE service. MPC, the
means of control, the congestion measure and the model used
for MPC are discussed in this section.

3.1. Model Predictive Control

Model predictive control (MPC) is a technique that com-
bines model-based predictions with actual system measure-
ments [18, 9]. MPC is an optimal control method. These
type of controllers are designed by optimizing a cost function
and are known for their ability to deal with varying latencies
which is critical for our control problem. MPC distinguishes
itself from other optimal control methods by solving the op-
timization problem at runtime. These optimization problems
are typically solved by quadratic programming (QP) [20]. We
use the MPC from the Matlab MPC toolbox [16] which uses
Dantzig Wolfe’s method [7] for QP. Stability of MPC can be
proved by using a Lyapunov function. See [17] for a detailed
discussion on stability of MPC.

In this paper we use a centralized MPC strategy which
matches the centralized monitoring service of [6] and copes

desired link set of
utilization
Controller 7CCBE4’ cores L L1 NoC
loads using
CCBE

link utilization

Figure 4. Feedback loop for congestion control.

(a) NoC example.

(b) Corresponding flow graph.

Figure 5. Example of utilization model of two links that are shared by three CCBE connections.

well with current NoCs. The use of distributed MPC [5] is re-
garded as future work and is outside the scope of this paper.

MPCs allow constraints to be specified for controller in-
puts and outputs, which are the measured link utilizations and
the loads offered to CCBE connections respectively (see Sec-
tion 3.2). Minimum and maximum values can be specified,
as well as rise and fall speeds (i.e. how many MBytes/s an
IP can raise or drop its load per control interval). MPC takes
these constraints into account when making control decisions
to ensure that the system will not oscillate.

Control interval and prediction horizon are MPC parame-
ters that affect performance and cost. Each control interval §
the MPC decides on new values for the controlled variables
(in our case CCBE offered loads). An important parameter in
deciding an appropriate value for § for NoCs that use time di-
vision multiplexing (TDM) is the size of the slot wheel. Dur-
ing a slot wheel, link utilization is highly dynamic. There-
fore, § should at least be a multiple of the slot wheel (e.g.
five times the slot wheel). In Section 5, experiments show the
influence of ¢ on the performance of our approach.

During 9, future states are explored over a prediction hori-
zon p. So, each §, an optimization problem has to be solved
by means of QP while considering the effect of decisions over
p control steps. These values must be chosen in such a way
that computation, area and power cost are acceptable. In prac-
tice, choosing 1 < p < 5 gives reasonable performance re-
sults.

3.2. Means of control

We distinguish two ways of steering network congestion
namely control of availability of resources (space) and con-
trol of source load (usage). Resource availability can for in-
stance be scaled at runtime by changing the NoC frequency.
This is not trivial due to the change in timing behavior of all
connections reserved on the NoC. At a source, load can be
controlled by using for instance voltage scaling, degrading
audio or video quality, or by partially or completely disabling
jobs. We choose the option of controlling source loads. The
source introduces limits to the amount of control that can be
applied. As we saw in Section 3.1, MPC allows constraints
to be specified and thus fits well to this means of control.

3.3. Congestion measure

The goal of our congestion control strategy is to bound
network latency. Congestion is a resource sharing prob-
lem. Links and buffers are the shared resources in packets

switched networks. We use link utilization rather than buffer
fillings because we think that this is the most direct conges-
tion measure. A link is shared by multiple buffers and lack of
space in router buffers is the result of link contention.

Hardware probes, as proposed in [6], are used to measure
link utilization. Monitor data is transported from the probes
to MPC, by using connections in the NoC. In order to have
a reliable system, congestion must have no effect on these
connections. Therefore GS connections are used to transport
monitor data. This is one of the costs of the proposed conges-
tion control method as further explained in Section 4.

3.4. Network model

MPC uses a model of the controlled system to iteratively
compute future behavior. This model must be as simple as
possible to minimize the amount of computation for the on-
line QP algorithm. We model link utilization by taking the
sum of the loads of the CCBE connections that share the link.

A communication overhead factor £ is included for each
connection to model the difference between IP load and ac-
tual load in the network. For instance, for the Athereal NoC,
BE data is transported through the network as packets. Each
packet has a packet header of one word. If a packet size of 36
words is used, k = 1/36.

Unit delays following the communication overhead fac-
tor model the forward propagation delay from CCBE IP to
shared link. The delay from a shared link to the MPC is mod-
eled with a unit delay. By dividing the link load with link
bandwidth (2 GBytes/s for Athereal) we obtain link utiliza-
tion. Unit delays are used rather than an estimate of propaga-
tion delays to keep the model as simple as possible. Estimates
improve controller behavior at the cost of a more complex
model.

In the model, @ = [uy,us,...,uy] is the input vec-
tor which represents the loads of the CCBE IPs. y =
[Y1, Y2, ..., Yp) is the output vector which represents utiliza-
tion of the links. Z = [x1, o, ..., 24| is the state vector where
q equals the number of delays in the model.

In Figure 5(b), two links (y; and y2) from Figure 5(a) are
modeled. Connections are represented by dotted lines. Link
y1 shares uq and us, link yo shares v and us.

The state space description of the small example of Figure
5(b) is as follows, where n is the discrete time variable, C'
is the output matrix, A the state-transition matrix and B the
input matrix (see for instance [18]):

g(n) = Cz(n),z(n + 1) = AZ(n) + Bu(n),

00 0 0O k00
000 0O 0 k O
A=10 0 0 0 0|,B=1|0 0 k|,
110 00 0 00
10100 0 0 0
0 0 0 1/2000 0
C:
0 00 0 1/2000

The state-space model of link utilization is straight-
forward and its generation can easily be automated from the
NoC topology, CCBE connections and routing.

4. Implementation costs

In this section we quantify some of the costs associated
with NoC congestion control as proposed in this paper.

We implemented the hardware performance analysis
probes. Table 1 shows the area in 0.13 ym CMOS technol-
ogy for different numbers of monitored links per probe. The
area is small compared to an Athereal router. For instance,
a hardware probe that can monitor all ports for link utiliza-
tion of a six port router has area 0.018 mm? which is 10 %
compared to the area of a six-port router which is 0.175 mm?
[10].

#links | area (mm?)
0.006
0.009
0.011
0.014
0.016
0.018
0.021
0.023

Table 1. Area of hardware probes.

0| | O\ | B W | —

We measure link utilization by accumulating the number
of flits that pass a link during a period of time which for our
control system is equal to the control interval. The measure-
ment data is sent to the MPC using GS connections in the
NoC. Figure 6 shows the load generated by the performance
analysis probes as a function of the sample period. For small
sample periods, the rate at which monitor data is sent to the
MPC is high but the packets are small. Large sample periods
result in low rates but require larger packets. We represent
the number of flits passing a link during one sample period in
bytes. The discontinuity in the figure indicates an extra byte
needed for representing the maximum number of flits.

The results show a trade-off between control speed and
bandwidth costs. The required bandwidth is small compared
to the raw link bandwidth of 2 GBytes/s per link. In the next
section we show that good reaction speeds can be obtained
for acceptable bandwidth.

In our solution, the MPC controls IP loads. The connec-
tions between MPC and IPs is another cost. The required
bandwidth for this connection is generally low. It is equal
to the number of bits that specify the load divided by the
sample period. Bandwidth in the Athereal NoC is reserved

required bandwidth (MB/s)

0 L L L L L L L L
0 100 200 300 400 500 600 700 800 9001000
sample period (ns)

Figure 6. Probe load as a function of sample period.

by reserving a certain amount of slots in a slot wheel. Hav-
ing many low bandwidth connections can result in slot wheel
fragmentation. This may need attention when scaling to large
numbers of CCBE connections.

A final cost is for implementing the MPC. This can be
done in software on an embedded processor such as an ARM
or via dedicated hardware. The work in [13] shows that it
is possible to run MPC for a realistic control problem on a
modest FPGA chip. Quantifying the precise cost for imple-
menting MPC for our control problem is regarded as future
work. In this context, it is important to observe that the time
it takes the MPC to compute new output values is a lower
bound for the control interval.

5. Experimental results

In this section we quantify the performance of our NoC
congestion control strategy by means of three experiments.
First we show the reaction speed of the system by means of
pulse responses. Then we show the ability of the system to
cope with VBR traffic by means of sine sweeps. Finally, we
demonstrate the feasibility of our method by means of a re-
alistic MPEG case study. The NoC and IPs are simulated
with a flit accurate SystemC simulator. The MPC controller
is modeled in Matlab and a C version is obtained by using
the Matlab real-time workshop. The delay of the MPC is not
taken into account. The pulse responses and sine sweeps are
generated on GS connections by means of traffic generators
that are attached to the NoC.

Our BE latency measurements for the Fthereal NoC have
shown that 80 % link utilization results in reasonable laten-
cies before the congestion limit in Figure 2. This value is
therefore chosen as the target link utilization in the presented
experiments. Note that our method works for any target
value.

5.1. Pulse responses

For this experiment we use a small NoC consisting of three
routers and three network interfaces as shown in Figure 7.
The connection from MPC to IP is implemented by a direct
link for this test case.

The configuration has two connections, a GS and a CCBE
connection. The GS connection offers a constant load to the
NoC. The second connection is a CCBE connection which is
used for controlling congestion.

<<<<<<<<< » functional connections
---» control path
O monitored link

function
generator

NR |

CCBE[T =T 3 T RT3 R [44R s |zl 6

core |12 —&I 5 target
A N I] L

MPC i<+

Figure 7. Small setup.

Blocks associated with CCBE are grey. The control path
is depicted with a dashed line. The CCBE IPs are controlled
by direct communication. Link utilization is monitored at the
shared link. The link utilization measure is sent back to the
MPC over a connection in the NoC. The configuration has a
slot wheel of 8 slots (48 ns).

In the figure, the paths followed by the CCBE and GS con-
nection are shown as a dotted line. In this example, links 4
and 5 (L4 and Ls) are shared by the two connections. It is
sufficient to monitor one of them; we monitor link L.

We measured reaction speed by applying a pulse shaped
load to the NoC and measuring the time difference between
congestion detection and resolved congestion for different
control intervals. We use a minimum control interval of 200
ns in this example because smaller intervals result in instable
behavior (see Section 3.1).

As expected, the results presented in column 2 of Table 2
show that a small control interval results in a fast reaction
speed. However, as shown in Section 4, small control in-
tervals demand higher bandwidth connections and faster QP
solving. There is a trade-off between cost and reaction speed.

reaction speed (us)
ctr. int. (ns) || small Ly | MPEG Lg | MPEGL7
200 4 5 4
400 7 10 8
600 10 12 10
800 13 20 12
1000 15 25 16

Table 2. Reaction speeds for different control inter-
vals in the small and the MPEG example.

5.2. Sine sweep

In the previous subsection the relation between control in-
terval and reaction speed was discussed. The ability of a sys-
tem to cope with VBR traffic also depends on the control in-
terval of the system.

To see how the system deals with VBR traffic we ap-
ply a sine sweep with an amplitude of 100 MBytes/s and
a frequency ranging from 2 kHz to 100 kHz to the setup
from Figure 7 with a control interval ranging from 200 ns
to 1000 ns. We take the frequency at which the sine wave

maximum suppressed frequency (Hz)
W
W

1.5 : : : : :
200 300 400 500 600 700 800 900 1000
control interval (ns)

Figure 8. Maximum suppressed frequency as a func-
tion of control interval.

is suppressed with 3 dB (factor 0.707) as the maximum sup-
pressed frequency. Frequencies with a time period close to
or lower than the reaction speed can not be measured by the
system because they are averaged out. Such frequencies will
therefore certainly not be suppressed.

Figure 8 shows maximum suppressed frequency as a func-
tion of the control interval. The suppressed frequencies are
indeed lower than those matching the reaction speed. The
maximum suppressed frequency for the shown intervals is
slightly higher than 45 k H z. Higher frequencies can be sup-
ported by using smaller control intervals but introduce the
bandwidth costs presented in the previous section. Appropri-
ate values for the control interval should be chosen based on
the desired reaction speed and the expected traffic patterns.

5.3. MPEG example

In this subsection we show that it is feasible to introduce
the CCBE service to a realistic system. We use an MPEG2
encoding and decoding system as test case. We show how
our approach performs under realistic traffic and with an in-
creased slot wheel (compared to the small example). We
measure the increase in link utilization due to the presence
of CCBE. Finally, we measure the reaction speeds of the var-
ious congested links in the system and we compare the results
with those of the previous example.

The MPEG case is taken from [11]. Figure 9 shows the
setup for the MPEG case with CCBE. The configuration has
a slot wheel of 30 slots (180 ns).

The original case consists of 14 IPs communicating via
a shared memory by using 21 bidirectional GS connections
through a NoC with a 3x2 mesh topology. Overall link uti-
lization, i.e. the sum of all link utilizations averaged over the
number of links, is equal to 24 % for the original configura-
tion. In order to improve utilization we introduce 3 CCBE
connections, which for example represent connections of an-
other application using the same platform. These connec-
tions follow the paths as displayed in Figure 9 (dashed lines).
Hardware probes are attached to each router to monitor all
links. The paths of the CCBE connections are presented as
dashed lines. The connection for I[P CCBE] traverses three
links, none of which is used by other CCBE connections.

l memory == CCBE connections

A r l O monitored link
watermark ‘r" MPC I@ﬁ" ide\ output|
NI NI J
2
R

o] |

Figure 9. MPEG example.

CCBE2 and CCBES3 share links L7 and L.

The maximum loads of IP CCBE1 to CCBE3 are chosen
in such a way that the NoC reaches a congested state. They
are: 1000 MBytes/s, 400 MBytes/s and 400 MBytes/s respec-
tively. Attaching these CCBE IPs to the NoC results in an
increase of overall link utilization of 16 %. Utilization of
link Ly_3, Lg—7, L1g and L11_13 are increased significantly
by these new loads. However, link Lg and L7 are congested
(utilization of Lg equals 100 % and that of L7 equals 95 %).

We have observed that choosing a control interval of five
times the slot wheel size typically results in stable system
behavior (see Section 3.1). If this still results in unstable be-
havior or if smaller control intervals are required, another so-
lution is to constrain rise and fall speeds of CCBE IPs.

We repeat the pulse response experiment by applying the
aforementioned loads as pulses to the NoC. To obtain a sta-
ble system with the slot wheel of 180 ns but with the con-
trol intervals from the previous experiment, we constrain rise
and fall speed of the loads of the CCBE IPs to -10 and 10
MBytes/s per control interval. The measured reaction speeds
for the two congested links are shown in column 3 and 4 of
Table 2 (of Section 5.1). As expected, the reaction speeds for
link Lg are slightly higher than those of the previous experi-
ment (column 2). The reaction speeds for link L7 are better
than those for link Lg. Link L7 is shared by two CCBE con-
nections. The load of both CCBE IPs are allowed to rise and
fall at the same speed as the load of CCBEI that uses link Lg.

With the MPEG case we have shown that CCBE is feasible
for an example with realistic traffic and for multiple shared
links and controlled loads in the system.

6. Conclusions

We proposed a congestion control strategy for on-chip net-
works. The proposed strategy introduces Congestion Con-
trolled best-effort (CCBE) as a new service level. CCBE con-
nections trade bandwidth for constant and reduced latency.

Link utilization is used as congestion measure because
link contention is the root cause for congestion. Measure-
ments obtained by hardware analysis probes are sent to a
model predictive controller (MPC) which decides CCBE
loads based on this information and model-based predictions.

MPC is able to cope with the uncertain delays that charac-
terize the NoC congestion control problem. Furthermore, it
allows specifications of constraints for the controlled IPs and
is scalable in terms of number of controlled IPs and moni-
tored links.

The area of the hardware probes is only 10 % compared
to the size of an Athereal router. Traffic generated by the
probes only consumes a small amount of available NoC ca-
pacity. Measuring link utilization over a small sample period
of 1000 ns only requires 0.3 MBytes/s which is only 0.015 %
of the available link bandwidth of 2 GBytes/s.

Experiments show that reaction speeds can be in the or-
der of several microseconds which is generally considered
acceptable for realtime embedded systems. An MPEG case
study shows that the approach is feasible for realistic systems.

References
[1] G. Almes et al. RFC2581: TCP congestion control. Technical

report, Network Working Group, 1999.
[2] P. Avasare et al. Centralized end-to-end flow control in a best-

effort network-on-chip. In Proc. EMSOFT, 2005.

[3] D. Bertozzi et al. Xpipes: A network-on-chip architecture for
gigascale systems-on-chip. IEEE Circuits and Systems Mag-
azine, 2004.

[4] T. Bjerregaard et al. A router architecture for connection-
oriented service guarantees in the MANGO clockless

network-on-chip. In Proc. DATE, 2005.

[5] E. Camponogara et al. Distributed model predictive control.
IEEE Control Systems Magazine, 22, 2002.

[6] C. Ciordas et al. An event-based monitoring service for net-
works on chip. ACM Transactions on Design Automation of
Electronic Systems, 10(4), 2005.

[7]1 G. Dantzig. Linear Programming and Extensions. Princeton
university press, 1963.

[8] G. de Micheli et al. Networks on Chip. Morgan Kaufmann,
2006.

[9] R. Dorf et al. Modern Control Systems. Prentice Hall, 2005.

[10] K. Goossens et al. The Zthereal network on chip: Concepts,
architectures, and implementations. IEEE Design and Test of
Computers, 22(5), Sept-Oct 2005.

[11] K. Goossens et al. A design flow for application-specific Net-
works on Chip with guaranteed performance to accelerate SoC
design and verification. In Proc. DATE, 2005.

[12] Y. Guetal. A predictive congestion control algorithm for high
speed communication networks. In Proc. American Control
Conference, 2001.

[13] M. He et al. Model predictive control on a chip. In Proc. of the
(IEEE) Conference on Control and Automation (ICCA), 2005.

[14] J. Hu et al. DyAD - smart routing for networks-on-chip. In
Proc. DAC, 2004.

[15] S. Mascolo. Classical control theory for congestion avoidance
in high-speed internet. In Proc. Decision and Control Confer-
ence. IEEE, 1999.

[16] Mathworks. Matlab model predictive control toolbox:
http://www.mathworks.com/access/helpdesk/help/.

[17] D. Mayne et al. Constrained model predictive control: Stabil-
ity and optimality. Automatica, 36, 2000.

[18] N. Nise. Control Systems Engineering. Wiley, 2004.

[19] U. Ogras et al. Prediction-based flow control for network-on-
chip traffic. In Proc. DAC, 2006.

[20] J. Rossiter. Model Based Predictive Control, A Practical Ap-
proach. CRC Press, 2002.

[21] A. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[22] C. Yang et al. A taxonomy for congestion control algorithms
in packet switching networks. IEEE Network, 9, 1995.

