
Channel Trees: Reducing Latency by Sharing Time Slots in
TimeMultiplexed Networks on Chip

Andreas Hansson
Electronic Systems Group

Eindhoven University of Technology
Eindhoven, The Netherlands

m.a.hansson@tue.nl

Martijn Coenen
Corporate Research Department

NXP Semiconductors
Eindhoven, The Netherlands

martijn.coenen@nxp.com

Kees Goossens
Corporate Research Department

NXP Semiconductors
Eindhoven, The Netherlands

kees.goossens@nxp.com

ABSTRACT

Networks on Chip (NoC) have emerged as the design
paradigm for scalable System on Chip communication infras-
tructure. A growing number of applications, often with firm
(FRT) or soft real-time (SRT) requirements, are integrated
on the same chip. To provide time-related guarantees, NoC
resources are reserved, e.g. by non-work-conserving time-
division multiplexing (TDM). Traditionally, reservations are
made on a per-communication-channel basis, thus providing
FRT guarantees to individual channels. For SRT applica-
tions, this strategy is overly restrictive, as slack bandwidth
is not used to improve performance.

In this paper we introduce the concept of channel trees,
where time slots are reserved for sets of communication chan-
nels. By employing work-conserving arbitration within a
tree, we exploit the inherent single-threaded behaviour of
the resource at the root of the tree, resulting in a drastic
reduction in both average-case latency and TDM-table size.
We show how channel trees enable us to halve the latter in a
car entertainment SoC, and reduce the average latency by as
much as much as 52% in a mobile phone SoC. By applying
channel trees to an H264 decoder SoC, we increase processor
utilisation by 25%.

Categories and Subject Descriptors: B.4.3 [In-
put/Output and Data Communications]: Interconnections

General Terms: Algorithms, Design, Performance

Keywords: System-on-Chip, Network-on-Chip, Quality-of-
Service, Time-Division-Multiplexing

1. INTRODUCTION
Systems on Chip (SoC) grow in complexity with an in-

creasing number of processors, memories and accelerators
integrated on a single chip. These heterogeneous high-
complexity chips are programmable and integrate a rich set
of applications [6], e.g. PDA phones with MP3 players, cam-
eras, radios and gaming.

The individual applications have different Quality of Ser-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 9781595938244/07/0009 ...$5.00.

MIPS request tree(s) Memory response tree(s) TriMedia request tree(s)

IC debug

CPU debug

USB

UART

ISO UART CRC DMA

IEEE 1394 LLC

PCI/XIO

2D renderer

Bridge

TriMedia CPU

Bridge

Scaler

Int. controller

Audio I/O

SPDIF I/O

Stream DMA

Serial interface

Ext. SDRAM

MPEG-2 dec.

Image proc.

Video proc.

MIPS CPU

Figure 1: The Viper set-top box SoC [6].

vice (QoS) requirements, e.g. bandwidth and latency con-
straints that the communication infrastructure must accom-
modate efficiently. Firm real-time (FRT) applications are
not allowed to miss any deadlines, due to e.g. standardi-
sation requirements or steep quality reduction in the case
of misses. For this type of applications, designers use FRT
analysis techniques [12] and worst-case dimensioning. Soft
real-time (SRT) applications, e.g. an MPEG decoder, can
tolerate deadline misses with only a modest quality degrada-
tion and SRT analysis techniques are used for average-case
performance analysis [2]. For both FRT and SRT techniques,
it is crucial that the properties established at the applica-
tion level are maintained during system integration, which
is only possible with a composable architecture [12].

Networks on Chip (NoC) have emerged as the de-
sign paradigm for scalable on-chip communication architec-
tures [5] and can provide composability by means of QoS
guarantees [8, 14], bounding the maximum latency and the
minimum throughput. The guarantees are traditionally im-
plemented by reserving resources, e.g. links and buffers, to
individual channels [3, 13, 16] or connections [14], where a
connection comprises both a request and a response chan-
nel, from master to slave and back.

One common strategy to provide QoS is time-division mul-

tiplexing (TDM) [1, 14, 16, 20]. While offering FRT guar-
antees, this scheme is non work-conserving, resulting in
average-case latencies that are close to the worst case even
in a lightly loaded system [3,21]. Average and worst case are
even closer due to a potentially large difference in commu-
nication granularity between the NoC and the Intellectual
Property (IP) cores. The primary example is an SDRAM,
as exemplified in Figure 1, where one burst (64-256 bytes) re-
quires multiple TDM revolutions since the NoC granularity
is an order of magnitude smaller (8-16 bytes). This is illus-
trated in Figure 2, where a burst, produced for the channel
cB , takes four iterations of the TDM schedule to finish. As a

cDcA cCcB cDcA cCcBcB cDcA

TDM schedule

cC cA cDcCcBcB cA

IP schedule

2 3 41 1 2 3 4

Figure 2: Service granularity mismatch.

result of the finer granularity, the burst is spread out in time,
giving rise to an average latency close to the worst case.

As we shall see, the effect on average latency can be miti-
gated when channels form a tree around a shared source or
destination. This occurs naturally at a shared slave, exem-
plified by the external SDRAM in Figure 1, but also around
the CPUs, responsible for the peripherals and accelerators
belonging to their respective task domain.

The main contribution of this paper is the channel tree

link-reservation scheme for channels that form tree struc-
tures in a time-multiplexed NoC. By: 1) sharing time slots
between multiple SRT channels, and 2) employing work-
conserving scheduling within the tree, we exploit the inher-
ent serialisation of channels diverging from a single-threaded
source. With only a few percents addition to the NoC area,
we show how channel trees: 1) mitigate discretisation effects
on bandwidth requirements and reduce the TDM-table size
(important for both SRT and FRT) by a factor two in a car
entertainment SoC, and 2) reduce average latency (impor-
tant for SRT) by 52% for a mobile phone SoC. By applying
channel trees to an H264 decoder SoC, we halve the amount
of stall cycles and increase CPU utilisation by 25%.

The remainder of the paper is structured as follows. We
start by introducing related work in Section 2. Next, the
problem domain is described in Section 3. The concept of
channel trees is presented in Section 4, followed by a de-
scription of how to apply the technique in an existing NoC
architecture in Section 5. Finally, experimental results are
shown in Section 6 and conclusions are drawn in Section 7.

2. RELATED WORK
Silicon BackPlane reserves time-slots for masters rather

than communication channels [20]. Thus, no real-time guar-
antees can be given to the individual channels with poten-
tially different target destinations.

Connection-oriented guarantees, implemented by glob-
ally scheduling all connections, is provided by NuMesh [18]
(for parallel processing), Nostrum’s looped containers [14],
aSOC’s global scheduling [13], and Æthereal’s contention-
free routing [16]. All these works reserve network time-slots
on a per-connection, or even per-channel, basis and use fixed
schedules with non-work-conserving arbitration. As a con-
sequence, slack is not distributed across channels and the
TDM table grows at least with the number of channels.

In [7, 17], the granularity issue of frame-based arbitration
is solved by multiplexing several channels on a single slot.
A non-work-conserving multi-rate control mechanism, based
on a network processor, is outlined in [17]. In our con-
text, the arbitration speed is higher and buffering is more
constrained, demanding solutions that exploit the tighter
coupling between NoC components. The latter is identified
in [7], but the work does not detail how to couple the con-
cept to time-slot allocation and does not apply the channel
multiplexing to any real-world systems.

Multiplexing of independent channels in a TDM-based in-
terconnect is introduced in [9] by scheduling individual mes-
sages. A similar concept is used in [19] where mutually exclu-

3

2

1

0

cB
3

2

1

0 cA

cA

R

NIB

IPB

IPA RNIA

0,2 1,3

2

1

2,0

3

Figure 3: Contention-free routing.

sive channels are allowed to use the same time-slots through
short-term reconfiguration. While this approach reaches
high utilisation, it requires a detailed knowledge of message
injection times and sizes, which is not typically known at
design time, in particular for SRT applications.

In this paper we propose a scheme where time slots are re-
served for sets of communication channels, for which only the
same source or destination is required. No prior knowledge
is needed about packet injection times as arbitration is done
at run time while preserving performance guarantees. Dif-
ferent applications are still isolated by non-work-conserving
TDM arbitration, whereas average-case performance is sig-
nificantly improved for the individual SRT applications by
using a work-conserving arbitration within the trees.

3. PROBLEM DESCRIPTION
There are several possible hardware solutions that imple-

ment the regulation of traffic. In this work we look at the
particular implementation of Æthereal, where throughput
and latency guarantees are provided to the channels by us-
ing TDM-based contention-free routing [16]. The injection
of flow control units (flits) is regulated by a table in the NI
such that no flits contend, as illustrated in Figure 3. In the
figure, there are two IP cores, IPA and IPB , that communi-
cate over the network of routers (R). It is assumed that IPA

needs one communication channel, cA, that has two slots re-
served in the TDM table, and that IPB needs one channel,
cB , with only one slot reserved. The paths of channel cA and
cB are indicated by a solid and open-headed arrow, respec-
tively. Channel cA has slots 0 and 2 reserved in the table,
and channel cB has slot 1 reserved in the table. The TDM
table has the same period throughout the NoC, in this case
4, and works on a fixed slot size.

Contention-free routing is non work-conserving, resulting
in an average latency that is relatively high. Although the
time in the router network is minimal (no contention), flits
have to wait for their slots in the NIs, even if there are
no other flits in the network. Clearly, the larger the TDM
table and the fewer slots are reserved, the higher the waiting
latency as the distance between reserved slots increases.

In many cases, latency is an important characteristic of on-
chip communication. Especially for processors, which stall
until a read request to the memory is completed, the aver-
age latency to memory has a large effect on the cycles they
effectively compute, and hence on total system performance.

The issue becomes even more apparent when a big burst
of data is sent, which, due to the mismatch between the
granularity of the TDM table and the granularity of the
burst, requires multiple iterations of the table to complete.
Figure 4 shows the impact of different burst sizes for a 166

Theoretical worst case
Observed case with TDM arbiter

Burst size (words)

S
ch

ed
u
li
n
g

la
te

n
cy

(n
s)

643216842

450

400

350

300

250

200

150

100

50

0

Figure 4: Latency added due to network arbitration.

MHz DDR SDRAM memory controller, in theory capable of
producing a word every 3 ns. This is matched by the NoC
that runs on a 500 MHz clock frequency and has one third of
the total bandwidth assigned to the channel in question. The
line shows the theoretical maximum latency contribution of
the NoC arbitration, whereas the bars indicate the average
latency observed in simulation with a cycle-accurate NoC
model employing TDM. In SRT applications, that are able
to use slack, the small difference between average and worst-
case latency may lead to unacceptable utilisation of e.g. the
processors.

The effect can be mitigated by increasing the NoC slot
size. This, however, leads to larger NoC buffers, greatly
increasing the NoC area [4]. Decreasing the SDRAM gran-
ularity, on the other hand, leads to an unacceptable mem-
ory efficiency (as low as 40%), as the command overhead
grows [11].

For frame-based schedulers, such as TDM, low bandwidth
channels, in combination with limited allocation granularity,
are a source of over-dimensioning [15] and can lead to under-
utilisation of resources [17, 21]. Figure 5(a) illustrates an
example in which the IP core IPR communicates with IPA,
IPB , IPC and IPD through four channels. The channels cA,
cB , cC , and cD require 1

40
, 2

40
, 3

40
, and 4

40
of the link capacity

respectively. Due to the granularity, the TDM table requires
at least 40 slots. It is possible to use fewer slots at the
expense of over allocation, e.g. use a table with only four
slots and assign a single slot to each channel.

4. CHANNEL TREES
Traditionally slot allocation is only correct if every slot of

a link is allocated to at most one channel. Channel trees
exploit that with an additional level of scheduling in the
source NI, it is possible to multiplex several channels on a
single slot, as depicted in Figure 5(b). In the example, the
slots that were previously reserved for cA, cB , cC and cD

are now collectively reserved for the set that comprises all
four channels. Hence, each of the channels may access the
network in slots 0-9.

Note that the aggregation of channels into trees is orthog-
onal to the concept of connections as the latter always com-
prise one request and one response channel [16]. The only
requirement on the constituent channels is that their usage
of the network links is contention free, either by construc-
tion, as in a diverging tree, or externally enforced, as must
be done for a converging tree.

Table 1: Latency (ns) for the channels in Figure 5.

Channel
With trees Without trees

Min. Avg. Max. Min. Avg. Max.

cA 38 40 42 120 128 134
cB 40 42 46 122 130 138
cC 44 46 48 124 132 140
cD 50 52 54 130 152 164

4.1 Advantages
When many channels diverge from a single-threaded re-

source that does not interleave transactions, channel trees
significantly reduce the average latency by allowing more
freedom in the scheduling between the constituent channels.
This is especially important for shared-memory-centric ar-
chitectures, with processors that need a low average latency
to achieve a good performance. Table 1 shows the observed
latency, with and without channel trees, for the system de-
picted in Figure 5(b). Four response channels, with band-
width requirements of 20, 40, 80 and 160 Mbyte/s respec-
tively, diverge from a slave IPR and as seen in the table, the
observed latency is effectively reduced by two thirds.

It is important to note, that while enabling performance
improvements for SRT applications, the channel trees are
isolated from each other and other individual channels.
Thereby, the trees cover the entire spectrum from reserva-
tions per channel [13,14,16,18] to reservations per port [20].

In addition, by using channel trees, the size of the TDM ta-
ble can be reduced. With the introduction of {cA, cB , cC , cD}
in Figure 5(b), it is possible to redistribute the ten slots
equidistant over the TDM table. This distribution not only
minimises the worst-case waiting time for a slot but also en-
ables a reduction of the table size by a factor of ten. The
reduced table has only four slots with one allotted to the
newly introduced channel tree.

4.2 Implications
An additional level of arbitration is required to ensure

that the constituent channels of the tree are scheduled so
that real-time guarantees can be given to them [17]. This is
elaborated on and exemplified in Section 5.1.

Channel trees trade average latency for over-allocation in
the branches. Consider for example the ingress link of NIA

(marked by a ⋆) in Figure 5. Without the channel tree,
one slot is reserved while ten slots are required after the
aggregation. Clearly, the amount of over-allocation grows
with the distance from the root of the tree. Let π(c) denote
the set of links that constitute the path of a channel c, and
s(c) the set of slots reserved to c on the ingress link of the
source NI. Without channel trees, a total of

P

∀c
|π(c)| |s(c)|

slots are reserved. Should a tree t be used, then a maximum
of

˛

˛

S

∀c∈t
π(c)

˛

˛ × s(t) slots are reserved for the constituent
channels. In Figure 5, this corresponds to 3×1+4×2+5×
3 + 4 × 4 = 42 and 10 × 10 = 100 slots respectively.

The potential over-allocation can be mitigated by combin-
ing the channels into more than one tree, e.g. {cA, cB} and
{cC , cD}. Thus, there is less over-allocation in the network,
but the average latencies increase.

5. ADAPTATIONS
In order to apply the channel trees to a NoC design, adap-

tations, although minor, are needed both in the architecture
and in the allocation of time slots.

7 cD

9 cD

8

6

5 cC

4 cC

3 cC

2 cB

1

0 cA

cB

39

10

cD

cD

0

1

2

2,3

3,4

5,6

4-6 5-7

7-10 8-11

6-8

9-12

7-9

6-9

IPR

NIA NIB

NIC

NID

IPC

IPD

IPA

NIR

IPB

(a) No sharing

3-12

2-111-100-9

2-11

1-10

9

8

7

6

5

4

3

2

1

0

10

39

3-12

3-12

2-11 4-13

⋆⋆

⋆{cA, cB, cC, cD}

{cA, cB, cC, cD}

{cA, cB, cC, cD}

{cA, cB, cC, cD}

{cA, cB, cC, cD}

{cA, cB, cC, cD}

{cA, cB, cC, cD}

{cA, cB, cC, cD}

{cA, cB, cC, cD}

{cA, cB, cC, cD}

2-11

3-12

⋆⋆⋆

IPR NIR

NIA NIB

NIC

NID

IPC

IPD

IPA IPB

(b) Full sharing

Figure 5: Diverging channel tree on a 2 × 3 mesh.

5.1 Architecture
When channels are combined into trees, a mechanism is

required to schedule the data sequentially onto the network.
A tree of converging channels requires explicit contention
resolution. In the simplest case, with a master at the root of
the tree, the order can be decided by only allowing one out-
standing request. This is, however, at the cost of pipelining
and parallelism, and in the general case a second arbitration
scheme must be added on top of the TDM. The latter can be
implemented by for example letting IPR provide extra con-
trol information, embedded in the requests, that IPA, IPB ,
IPC , and IPD use to determine when to inject data in the
converging tree, i.e. a hand-shake protocol. Such a mecha-
nism lies outside the scope of this paper.

For a diverging tree, which is the focus of this paper, the
contention resolution requires only minor adaptations of the
source NI. Figure 6 shows the relevant parts of the NI ar-
chitecture [16] for an instance with six channels, cA to cF .
There are two components of the NI that are affected by
the introduction of the trees. First, the TDM table contains
both individual channels and tree identifiers. Second, in ad-
dition to the TDM table, an additional level of arbitration
is required to choose between the channels within each tree.

Any channel that is to be scheduled must: 1) belong to the
set of channels having reserved the TDM slot 2) have data,
and 3) have end-to-end flow control credits available [16]. If
the time slot belongs to a tree, the tree arbiter selects one
of the eligible channels.

A tree arbiter is a stand-alone module with a general in-
terface that is oblivious of the actual arbitration mechanism.
At run time, the arbiter is configured with the set of chan-

cF

cA

Packetisation

cE

t1

cF

t2

t2

NI Arbiter t1

{cA, cB}
Arbiter t2

{cC, cD}

Figure 6: Adapted NI architecture.

nels that belong to the tree and any settings specific for
the arbiter, e.g. the length of time windows and budgets
for the individual channels. Typically, the arbiter is com-
posed of a rate regulator, that shapes the traffic such that
no channel can corrupt the guarantee of another [17], and a
work-conserving scheduler.

Depending on the goals of the design, any scheduling
algorithm, e.g. first-come first-served (FCFS) or round-
robin [21], can be used, as long as it is combined with a
rate regulator. In our experiments we use a simple round-
robin arbiter with an enforced maximum packet size. This
arbiter serves as both rate regulator and scheduler, while oc-
cupying less than 10% of the NI area. Note that under these
assumptions, arbitration within the tree is starvation free

and guarantees can still be given to the individual channels.
Irrespective of whether channel trees are used or not, each

channel has a separate NI queue. Thus, there is no possi-
bility of inter-channel blocking, and the trees can be pro-
grammed at run-time to adapt to specific application needs.

5.2 Allocation algorithm
We base this work on an existing algorithm [10] by adapt-

ing the order in which channels are traversed, the conditions
on which paths and time slots are selected, and how reserva-
tions are made. The goal is still to find paths and time slots
such that the constraints of all channels are satisfied.

The outmost loop of our allocation algorithm is iterating
over all trees (also including single-channel trees), ordered
on their total bandwidth requirements to reduce bandwidth
fragmentation, conserve resources and give precedence to
channels with a more limited set of paths [10]. Together with
the appropriate path-selection cost function, this traversal
order also asserts that the overlap between the individual
channels is maximised, e.g. by choosing the path ⋆⋆ instead
of ⋆⋆⋆ for channel cC in Figure 5(b).

For every channel, a constrained least-cost path is selected
such that throughput and latency guarantees are fulfilled.
When paths are evaluated, for every hop, the set of available
time slots is used to prune the search space and determine
path cost. The path selection algorithm therefore starts by
determining which time slots are available on the first link,
between the source NI and the router. This is done by prun-
ing all slots occupied by other channels in any of the already

cD, non-uniform burst size
cC , non-uniform burst size
cD, uniform burst size
cC , uniform burst size

Burst size (words)

L
a
te

n
cy

(n
s)

12812011210496888072645648403224168

500

400

300

200

100

0

Figure 7: Latency scaling with burst size.

allocated branches. Consider for example the allocation of
cC in Figure 5(b), with cA and cB already allocated. Only
the slots that are available on both paths are considered for
cA. Then, when deciding on a path for cA, the link cost is
based on how much a hop reduces the set of available slots.
Thereby, links that are already occupied by the tree are pre-
ferred. Finally, resources are reserved for the whole tree,
spanning all the branches.

6. EXPERIMENTAL RESULTS
To evaluate the performance of our methodology, we apply

it to three SoC designs and a range of synthetic benchmarks.

6.1 Synthetic benchmarks
We start by evaluating how the burst size and bandwidth

requirement of the channels in a tree affect the performance
benefits. We evaluate this on a system similar to what is
depicted in Figure 5, with a 500 MHz NoC operating fre-
quency and 32 bit word width. The average latencies are
measured during a simulation time of 3 × 106 clock cycles
in a cycle-accurate SystemC simulator of Æthereal, using
traffic generators to mimic IP behaviour. Unless indicated
otherwise, the maximum packet size is 4 flits, and the four
channels have the bandwidth requirements 100, 200, 300 and
400 Mbyte/s. We apply the channel tree concepts by allo-
cating all four channels to a single tree.

Figure 7 shows how an increase in burst size affects the
average latency for two different scenarios. First, the burst
size is increased uniformly across all the channels, starting
from 8 words and going up to 128 words. Second, referred
to as non-uniform, only the burst size of cD is increased.
With a uniform burst size, the latency grows linearly for
both cC and cD. The channels cA and cB are not shown,
but have a similar behaviour. The latency increase is due to
the increased amount of data being delivered in a burst (one
word at a time), and not due to the TDM waiting time. This
is to be compared with the scheduling latency introduced in
the absence of channel trees, shown in Figure 4. In the non-
uniform case, only cD is affected by the increase in burst size,
showing the isolation provided by the arbiter. The maximum
packet size, here tuned for the constant burst size, can be
increased to improve the performance of cD at the expense
of a slightly higher latency for the other channels.

Next, we investigate how the availability of slack band-
width within the tree affects the average latency. In contrast
to the relatively low load in Table 1, Figure 8 shows how the
behaviour changes when the load within the tree approaches

cD, non-uniform burst size
cC , non-uniform burst size
cD, uniform burst size
cC , uniform burst size 16751634

Tree load (%)

L
a
te

n
cy

(n
s)

989694929088868482807876747270

140

120

100

80

60

40

20

0

Figure 8: Latency scaling with bandwidth.

100%, both when scaling the bandwidth uniformly, increas-
ing all four channels equally much, and non-uniformly, in-
creasing only the bandwidth of cD. As seen, the availability
of slack is not affecting average latency until the load goes
above 90%. Hence, the tree’s ability to serialise whole bursts
from the IP is the main contributor to the improved perfor-
mance, and the tree is very much beneficial also when the
load is high. Note that in the non-uniform case, when only
cD is increased, cC is hardly affected. Again, the channels
cA and cB are not shown, but have a similar behaviour.
When cD goes above one fourth of the available bandwidth,
the round-robin arbiter breaks down, leading to a severe in-
crease in latency for this channel. Remedying this situation
requires a more sophisticated arbiter [21].

6.2 Car entertainment
To evaluate the performance of our methodology on a real

SoC design, we apply it to a multi-core architecture for in-
car digital entertainment [15]. The system does not have a
shared memory, but instead employs streaming communica-
tion. A large number of low bandwidth (less than 1 Mbyte/s)
channels connect two DSP tiles with an I/O tile containing
e.g. SPDIF in/out interfaces, DACs as well as ADCs, and
USB connectivity. The I/O-related channels clearly dictate
the minimum TDM-table size and we therefore create two
trees to the involved DSPs. By introducing these trees, the
TDM table is reduced from 19 to 8 slots. As a direct con-
sequence, the register file containing the table is halved in
each NI, and the average latency observed by the channels
in the system diminishes by 24%.

6.3 Mobile phone SoC
Our next example is a mobile phone SoC design, featuring

applications like telephony, storage, audio/video decoding,
camera image encoding, image preview and 3D gaming. The
architecture is similar to what is shown in Figure 1 with a
total of 13 cores (27 ports distributed across an ARM, a
TriMedia, two DSPs, a rendering engine etc.), one off-chip
DDR SDRAM memory, one on-chip SRAM plus a number
of peripherals. Communication is done via memory, running
at 117 MHz with a word width of 64 bits. As the native
word width of our NoC is 32 bits we choose to let the NoC
run at double the memory frequency, 235 MHz, thus offering
the same gross bandwidth.

We define four channel trees: 1) between the peripherals
and the ARM, 2) from the ARM to the external memory, 3)
from the TriMedia to the external memory and additionally,

Table 2: Cache-miss latency (TriMedia cycles).
Component With trees Without trees

Request
TDM arbitration 4 4

NoC traversal 4 4

Memory
arbitration 19 19
service time 32 32

Response
TDM arbitration 2 102

NoC traversal 4 4

Total 65 165

4) a diverging tree for the remaining response channels from
the external memory.

The reduction in time-slots is only minor, going from 16
without trees to 14 with trees. This is due to the many
request channels that still converge at the shared memory,
each requiring at least one slot. More noticeable, however,
is a 52% reduction of the average latency for the channels
in the four trees. In particular, the average read latency
(round-trip) for the ARM and TriMedia is reduced from 565
and 470 ns to 230 and 215 ns respectively.

6.4 H264 decoding
In order to show the impact of average latency on proces-

sor utilisation, we evaluate a H264 decoder SoC. The SoC
consists of a 166 MHz DDR SDRAM memory controller, a
CPU that reads a H264 file from a storage subsystem and
writes it to memory, a TriMedia TM3270 video processor
(clocked at 350 MHz) that reads the encoded bitstream from
memory and writes the decoded frames to memory, and fi-
nally a display controller that reads each of the frames from
memory. In contrast with the previous examples, this SoC
is evaluated using cycle-accurate models of the IPs.

The cache misses generated by the TriMedia, which are
128 byte requests, are sent over the NoC to the SDRAM.
Since the memory controller is the sole point of contention,
the responses from it form a diverging tree to which the chan-
nel tree concept is applied. Table 2 details the components
of the total round-trip latency of a cache-miss, measured in
TriMedia cycles.

Without trees the largest fraction of time is spent in the
memory controller and waiting for a TDM slot on the re-
sponse path, where only one out of four slots is allocated to
the TriMedia. On the request path TDM arbitration does
not add a significant latency, because a read request is very
small (typically two words) and fits perfectly with the NoC
granularity. When channel trees are used, the response mes-
sages are fully pipelined, as the NoC consumes the data pro-
duced by the memory immediately, without having to wait
for TDM arbitration. The NoC introduces only the pack-
etisation (the 2 cycles shown under TDM arbitration) and
hop-delay latency on the response path. This improves the
overall round-trip latency by almost 60%. Effectively the
amount of stall cycles is halved, increasing the TriMedia’s
utilisation by 25%.

7. CONCLUSIONS AND FUTURE WORK
Networks on Chip must provide time-related guarantees in

order to allow a composable design methodology, fitting both
firm (FRT) and soft real-time (SRT) applications. Time-
division multiplexing offers these guarantees, but its non-
work-conserving nature conduces to high average latencies,
which results in bad processor utilisation and possibly unac-
ceptable performance for SRT applications.

In this paper we introduce the channel tree concept, where
time slots are shared between a selected set of channels.
When applied to a number of SoC designs, the average la-
tency of the constituent channels decreases significantly, up
to 60%, and the processor utilisation of an H264 decoder
improves by as much as 25%. Since TDM is used between
the channel trees, FRT and SRT applications can still be
combined in the same system, providing full isolation and
composability between the applications.

It remains an open issue to automatically identify suitable
channels to join in trees. Similarly, the many optimisation
problems that arise when allocating resources to trees rather
than single channels are yet to be fully explored.

8. REFERENCES
[1] E. Beigne et al. An asynchronous NOC architecture providing

low latency service and its multi-level design framework. In
Proc. ASYNC, pages 54–63, 2005.

[2] M. Bekooij et al. Efficient buffer capacity and scheduler setting
computation for soft real-time stream processing applications.
In Proc. SCOPES, 2007.

[3] T. Bjerregaard and J. Sparsø. A router architecture for
connection-oriented service guarantees in the MANGO
clockless network-on-chip. In Proc. DATE, 2005.

[4] M. Coenen et al. A buffer-sizing algorithm for networks on chip
using TDMA and credit-based end-to-end flow control. In
Proc. CODES+ISSS, 2006.

[5] W. J. Dally and B. Towles. Route packets, not wires: on-chip
interconnection networks. In Proc. DAC, 2001.

[6] S. Dutta et al. Viper: A multiprocessor SOC for advanced
set-top box and digital TV systems. IEEE Design and Test of
Computers, 2001.

[7] O. P. Gangwal. Id 693979 – network-on-chip environment and
method for reduction of latency. Technical report, Royal
Philips Electronics, 2005.

[8] K. Goossens et al. A design flow for application-specific
networks on chip with guaranteed performance to accelerate
SOC design and verification. In Proc. DATE, 2005.

[9] R. Guérin and A. Orda. Networks with advance reservations:
The routing perspective. In Proc. INFOCOM, 2000.

[10] A. Hansson et al. A unified approach to constrained mapping
and routing on network-on-chip architectures. In Proc.
CODES+ISSS, 2005.

[11] JEDEC Solid State Technology Association. DDR2 SDRAM
Specification, JESD79-2C edition, 2006.

[12] H. Kopetz. Real-Time Systems: Design Principles for
Distibuted Embedded Applications. Kluwer Academic
Publishers, 1997.

[13] A. Laffely. An interconnect-centric approach for adapting
voltage and frequency in heterogeneous system-on-a-chip.
PhD thesis, University of Massachusetts Amherst, 2003.

[14] M. Millberg et al. Guaranteed bandwidth using looped
containers in temporally disjoint networks within the Nostrum
network on chip. In Proc. DATE, 2004.

[15] A. Moonen et al. A multi-core architecture for in-car digital
entertainment. In Proc. GSPx, 2005.

[16] A. Rădulescu et al. An efficient on-chip network interface
offering guaranteed services, shared-memory abstraction, and
flexible network programming. IEEE Trans. on CAD of Int.
Circ. and Syst., 2005.

[17] D. Saha et al. Multi-rate traffic shaping and end-to-end
performance guarantees in ATM networks. In Proc. ICNP,
1994.

[18] D. Shoemaker. An Optimized Hardware Architecture and
Communication Protocol for Scheduled Communication. PhD
thesis, Massachusetts Institute of Technology, 1997.

[19] S. Stuijk et al. Resource-efficient routing and scheduling of
time-constrained network-on-chip communication. In Proc.
DSD, 2006.

[20] D. Wingard and A. Kurosawa. Integration architecture for
system-on-a-chip design. In Proc. CICC, 1998.

[21] H. Zhang. Service disciplines for guaranteed performance
service in packet-switching networks. Proc. IEEE, 83(10), 1995.

