
C H A P T E R 5

NETWORK AND TRANSPORT
LAYERS IN NETWORKS ON CHIP∗

The main goal of the network and transport layers is to support the end-
to-end communication between the modules at the specified quality of
service (QoS) using a power- and resource-efficient sharing of the intercon-
nect resources. This seemingly simple goal forces the designer to address
all classical (and some new) network layer issues in the context of an
individual chip design.

In order to define the end-to-end QoS, we need to define the on-chip
communication requirements in terms of the module-to-module traffic
types, rates, statistical behavior, and predictability. For each such end-to-
end flow we also need to define the service it receives such as loss and delay.
We also need to define the interrelation between these flows, such as prior-
ities, and actions that should be taken when communication resources are
scarce. Finally, we need to decide on the appropriate network architecture
that supports the above QoS requirements. For this the following network
on chip (NoC) characteristics must be defined: switching technique, NoC
topology, addressing and routing scheme, and end-to-end congestion and
flow control schemes.

First, the appropriate data switching mechanism (e.g., circuit switch-
ing, packet switching, etc.) needs to be selected for the multiplexing of
multiple flows from different sources and different requirements in a sin-
gle network. Then, the appropriate network topology needs to be selected
and optimized to physically connect the different modules (including
basic graph topology, links and router speeds, and specific layout issues).
Addressing and routing schemes need to be devised in order to allow cir-
cuit or packets traversing the network to be routed to diverse destinations
including possible multicast or broadcast of information. Names mean-
ingful to applications (such as memory and I/O addresses) need to be
translated into routing-efficient labels. Since the proper delivery of cer-
tain types of traffic (or signals) on the chip is crucial for performance and
is categorized in different ways, the concurrent support of multiple QoS

∗ This chapter was provided by Israel Cidon, of Technion, Israel and by Kees Goossens, of
Philips Research, The Netherlands

148 Chapter 5 ! Network and Transport Layers in NoCs

requirements is essential. Since modules perform a variety of information
exchanges, there is a need for end-to-end mechanisms to guarantee in
order and assure delivery, end-to-end connection and flow control for rate
matching and receiver buffer management and resource access control
for multiple resource access resolution. In order to accommodate exces-
sive traffic conditions and to quantify the behavior of the network under
extreme conditions, NoC should also support network-level congestion
control. One also needs to address reliability in the face of communication
soft errors that may corrupt transmitted data.

5.1 NETWORK AND TRANSPORT LAYERS IN NoCs

The network layer deals with the QoS, switching technique, topology, and
addressing and routing schemes. The transport layers address the conges-
tion and flow control issues. However, we will not make the distinction in
the remainder of this chapter.

Since similar network and transport layer problems have been exten-
sively studied in the networking and system interconnect realm, one
may be tempted to employ well-developed networking solutions in the
NoC context. However, a direct adaptation of such network solutions to
NoCs is impossible, due to the different communication and performance
requirements, cost considerations, and architectural constraints [21].

First, the requirements are different. Unlike many off-chip networks,
the NoC is at the heart of chips that support real-time operations and
are embedded in critical systems from life-support gear to vehicular and
aerospace equipment. Embedded systems also often deal with intrinsically
real-time data, such as high-quality audio and video. Therefore, NoCs QoS
requirements call for a high degree of predictability and robustness and
cannot tolerate incidental glitches and anomalies [32]. As a specific exam-
ple, network design must meet strict QoS requirements for certain types
of traffic, such as interrupt signals or fetching real-time instructions and
data from caches to digital signal processors (DSPs). Such requirements
may be specified in very strict terms, such as the number of clock cycles
to accomplish a certain transaction.

Second, the cost considerations are different. The primary considera-
tions in very large-scale integration (VLSI) are minimizing area and power
dissipation. The area cost of an NoC is composed of routers and network
interfaces (i.e., logic cost) and the cost of wires/links that interconnect
them (area used by metal lines, spacing, shielding, repeaters, etc.). Sim-
ilarly, power consumption can be separated to dynamic and static power
consumed by the NoC logic (in routers and network interfaces) and links
(in wires and repeaters). In both cases, both temporal power to reduce
heat dissipation, and total energy consumption for saving battery power
for nomadic systems [12] are to be minimized. Moreover, since an NoC

5.1 Network and Transport Layers in NoCs 149

connects modules or relatively small subsystems, these area and power
costs should be kept much lower compared to networks that connect large
systems.

Third, there are also many architectural constraints and freedoms
unique to the NoC environment. For example, on-chip network topologies
are quite restricted – they are planar, often organized as (full or partial)
grids, and do not need to support the dynamic addition or removal of
components. A new important dimension of freedom in NoC is the ability
to alter the physical layout of the network routers and links along with
the chip module placements, enabling the designer to optimize the NoC
geography according to traffic and layout constraints [13, 78, 80].

Furthermore, each NoC is synthesized anew for each design [43, 62],
eliminating the need for standardization of network protocols. That is,
protocols and architectures employed in a new chip design do not have to
be compatible with those used in previous designs. Consequently, NoCs do
not possess the rigid standardization constraints of traditional networks.
Except for retaining module reuse compatibility, NoCs can be customized
to their specific chip environment and need not assume backward, upward,
and different vendor compatibility as well as regulatory constraints. In
that sense the NoC environment is much more open to multiple choice
and architectural innovations. Nevertheless, the use of standard network
interfaces, such as Open Core Protocol (OCP) [86] and Advanced extensible
Interface (AXI) [2] is important, in order to allow the reuse of modules,
across chip designs.

5.1.1 Classifying NoC Models
As mentioned in Chapter 1, Networks on chip can be classified into dif-
ferent families. We elaborate more on this concept here, and relate to a
classification of chip designs based on Ref. [21] and on its impact on NoC
design. Systems on chip (SoCs) span a vast spectrum of objectives and
implementations.

On one extreme of the spectrum we identify the application-specific SoCs
or ICs (ASICs), encompassing custom-made designs with a particular pre-
known application, for example, a multichannel 3G base-station, a video
camera, or a set-top box. In such chips, the network usage is known a
priori and can be classified prior to the NoC design time.

On the opposite side of the spectrum, general-purpose chip multipro-
cessors (CMPs), capture general-purpose chip designs supporting parallel
processing, where the chip and interconnect usage is unpredictable
and only determined at run time. Here we can find general multi-core
processors, parallel DSP arrays, etc.

In between these two extremes we can find designs whose traffic
patterns can be partially predicted, or may have several distinct usage
patterns. These systems are the outgrowth of application-specific standard

150 Chapter 5 ! Network and Transport Layers in NoCs

high
general
purpose

low
single

application

never
mode fixed at design time

reconfiguration frequency &
configure what, when

CMP

ASIC

ASSP

FPGA

flexibility &
specialization

medium
application

domain

high
schedule within mode at run time

low
configure mode at boot time

medium
change mode at run time

! FIGURE 5.1

An NoC classification.

products (ASSP); also called application-specific instruction set processors
(ASIPs), which are processors whose architecture has been tuned to
an application. SoCs may contain multiple processors and mix general-
purpose and application-specific processors. In general, it is commonplace
to refer to platforms as to multiprocessors dedicated to a family of
applications.

The field-programmable gate arrays (FPGAs) define multipurpose chips
that include generic hardware resources like logic arrays, flip-flops, RAM,
processors, and special purpose Internet Protocol (IP) modules (Ethernet,
USB, DSP) that can be configured using a programmable interconnect grid,
into specific systems. The design of such systems leaves a large degree of
freedom for the FPGA designer (programmer).

We illustrate the NoC design spectrum in Fig. 5.1.

ASIC

The distinguishing property of our ASIC NoC definition is the ability to pre-
dict the network usage patterns before the network is designed. Since a
typical SoC has a specific functionality, this functionality can be simulated,
and the inter-module communication patterns and requirements can be
inferred at design time. Consequently, a specific NoC can be synthesized to
satisfy these exact needs. Virtually all network parameters, including net-
work layout, link capacity allocation, buffer sizes, packet headers, partial
routing tables, and the number and requirements of service classes, can
be custom synthesized to meet the particular SoCs requirements with no
“open-ended” resources spent on “general-purpose” requirements. Specif-
ically, most SoCs do not need to support all possible module-to-module

5.1 Network and Transport Layers in NoCs 151

communication patterns as well as all possible QoS classes for all modules
or SoC vicinities.

ASICs are optimized for the application, and hence will have the small-
est area and use the least power. This comes at the cost of reduced
flexibility. Related to this is the cost of designing an ASIC, which is incurred
most often of all categories, namely for each application.

ASSP and platforms

A slightly more complex scenario is dealing with SoCs that are designed
to support multiple applications, or that can take different chip “incar-
nations” at either production or power-up time. In such SoCs different
modules and different software may be operating in each distinct SoC
incarnation. A major design objective is to build a single SoC for a broad
range of related applications [99]. In such a case the NoC is designed to
support all possible applications. However, for each specific incarnation
the NoC can be configured to operate at minimum power consumption.
Therefore, non-required elements can be turned off and dynamic voltage
and frequency scaling (DVS/DFS) techniques can be used to tune the NoC
for an optimal performance versus power trade off [79].

ASSPs/platforms are tailored to an application domain (e.g., high-end
set-top boxes), rather than to a particular application. They are less area
and power efficient than an ASIC for each application. However, the
increased flexibility is rewarded by reuse of the chip for multiple appli-
cations. As a result, the cost of designing the ASSP/platforms is paid only
once per application domain.

FPGAs

An FPGAs NoC is designed in two phases: (i) the layout phase, which occurs
when the FPGA chip is designed and (ii) the configuration phase, occurring
when a system design is programmed into the FPGA. The design made in
the former should be flexible enough so as to allow for a large variety of
configurations during the latter. Unlike in the ASIC model, little is known
about traffic patterns when the network is laid out, and hence, custom
optimizations are impossible. In the configuration phase the traffic pat-
terns become available, but the physical wires and network resources are
already fixed in place.

The NoC infrastructure can be designed into the fixed FPGA fabric dur-
ing the layout phase. But it can also be programmed, just like any other
functionality, during the configuration phase. In the former case, the com-
munication patterns of the application to be programmed in the FPGA are
not yet known, and the NoC must therefore be a general one (like for CMPs,
described below). But the implementation of this NoC can be highly opti-
mized, for example using custom layout. The reverse holds for the latter,
where the application and its communication patterns are known, and an
NoC optimized for the application can be programmed in the FPGA. The

152 Chapter 5 ! Network and Transport Layers in NoCs

NoC implementation will therefore use the generic FPGA infrastructure
(look-up tables, switch boxes, etc.), just like any other module function-
ality. As a result, the NoC implementation will be much less optimized.
Of course, a mixture of these two models is also possible. For example,
an NoC backbone (routers and network interface kernels) is designed in
the FPGA, which is augmented with network interface shells [91] during
configuration.

FPGAs are optimized for hardware-programmable flexibility. Hence,
they are very area and power inefficient compared to an ASIC for each
application. However, their computational efficiency is good compared
to ASICs and ASSPs. Because the FPGA is designed once and then pro-
grammed, it is able to run all applications. The design cost of an FPGA is
amortized over a larger number of applications than ASICs and ASSPs.

CMPs

In a general-purpose CMP, the traffic pattern is completely unpredictable
until run-time and even during different phases of the same program
because of very different program behaviors for different external inputs
(e.g., dynamic games, simulations, etc.). In this regard, many of the chal-
lenges of CMP NoC design resemble those we normally see in traditional
networks, for example, static versus dynamic routing, congestion control,
connection rate fairness, etc. Unfortunately, traditional mechanisms for
dealing with these issues may be prohibitively expensive to implement in
silicon. On the other hand, the relatively small dimension of the complete
network, combined with the fact that the entire chip is often controlled by
a single operating system, may make the problems amenable to centralized
solutions.

CMPs are optimized for software-programmable flexibility. Hence, they
are very area and power inefficient compared to an ASIC or ASSP for each
application. The CMP is designed once (in theory) and is able to run all
applications. Of the four categories, the design cost of a CMP is amortized
over the largest number of applications.

In the sequel we present the different aspects of the network layer
architectures and their design choices: the QoS and traffic requirement
characteristics, the switching paradigm, NoC topologies, the addressing
and routing mechanisms, handling congestion control, and end-to-end
transport layer issues.

5.2 NoC QoS

There are many important metrics for NoCs. In this chapter, we devote
particular attention to QoS, because this requirement has a direct impact

5.2 NoC QoS 153

on switching and routing. QoS is a common networking term that applies
to the specification of network services that are required and/or provided
for certain traffic classes (i.e., traffic offered to the NoC by modules). QoS
specification can be expressed by performance metrics like loss, rate, delay,
delay variation (jitter), etc. and can be categorized by absolute (worst
case) bounds, average values, percentiles etc. [4]. For example, an Internet
packet-based voice traffic may require a throughput of 64 Kbps, less than
1% average packet loss and a packet one way delay bound below 150 ms.
QoS definitions can also apply to different service granularities. In addition
to the QoS specification of voice packets, the whole voice call can require
a limit on its call blocking probability (failure rate) or a specification of
the call establishment times.

If certain traffic classes require an assured (guaranteed) QoS specifi-
cation, there is an inherent limit to the amount of traffic that can be
allocated to such a class. In other words, when there are more poten-
tial users than the network can support, some of them will be refused
access to the network. Therefore, in our voice examples, the network is
designed for a limited voice offered load. In case there is a risk that the
user load may overpass this limit, special provisions need to be taken in
order to block the excess offered load (e.g., a busy signal for telephone
users).

The NoC applications (such as DSP, consumer electronics, etc.), usually
stress the need for stringent bandwidth and/or latency requirements. NoC
traffic can consist of urgent tasks such as code fetch following a cache
miss, CMP synchronization signals or periodic refreshed data that need a
guaranteed latency. Other urgent tasks may require similar latency with a
high probability. Yet streaming traffic, such as audio and video, has strict
bandwidth and jitter requirements, but tolerates long latencies [46]. On
the other hand, certain traffic classes may not be planned for a guaranteed
service (as they may produce an unspecified amount of traffic) but may
require a graceful degradation of service as well as a fair allocation of the
available resources as offered load increases.

The mixture of different service classes in the same network poses a spe-
cial challenge to the NoC designer as each class may affect the performance
of other classes. In other words, QoS also specifies how to allocate network
resources at times of conflict over the network resources. Therefore, QoS
mechanisms usually combine mechanisms for traffic discrimination (such
as applying delay or loss priorities [18]), mechanisms for traffic separa-
tion (such as fair queueing mechanisms [48]), and mechanisms for traffic
policing (enforcing limitations of traffic generation at the source modules).
We return to some of these issues in Sections 5.4, Switching techniques
and 5.7, Congestion control and flow control.

While the available QoS depends on the overall NoC architectural com-
ponents such as topology, link and router capacities, routing algorithms,
and congestion control mechanisms, it is common to separate the issue
of QoS from other network issues. The rationale is the following: given

154 Chapter 5 ! Network and Transport Layers in NoCs

a complete network architecture we would like to be able to serve mul-
tiple traffic classes over the same network each with a different QoS
specification. To achieve this, we need special mechanisms that isolate
and differentiate these traffic classes within the network. These specific
mechanisms are described in this section.

5.2.1 Traffic Classes and Service Classes
The definition of traffic classes is an open-ended task and NoC design-
ers can specify and support any number of classes. However, practice has
shown that the specification, management and implementation of a large
number of classes are complex and ambiguous task. First, it is hard to
predict ahead of time all the future possible NoC usages. Here we should
differentiate between different NoCs in our design spectrum where ASIC
and ASSP NoCs are much more predictable than CMP NoCs. Second, the
exact interrelationships between the classes are hard to define. Finally, the
mechanisms that allocate the exact performance to each class in a multi-
ple performance metrics domain (loss, rate, delay, jitter, etc.) are complex
and costly.

Traffic classes and service classes in computer networks

Consequently, most off-chip network standards have aggregated the large
number of possible traffic classes (traffic offered to the NoC by the mod-
ules) into a few predefined service classes (offered by the NoC to the
modules). Let us illustrate the way the asynchronous transfer mode (ATM)
and IP networking standards have classified the different traffic classes.

The ATM network defines five possible standard classes [74]:

1. Constant bit rate (CBR): associated with traditional time division
multiplexing (TDM) services where delay and loss are fixed and
small.

2. Variable bit rate – real time (VBR-RT): associated with variable rate
(usually compressed) real-time services that produce a predictable
average rate and require low delay and jitter and can tolerate small
loss.

3. Variable bit rate – non-real time (VBR-NRT): associated with less
interactive real-time services such as streaming or high-priority
data services.

4. Available bit rate (ABR): includes most data services. The term
available bit rate means that under bandwidth shortage condi-
tions, the bandwidth allocated to this class should be allocated
fairly among competing applications within this class.

5.2 NoC QoS 155

5. Best effort (BE): low-revenue and low-priority data that can serve
as “bandwidth gap filler” such as file sharing or background
synchronization traffic.

In a typical ATM implementation, the CBR and VBR service classes
are accomplished via bandwidth reservation before use: a router priority
mechanism among these classes and external user traffic policing guar-
antee no oversubscription. The ABR is accomplished using a network to
user feedback control loop to assure a fair allocation of resources among
all sources that share a congestion link. The BE is given the lowest pri-
ority and can take what is left. We discuss these issues for NoCs in the
Section 5.4 on switching, and Section 5.7 on end-to-end control.

IP networks have two main QoS standards. IntServ [16] is a per (end-
to-end) flow QoS standard and therefore require a rather complex imple-
mentation in the Internet. DiffServ [82] defines the differentiated service
field with six possible service classes which are similar to the ATM ideas.

Traffic classes and service classes in NoCs

While NoC traffic classes can be mapped to ATM, IntServ, or DiffServ ser-
vice classes, the direction translation of general computer networks to
NoCs is not appropriate, as described in the introduction. Moreover, the
specific NoC service classes should be defined based on the vast experience
in supporting ASIC and CMP communications over busses and dedi-
cated interconnection infrastructures. Another key factor that separates
NoC-based designs from a general network environment is the intrin-
sic characterization of on-chip communication. In addition, to general
message-passing type communication, modules exchange low-level sig-
nals and distributed-shared-memory transactions that are typical to SoC
flows. Examples are timing and synchronization signals, control words,
cache invalidations, and interrupts that require an immediate and time-
controlled transfer. Memory transactions such as read/write (RD/WR),
code fetch and pre-fetch, semaphore-based operation, and DMA trans-
fer may vary in their timing priorities and urgency. Finally, I/O traffic and
off-chip memory access needs to cross chip boundaries via drivers and
external pin bottlenecks.

Each designer can identify service classes for a specific NoC implemen-
tation. We describe three NoC traffic and service classes in the remainder
of this section:

! Goossens et al. [46] characterize different traffic classes in ASIC
and ASIP SoCs. The heterogeneity of processing modules results
in a variety of traffic classes, based on data rate, latency, and jitter
characteristics (see Table 5.1).

Control traffic originates from control tasks that are usually
mapped on one or more processors, and which must obtain status

156 Chapter 5 ! Network and Transport Layers in NoCs

TABLE 5.1 ! A classification of traffic classes [46].

Example Data rate Latency Jitter

Control traffic Low Low Low
Cache misses Medium Low Tolerant
Cache pre-fetch High Tolerant Tolerant
Hard real-time video High Tolerant Low
Soft real-time video High Tolerant Tolerant
Audio and MPEG2 bitstreams Medium Tolerant Low
Graphics Tolerant Tolerant Tolerant

information from modules and program them. It has a low data rate,
but requires low latency to minimize the system response time, for
example, when the application mode changes.

Multi-tasking processors, such as high-performance VLIW pro-
cessors, do not have sufficient local memory to contain all instruc-
tions (code) and data of the multiple tasks. Instruction and data
caches are therefore used to automatically swap in and swap out
the appropriate instructions and data. This leads to medium (but
instantaneously high) data rates, and requires low latency. On the
other hand instructions are also speculatively pre-fetched ahead of
time resulting in higher traffic that is both latency and jitter tolerant.

Dedicated video-processing modules usually operate on and gen-
erate streaming (sequential) traffic with high data rates. They are
composed in deep chains without critical feedback loops, and their
low-latency requirement can therefore be made less critical by using
buffers to avoid underflow. The resulting traffic has a high data rate
but is latency tolerant. Medium-data-rate latency-tolerant traffic is
generated, for example, by audio and MPEG2-processing modules.

Jitter (latency variation) can be handled similarly, and we use
the distinction between low-jitter (hard real time) and jitter-tolerant
(soft real time) traffic. Modules with the latter traffic, such as the
memory-based video scaler, have an average data-rate requirement
but can be stopped when there is no data, and make up by pro-
cessing at a higher rate later, or by averaging out data bursts.
By contrast, low-jitter modules do not tolerate variations in data
rates, because they cannot make up for any lost processing cycles.
Examples are video-processing modules operating at actual video
frequencies, where line and field blanking cannot be used as slack.

! Another rich example of a service classes set was given in Ref. [13]
to illustrate a common NoC environment:

– Signaling covers urgent messages and very short packets that
are given the highest priority in the network to assure short-
est latency. This service level is suitable for interrupts and

5.2 NoC QoS 157

control signals and alleviates the need for dedicating spe-
cial, single-use wires for them. Some of the signals may also
take the form of a complete transaction (such as semaphore
operations).

– Real-time service level guarantees bandwidth and latency to
real-time applications, such as streamed audio and video pro-
cessing or the timely refresh of an LCD screen. While these
operations need a guaranteed time for completion, the time
limit itself may be quite large compared to other operations.

– RD/WR service level provides bus semantics and is hence
designed to support short memory and register accesses. This
class may be subdivided according to the urgency of the oper-
ation (fetching code, capturing resources). Extremely urgent
R/W transactions may utilize the signaling service class.

– Block transfer service level is used for transfers of long mes-
sages and large blocks of data, such as cache refill and DMA
transfers.

! Several NoC studies have observed the need to classify traffic and
differentiate the service according to pre-specified service classes.
The Æthereal [44] and Mango [8] architectures mainly address ASIC
and ASSP SoCs for consumer electronics and have separated the
services into two distinct classes: guaranteed throughput (GT) and
BE. The GT class (similar to the above ATM CBR) accomplishes a
TDM like service by limiting the GT traffic to a limited number
of periodic flows and prioritizing the GT over the BE. With the
right router architecture, this bounds the delay transfer through
the network [61].

It should be emphasized that like other NoC design issues, each specific
NoC implementation may define its unique set of service classes and also
define how to map various traffic classes to service classes. Classifying
traffic class may prove to be a challenging issue that involves knowledge
of the specific modules’ internals. For example, it may turn out that a
seemingly single traffic class (memory read operation) needs to be split
into several QoS subclasses. For example, fetching code (a memory read
operation) to a processor module is sometimes much more urgent (an
instruction fetch was missed in a local cache) and sometimes much less
urgent (a pre-fetch operation with no current miss) than fetching data
(another memory read operation) at the same processor. In such a case
the module that originates the memory read instructions may map these
similar operations to different classes of service, yet they look identical
to an external observer who is not aware of the original cause of these
transactions. Connection (identifiers) can be used to indicate to the NoC
to which traffic class a transaction belongs [56, 92].

158 Chapter 5 ! Network and Transport Layers in NoCs

The SoC type impacts the traffic classes that may be expected, and
hence the NoC service classes that the NoC must offer. ASICs, ASSPs, and
FPGAs implement specific, hard real time, often relatively static applica-
tions known in advance [99]. Hence, we can expect service classes that are
tailored for assured (guaranteed) real-time data streaming. CMPs, on the
other hand, execute a variety of dynamic soft real-time applications that
are unknown in advance, and BE service may be the dominant service
class.

5.3 NoC TOPOLOGY

NoC architectures and topologies have been described in Chapter 2. In this
section, we summarize for convenience the main characteristics of NoC
topologies, and we relate them to cost metrics such as area, performance,
and power consumption.

Network topology has been intensively studied in the context of high-
performance networks [33] and parallel computers architectures [23].
Here, we introduce the concepts germane to NoCs, and refer to [23, 33]
for more extensive classifications.

NoCs differ from general networks because they are realized on a
plane, even though new technologies, like the emerging die-stacking and
three-dimensional integration techniques may change this in the future.
Moreover, links between routers can travel only in X or Y direction, in a
limited number of planes (the number of metal layers of the IC process).
As a result, many NoCs have topologies that can be easily mapped to a
plane, such as low-dimensional (1–3) meshes and tori. We list here some
important topologies for NoCs, and discuss area cost and performance for
each group:

! Crossbar: When all routers are connected to all other routers, the
NoC is fully connected. The result is single crossbar [67, 68]. It does
not scale up to large number of network interfaces.

! n-dimensional k-ary mesh (or grid): The two-dimensional 2-ary
mesh is a popular NoC topology because routers can be preplaced
in layout, and because all links have the same (limited) length. The
number of network interfaces per router is usually one, but can
also be higher. Examples include QNoC [13] and Nostrum [75].
The area of meshes (the number of routers and network interfaces)
grows linearly with the number of cores. Meshes have a relatively
large average distance between network interfaces, affecting power
dissipation negatively. Moreover, their limited bisection bandwidth
reduces performance under high load. Care has to be taken to avoid
accumulation of traffic in the center of the mesh (creating a hot
spot) [83].

5.3 NoC Topology 159

! k-ary n-cube (torus): The k-ary 1-cube (one-dimensional torus or
ring) is the simplest NoC, and is used in Proteo [93]. The area and
power dissipation costs (related to the number of routers and net-
work interfaces, and the average distance) of the ring grows linearly
with the number of cores. Performance decreases as the size of the
NoC grows because the bisection bandwidth is very limited.

The 3-ary 2-cube (two dimensional) torus adds wrap-around links
to the two-dimensional mesh. To reduce the length of these links,
the torus can be folded. Dally and Towles [30] use this topology. The
area of tori is roughly the same as for meshes (some links are added),
but the power dissipation and performance are better because the
average distance is less than in meshes.

! Express cube: Meshes and tori can be extended with bypass links
to increase the performance (bisection bandwidth and reduced
average distance), for a higher area cost. The resulting express
cubes [25] are essentially used in FPGAs.

! d-dimensional k-ary (fat) trees: These have d levels, in which each
router has k children, network interfaces are attached only to the
leaves. Examples are SPIN [50, 88]. The bisection bandwidth of
tree is very low, due to concentration of all traffic at the root of the
tree. To solve this problem the root can be duplicated. The resulting
fat trees [69] (or folded butterfly) have a large bisection bandwidth
(and hence performance), but associated high area cost. For larger
number of nodes, the layout of the fat tree is more difficult, in
comparison with meshes or tori.

! Irregular: NoCs are appropriate when the NoC can be optimized
to a particular application domain or set of applications. Syn-
thesizing application-specific NoCs in general at the desired cost–
performance point is a challenging problem. Examples of NoCs that
allow irregular topologies are Xpipes [5] and Æthereal [44]. Opti-
mized irregular NoCs can also be obtained by removing unnecessary
routers and links from a regular NoC. For example, a mesh can opti-
mized to a partial mesh [13], which has sufficient performance for
the application at hand, but at lower cost.

NoC types and topologies

There is no strict correspondence between the different types of SoC (appli-
cation specific, reconfigurable, or general purpose) and their topologies.
However, we can discern some general trends.

ASIC and ASSP NoCs tend to be irregular (reduced meshes or com-
pletely optimized), because much is known of the application (domain)
and NoCs can be highly tailored [99]. The area and power dissipa-
tion costs can be reduced, while performance is still guaranteed. For

160 Chapter 5 ! Network and Transport Layers in NoCs

example, the simple irregular tree topology is already used in commercial
products.

FPGAs are composed of small-grained tightly coupled computation
and storage units (look-up tables, RAMs, etc.). These units communicate
mostly locally, and require high bandwidth and low latency for communi-
cation. As a result, express cubes (meshes with bypasses) are mostly used
in FPGAs. The NoC is configured infrequently, and has high performance
in the steady state.

NoCs for CMPs tend to consist of large-grained loosely coupled (usually
homogeneous) computation subsystems (called tiles) [100, 104]. Tiles usu-
ally contain a local interconnect such as a bus or switch for frequent local
communication, and use the NoC for less frequent global communication.
As a result, two-dimensional meshes or tori (with limited bisection band-
width) are the preferred NoC topology. Because applications are unknown
at design time, NoCs are usually not statically configured but schedule
traffic at run time.

5.4 SWITCHING TECHNIQUES

Once the topology of an NoC has been decided on, the switching technique,
or how data flows through the routers, must be determined. This involved
defining the granularity of data transfer, and the switching technique.

Data is transferred on a link, which has a fixed width, measured in bits.
The unit of data transferred in a single cycle on a link is called the phit
(physical unit). Two routers synchronize each data transfer, to ensure that
buffers do not overflow, for example. Link-level flow control is used for
this, and can be based on hand shaking or the use of credits [64]. The unit
of synchronization is called a flit (flow control unit), and it is at least as
large as a phit. Finally, multiple flits constitute a packet, several of which
may make up messages that modules connected to the NoC send to each
other. (Note that messages can be used for different NoC programming
paradigms, including message passing and distributed-shared memory,
cf. Chapter 7.) Fig. 5.2 shows this structure. To increase the packetization
efficiency [42] message and packet boundaries do not need to be aligned,
as shown.

Different NoCs use different phit, flit, packet, and message sizes. The
phit and flit sizes reflect different design choices, such as link speed ver-
sus router arbitration speed [89]. For example, Æthereal uses phits of 32
bits, flits of 3 phits (or words), and packets and messages of unbounded
length. Nostrum [75] uses phits of 128 bits, and flits equal to 1 phit.
SPIN [50] uses phits and flits of 36 bits, and packets can be unbounded in
length.

Phits are relevant for the link layer (Chapter 4), and will not be fur-
ther discussed. The switching technique determines how flits and packets

5.4 Switching Techniques 161

phit
flit

packet headerpayload

headerpayload

packet
structure

message
structure

packetization

! FIGURE 5.2

Phits, flits, packets, and messages.

are transported and stored by the routers, as described below. Chapter 7
further discusses messages. Note that the switching technique determines
how data flows through the NoC, but not along which route. This is the
subject of the next Section 5.5.

There are two basic modes of transporting flits: circuit switching and
packet switching. Essentially, in circuit switching a circuit with a fixed
physical path is set up between sender and receiver, and all the flits of
the message are sent on this circuit. In contrast, in packet switching the
packets constituting a message make their way independently from sender
to receiver, perhaps along different routes, and with different delays. We
discuss these techniques, and several variations, in more detail below.

To determine a switching technique for an NoC, a number of issues
must be balanced, such as the granularity of the data to be sent, and the
frequency with which it is sent; the cost and complexity of the router; the
dynamism and number of concurrent flows to be supported; and the result-
ing performance (bandwidth, latency) of the NoC. Different types of NoC
(ASIC, ASSP, FPGA, or CMP) often use different switching techniques, as
we shall see. The switching technique strongly influences QoS, as men-
tioned in Section 5.2 and further elaborated in Section 5.7.3. In fact, to
offer different QoS levels, NoCs can use multiple switching techniques at
the same time [6, 44, 76].

5.4.1 Circuit Switching
Messages from one module to another are sent in their entirety when
using circuit switching. First, a physical path, that is, a series of links
and routers, from sending to receiving module is determined and reserved
for the circuit. Logically, the head flit of the message makes its way from

162 Chapter 5 ! Network and Transport Layers in NoCs

L1

L2

L3

header acknowledgment data

setup data transfer

routing ! switching
delay

router delay

! FIGURE 5.3

Circuit switching.

the sender to receiver, reserving links along the way. If it arrives at the
receiver without conflicts (all links were available) an acknowledgment is
sent back to the sender, who commences data transfer on its reception. If
a link is reserved by another circuit, a negative acknowledgment is sent to
the sender. Fig. 5.3 shows the set-up and use of a circuit over time; R1, R2,
and R3 are routers along the path of the circuit. The shaded boxes show
when the inter-router wires are occupied.

After transmission of the message, the circuit is torn down, as part of
the tail flit. Pure circuit switching has not been used much in NoCs, and
the principal examples are SOCBus [107, 108].

Circuit switching has a high initial latency due to the set-up phase that
has to complete before data transmission starts. (Scouting routing [33]
can reduce this time.) Data transmission is very efficient, however, because
the full link bandwidth is available to the circuit, and results in minimal
latency. Data does not have to be buffered in the routers (only pipelined
perhaps), reducing the area of routers. However, circuit switching does
not scale well as the diameter of the NoC grows [31, 107] because links are
occupied also when data is not being transmitted (during the set-up and
tear-down phases).

Circuit switching is appropriate when data is sent very often, or when
the communication pattern between senders and receivers is relatively
static. The circuit can be left in place in these cases. When the amount
of data to be transmitted is large (making the set-up phase less relevant)
circuit switching also works well. ASICs and ASSPs have relatively static
communication patterns, and FPGAs also send data (bits or words) every
cycle on the circuit. FPGAs (currently) exclusively use circuit switching,
and ASIC and ASSP NoCs often do [44, 99, 108].

Virtual channels and virtual circuits

Circuit switching reserves physical links between routers. Multiple virtual
links (more commonly called virtual channels [29]) can be multiplexed on a

5.4 Switching Techniques 163

X X

(a) (b)

X

(c)

! FIGURE 5.4

Virtual-circuit switching with multiple (2) virtual channels.

single physical link (channel). Virtual channels can be used to make circuit
switching more flexible (see below), to increase performance by reducing
blocking of links (described in Section 5.4.2), and to avoid deadlock (see
Section 5.5).

Circuit switching reserves physical links between routers. Virtual cir-
cuits can be created by multiplexing circuits on links. The number of
virtual channels that can be supported by a link depends on the num-
ber of buffers on the link. Two basic schemes have been used: a buffer per
virtual circuit, or one buffer per link. Intermediate strategies are possible,
but are more complex. We describe each scheme in turn, after which we
discuss alternatives for circuit set-up and tear-down.

Virtual circuits with multiple buffers per link
A virtual circuit requires a buffer in each router it passes through. The
spatial distribution of virtual circuits in the NoC therefore determines how
many buffers are required in each router. This requirement can be used
to determine the number of buffers for each router (virtual-circuit buffer-
ing). The number of buffers can then vary per router. Alternatively, the
number of buffers per router can be given as constant and taken equal to
the number of virtual channels (virtual-channel buffering). In this case,
the number of virtual circuits using a given link is limited by the number
of virtual channels on that link (and the routing algorithm, to avoid links
of which all buffers are occupied). In both cases, virtual circuits are cre-
ated by using virtual links, and it is only the determination of the number
of the buffers in the routers that makes the difference. Fig. 5.4(a) shows
the outline of a router with multiple buffers at the inputs of the switch.
Fig. 5.4(b) shows how increasing the size of the switch from N × N (where
N is the router degree) to (V × N) × N (where V is the number of virtual
channels) reduce the contention on the switch [44, 63]. Fig. 5.4(c) shows
virtual-channel buffering with output queueing [8].

In any case, many systems contain hot spots, where many virtual-
circuits converge, such as the external memory interface [46]. There will

164 Chapter 5 ! Network and Transport Layers in NoCs

Xvc3
vc2

i0
R2

i1 i2 i3
vc4

vc5
vc1
vc5

vc5

vc5

o0 o1 o2 o3

vc4

vc2
vc1

vc3
vc4

vc5

vc2
vc3

• input i0 transports two virtual circuits (vc2, vc3)
• input i1 transports one virtual circuit (vc4)
• input i3 transports two virtual circuits (v1, vc5)

vc1

0
1
2
3

0
1
2
3

slot

input output

slot

! FIGURE 5.5

Virtual circuit switching with a single buffer per link and TDM.

not be enough virtual channels for accommodate all flows. Virtual-circuit
buffered router implementations become problematic either due to mul-
tiplexing the large number of small buffers, or due to the expensive (large)
shared buffer implementations, such as SRAMs. Routers that implement
virtual circuits with a single buffer per link obviously do not suffer from
this problem, as described below.

The multiplexing of the individual virtual channels on a single link
requires scheduling at each link/router, and results in an end-to-end sched-
ule of the virtual circuits. Virtual circuits with input queuing are used
by Refs [63, 108]. The scheduling of access to links and access to the
(blocking) crossbar in the router interfere, making bandwidth and latency
guarantees difficult to achieve. For this reason, the Mango NoC uses
virtual-channel buffering implemented by output queuing with a non-
blocking crossbar [8] (see Fig. 5.4(c)). This, together with an appropriate
link scheduling scheme [9] enables it to guarantee bandwidth and latency
on its virtual circuits.

Virtual circuits with a single buffer per link
Circuits can also be time multiplexed with one buffer per link, that is,
without requiring buffering per virtual circuit. Essentially this is achieved
by statically scheduling (using TDM) the usage of all links in the NoC by
all virtual circuits. Fig. 5.5 shows a 4 × 4 router with four TDM slots. Each
input has a one-flit buffer even though it can be used by up to four virtual
circuits. The TDM tables show how virtual circuits are mapped from inputs
to output in time. The example is described in more detail in Section 5.7.1
and is consistent with Fig. 5.20.

At the edge of the NoC, flits are injected by the network interfaces such
that they never use the same link at the same time (see Fig. 5.20). As a
result, link-level flow control and scheduling can be omitted, and only

5.4 Switching Techniques 165

one-flit buffer per link is necessary. This scheme assumes the propagation
speed of individual flits through the NoC is fixed and known in advance.
Flits wait in the network interfaces until they are injected in the NoC
according to the TDM schedule. Note that network interfaces require
some kind of end-to-end flow control for lossless operation, probably with
virtual-circuit buffering (Section 5.7.2).

The TDM is used to globally schedule all flows, and hence end-to-end
bandwidth and latency guarantees are easily given ([37]; Section 5.7.3).

The concept of globally scheduling all virtual circuits is used by
NuMesh [96] (for parallel processing), Nostrum’s looped containers [75],
adaptive SoCs (aSoCs) global scheduling [65, 66], and Æthereal’s
contention-free routing [44, 90].

Circuit management

Set up and tear down of virtual circuits can take place as described at the
start of this section. Options include static or dynamic reservations, back-
tracking, and multicast. Care must be taken that deadlock does not occur
during set up. This can be achieved by retracting a circuit [44, 107], or by
dropping data [31]. Alternatively, a programming can be centralized in a
single entity such as a programmable processor [44, 63, 108].

Set-up, (negative) acknowledgment, and tear-down can also be encoded
as messages (usually just of one flit), like in the ATM [3] and pipelined
circuit switching [33]. Set-up and tear-down messages program routers,
using a message-based or memory-mapped protocol. Æthereal [44] and
Mango [6] are examples of this approach. Control messages can use a
different switching scheme (e.g., wormhole (WH) packet switching) and
different QoS class (e.g., BE). Using messages allows circuit manage-
ment to use the NoC itself, eliminating a separate control interconnect
to configure the NoC [49, 108].

5.4.2 Packet Switching
In (virtual) circuit switching a complete (shared) path is reserved before
data is sent. In contrast, in packet switching, no link reservations are made,
and the packets constituting a message make their way independently
from sender to receiver, perhaps along different routes, and with different
delays. Omitting the set-up phase removes the start-up time (set-up until
acknowledgment), but without link reservations, packets of different flows
may attempt to use a link at the same time. This is called contention, and
requires that all but one packet must wait until the link becomes available
again. The start-up waiting time of circuit switching (followed by a fixed
minimal latency in the routers) is replaced by a zero start-up time and a
variable delay due to contention in the each router along the packet’s path.
For this reason, QoS guarantees are harder to deliver in packet-switched
NoCs than in circuit-switched NoCs.

166 Chapter 5 ! Network and Transport Layers in NoCs

L1
L2
L3

header data

routing delay

! FIGURE 5.6

Store-and-forward switching.

The lack of resource reservations means that there is no limit to the
number of flows (or connections) that a link or the NoC as a whole can
support, in contrast to (virtual) circuit switching.

In packet switching, packets of different flows are automatically dis-
tributed over different links through the network (if dynamic routing is
used), and interleaved on links. As a result, links can be dimensioned for
(at least) the average amount of traffic. Virtual-channel or virtual-circuit
buffering also interleave packets of different virtual circuits on a link, but
all packets of a virtual circuit always follow the same static path, which
must be dimensioned for (at least) the sum of the average traffic on the
virtual circuits. Instead, pure circuit switching requires that each link
supports the worst-case requirements of each circuit using it.

There are three basic packet-switching schemes: store and forward
(SAF), virtual cut through (VCT), and WH switching. They are dis-
cussed next.

SAF switching

SAF switching is the simplest form of packet switching. A packet is sent
from one router to the next only when the receiving router has buffer space
for the entire packet (Fig. 5.6). Hence, packet transmission cannot stall
and the notion of flit is not required (flits are equal to packets). Routers
forward a packet only when it has been received in its entirety. As a result,
the latency per router and the buffer size are at least equal to the size of
the packet. Given that minimizing buffer size is critical in NoCs [89], few
NoCs have used this basic technique. In particular, Nostrum [75] uses hot-
potato routing [35] where the notions of phit, flit, and packet are conflated
(to their link width of 128 bits).

VCT switching

VCT switching reduces the per router latency by forwarding the first flit of
a packet as soon as space for the entire packet is available in the next router
(middle transmission in Fig. 5.7). The other flits then follow without delay.
If no space is available, the whole packet is buffered (last transmission in

5.4 Switching Techniques 167

L1
L2
L3

header data

routing ! switching delay

! FIGURE 5.7

VCT switching.

L1
L2
L3

header data

routing ! switching delay

! FIGURE 5.8

Wormhole switching.

Fig. 5.7). Buffering requirements of SAF switching and VCT switching are
the same, and no NoC has used this basic technique, therefore.

WH switching

WH switching improves on VCT switching by reducing the buffer require-
ments to one flit. This is achieved by forwarding each flit of a packet when
there is space for that flit in the receiving router (Fig. 5.8). If no space
is available in the next router for the entire packet (as required by VCT
switching but not by WH switching), the packet is left strung out over
two or more routers. This blocks the link, which results in higher conges-
tion than with SAF and VCT switching. Link blocking can be alleviated
by multiplexing virtual links (or virtual channels) on one physical link (cf.
Section 5.4.1) [26]. WH switching is also more susceptible to deadlock
than SAF and VCT switching due to the newly introduced usage depen-
dencies between links. Virtual channels and/or routing schemes can be
used to avoid deadlock (see Section 5.6.2).

Almost all NoCs use WH switching without virtual channels [13, 60] use
restricted topologies (usually partial mesh, with some form of dimension-
ordered routing) to avoid deadlock. SPIN [1] uses a fat tree topology with
deflection routing and packet reordering at the receiving network inter-
face, which also avoids routing deadlock. Æthereal’s [89] BE service class
uses WH switching class and avoids deadlock for any topology through a

168 Chapter 5 ! Network and Transport Layers in NoCs

combination of turn-prohibition routing and end-to-end flow control [55].
Other approaches [8, 63], use WH switching with virtual channels.

5.4.3 Combinations of Different Switching Techniques
Circuit switching and packet switching have different characteristics that
may be useful to combine in a single NoC. With circuit switching it is
relatively easy to guarantee bandwidth and latency guarantees for a given
set of (virtual) circuits (see Section 5.4.1). Packet switching, on the other
hand, has no notion of (virtual) circuits and can therefore support any
number of concurrent flows. However, it is hard to give hard bandwidth
and latency guarantees.

Virtual circuit switching and packet switching can be combined by allo-
cating (at least one) virtual channel to each class. Guaranteed services
are mapped to virtual circuits and BE services to packets. Æthereal [89],
Nostrum [75], and Mango [8] use this approach. The first two use TDM
and Mango uses “asynchronous latency guarantee” scheduling. Note that
although WH switching with very long (infinite) packet lengths also creates
virtual circuits [49, 63], but to offer end-to-end performance guarantees
the right scheduling discipline is essential.

Basic packet switching is appropriate for very dynamic applications
where flows are short lived, change frequently, or very variable in their
demands, due to the absence of flow reservations, and set-up and tear-
down phases. Relatively short messages (synchronization traffic, cache
lines, etc.) to many different modules (e.g., distributed memories and
caches) makes connection-oriented QoS inappropriate. Connection-less
packet switching with BE service class is therefore natural for CMP
NoCs. However, to offer assured (guaranteed) service classes, connection-
oriented packet switching, based on (TDM) virtual circuits, has been used
successfully for ASICs and ASSPs [99].

5.5 NoC ADDRESSING AND ROUTING

While the switching technique, as discussed in Section 5.4, controls how
data is buffered and transported between routers, the routing layer deter-
mines the paths over which data follows through the network. Before we
do this we briefly describe how the start and end points of the route are
indicated through various addressing schemes.

5.6 NoC ADDRESSING

In order to route information within the chip unique identifications or
addresses must be assigned to each reachable destination. It is important

5.6 NoC Addressing 169

to notice that such destinations may have a hierarchical relationships or
layers. For example, a certain modules (e.g., subsystems or tiles) in the
chip may have multiple submodules, such as processors and local shared
memories. Each processor may execute multiple programs and each pro-
gram may be composed of multiple tasks and threads. Consequently such
an identity can be described as thread 3 of program 7 of processor 1 at
module 6.

To hide implementation details logical addresses are often used instead
of physical addresses. A single physical address, such as a memory (loca-
tion) may be known as different logical addresses or vice versa. The former
is useful when processors with different memory maps (e.g., 24 or 32 bit
addresses, or with different layout) share a single memory to communi-
cate. The latter can be used, for example, for security or virtualization
purposes, or to allow different processors to boot from the same fixed
address, but with different boot code. The mapping (or translation or
resolution) of logical to physical address may be done in software or hard-
ware, distributed or centralized, fixed at design time or configurable at run
time [91].

The physical address space in each NoC implementation may be
assigned according to the number of different modules (e.g., we use 4
bits for an NoC that has less than 16 modules), the relative location of the
module in the NoC (e.g., XY coordinate in a grid or a node name in a fat
tree). Logical addresses may relate to functional names (e.g., the external
memory interface, a coprocessor unit) or to a global address space (e.g.,
16, 24, or 32 bits).

Finally, different flows may belong to different service classes, intro-
duced in the previous Section 5.2. Identifiers may be needed to distinguish
flows for QoS purposes, therefore. (Because different flows between the
same addresses may below to different flows, separating control and data,
for example.) These include identifiers for individual transactions (for
reordering), for communication threads (as used e.g., in AXI [2]), and
flows/connections [92].

Addressing is discussed in more detail in Chapter 6 on network inter-
faces (e.g., address translations) and Chapter 7 on NoC programming
models (e.g., message passing versus shared memory).

5.6.1 NoC Routing
In the following we focus on routing data in NoCs and particularly empha-
size the planar mesh topology, which is popular for NoCs. The NoC routing
mechanism is responsible for correct and efficient routing of packets (or
circuits) that are traversing the network from sources to destinations. The
routing protocol deals with resolution of the routing decision made at
every router. Unlike traditional communication or interconnection net-
works, NoCs need not follow rigid networking standards, therefore, a

170 Chapter 5 ! Network and Transport Layers in NoCs

multiple routing schemes can be evaluated and compared for each NoC
implementation. There are several potentially conflicting metrics that need
to be balanced:

! Power: minimize the power required to route packets. This means
that packets may follow the minimal power path likely to be iden-
tical to the traditional shortest distance routing [13, 87]. In certain
cases, for example, when DVS is applied in a non-uniform way,
each router and link may offer a different packet switching power
consumption [95].

! Area and VLSI resources: the routing mechanism itself consumes
hardware resources like finite state machines, and addresses
tables. It potentially also uses NoC bandwidth if routers exchange
information.

! Performance: reduce the delay and maximize the traffic utilization
of the network.

! Robustness to traffic changes: certain routing schemes (e.g., static
routing schemes) may perform very well to an expected traffic pat-
tern but poorly to changing traffic patterns. Other schemes (e.g.,
dynamic routing) may behave better to a larger spectrum of traffic
conditions.

Routing schemes can be classified into several different categories. In
particular routing can be static or dynamic, distributed or performed at
the source, and minimal or non-minimal. We describe each in turn.

Static and dynamic routing

The routing decision at every router can be static (also called oblivious or
deterministic) or dynamic (or adaptive).

In a static routing scheme permanent paths from a given source to a
given destination are defined and are used regardless of the current state
of the network. This routing scheme does not take into account the current
load of network links and routers when making routing decisions. Note
that static routing may use single path or split the traffic in a predefined
way among multiple paths between a source and a destination.

In a dynamic routing scheme, routing decisions are made according to
the current state of the network (load, available links). Consequently, the
traffic between a source destination changes its route with time.

Static routing is simpler to implement in terms of router logic and inter-
action between routers. A major advantage of a single path static routing
is that all packets with the same source and destination are routed over
the same path and can be kept in order. In this case, there is no need to
number and reorder the packets at the network interface. Static routing is
clearly more appropriate when traffic requirements are steady and known

5.6 NoC Addressing 171

ahead of time, and therefore is preferable for NoCs for ASICs or ASSPs.
Dynamic or adaptive routing may utilize alternative paths when certain
directions become congested and therefore have the potential of support-
ing more traffic using the same network topology. Consequently it may
be preferable in irregular and unpredictable traffic conditions, which are
more common to the CMP NoCs.

Distributed and source routing

Routing techniques (both static and dynamic) can be further classified
according to where the routing information is held and where routing
decisions are made.

In distributed routing, each packet carries the destination address, for
example the XY coordinates of the destination router or network interface,
or a module number. The routing decision is implemented in each router
either by looking up the destination addresses in a routing table or by exe-
cuting a hardware routing function [14]. Using this method, each network
router contains a predefined routing function whose input is the destina-
tion address of the packet and its output is the routing decision. When the
packet arrives at the input port of the router, its output port is looked up
in the table or calculated by the routing logic according to the destination
address carried by the packet. Note that in order to reduce routing table
space a specific distributed routing technique may restrict its supported
network topology, the type of routes that can be defined and the naming
convention of network destination. A very common example in NoCs is the
XY routing (also termed dimension routing [24]) for mesh networks where
destinations are named after their geographical (XY) coordinates and the
intermediate routing function is limited to the comparison between the
router address and the destination address. Interval routing [11] suggests
a similar reduced table space methodology for general topology networks.

In source routing the pre-computed routing tables are stored in the net-
work interface at the system modules. When a source router (network
interface) transmits a packet, it looks up the source routing informa-
tion according to the destination address at the source routing table and
includes it in the header of the packet. Each packet carries in its header
the routing choices for each hop along its path (typically the output link
identity). When the packet arrives at a network router, its next routing out-
put port is extracted from the header routing field. The routing field is then
shifted in order to expose the relevant routing choice for the next router
on its path. In comparison to distributed routing, source routing does
not need any intermediate routing tables or functions, it may also elim-
inate the destination address field required in distributed. On the other
hand, it requires a source route header in the packet header (whose size
increases with the path length) and requires additional routing tables with
specific entries for each source (these can be located in the source network
interface or in a centralized pool). Æthereal uses source routing [44].

172 Chapter 5 ! Network and Transport Layers in NoCs

While distributed routing and source routing describe the way pack-
ets and router interact to perform intermediate routing decisions, both
schemes leave a full degree of freedom in deciding on the selection of the
(static) packet routes. Most distributed routing designs make a conscious
limitation on the selected routes. In order to reduce the amount of logic
required, routes are based only on the destination address rather than on
the source and destination address pair.

Minimal and non-minimal routing

A final classification criterion distinguishes between minimal and non-
minimal distance routing. In contrast to traditional interconnection net-
works, the additional power consumption introduced by non-minimal
routes may be prohibitively expensive in an NoC [57]. Note that in het-
erogeneous NoCs where links between routers are of different speed and
length, minimal power routing is not equivalent to a minimal link hop
routing [12].

5.6.2 Deadlock
The major constraint for any routing algorithm is assuring the freedom
from deadlock. In packet switching networks whenever a packet or flit is
transferred between neighboring routers, it releases a buffer at the trans-
mitter and occupies a previously free buffer at the receiver. Consequently,
such a transfer requires the availability of a free buffer at the receiver, or
the flit is held (in a lossless network), due to link-level flow control, until
such a buffer is freed at the receiver. Deadlock occurs when one or more
packets in the network become blocked and stay blocked for an indefi-
nite time, waiting for an event that cannot happen. A typical example,
as depicted in Fig. 5.9 [81], is a situation where four packets are routed
in a circular manner between the routers in a square mesh. The packet
occupying channel c1 is waiting for c2 and that channel is allocated to a
packet that wants to use c3. That channel in turn is held by a packet that is
requesting c4 and the packet on this channel completes the circle by wait-
ing for c1. No packet can advance since the required resource, in this case
the channel, is already held by another packet and will never be released.

While WH switching is the prevalent switching technique for NoCs (due
to its relatively small buffering requirements), it is prone to suffer from
deadlocks. Since only the header flit carries routing information all flits
belonging to the same packet must be contiguous and cannot be inter-
leaved with flits belonging to other packets [29]. If a flit is blocked due to
busy resources all the trailing flits of that packet will also be stopped and
keep blocking the resources they occupy in terms of channels and buffers.
This can result in chained blocking [26] where the resources of a blocked
packet again causes other packets to block, a property that makes WH
routing very susceptible to deadlock [29, 36].

5.6 NoC Addressing 173

C4

C3

C2

C1

! FIGURE 5.9

Deadlocked scenario with packets waiting for channels in a cyclic manner.

Deadlock avoidance

The prominent strategy for dealing with deadlock is avoidance and most
deadlock-free routing algorithms are deduced by the strategy of [29, 36]:
(1) choose a particular routing algorithm, (2) check whether this algorithm
is deadlock free, and (3) if needed, add hardware resources or restrict
routing to make the algorithm deadlock free.

Deadlock freedom is analyzed by building a dependency graph of the
shared network resources. Whenever a packet is holding a resource while
requesting another there is a dependency between them and if this depen-
dency graph is cyclic then we have a circular wait. Analysis of the graph
can be done statically, with all possible dependencies represented in the
graph, or dynamically, with the graph reflecting the current state of the
system. Static analysis is unnecessarily pessimistic since dependencies
that are mutually exclusive can be part of a cycle that never occurs at
run time. However, the big advantage with static analysis is that it can be
done beforehand and thus detach this computationally intensive problem
from the actual system.1 Thus, deadlock is usually avoided by employing
a restrictive routing algorithm.

1 Much research has been focused on distributed cycle detection mechanisms that allow
for progressive deadlock recovery based on only local information while keeping recovery
overhead to a minimum [19, 20, 72].

174 Chapter 5 ! Network and Transport Layers in NoCs

(a) (b)

! FIGURE 5.10

Channel dependency graph of a mesh in which the routers use edge buffers. (a) For one router and (b) for
the entire mesh.

Deadlock freedom in SAF and VCT networks, which are identical from
a deadlock perspective [29], is proved using a buffer-ordering technique of
Ref. [51]. In a WH-switched network blocked messages remain in the net-
work and hence continue to occupy the links until contention is resolved.
Therefore, we cannot use restrictions in buffer allocation to prevent dead-
lock, but must instead restrict routing over the communication channels,
be they physical or virtual.

The dependencies of a WH-switched network are captured in a channel
dependency graph [29]. Fig. 5.10 illustrates the channel dependencies of
a minuscule network. With a fully dynamic routing function every input
channel has the possibility of forwarding a packet to any output channel
and the channel dependency graph of a single router thus looks as shown
in Fig. 5.10(a). The graph is obviously acyclic since all the input and output
ports of the router are dangling. In Fig. 5.10(b) we see the corresponding
graph for a simple two-by-two mesh and this figure contains numerous
cycles. There is thus a risk of channel deadlock in the network.

Dally et al. [29] propose a necessary and sufficient condition for dead-
lock freedom in the case of a static routing function. This proof technique
is extended in Refs [27, 70] to also cover dynamic routing.

Introducing virtual channels increases the degrees of freedom in allevi-
ating restrictions in the choice of channels (see Section 5.4.1) [40] and can
aid both in avoiding deadlock as well as increasing network throughput by
reducing the effects of chained blocking [26]. By dissociating the buffers
(associated with channels) from the actual physical channels, a blocked
packet in one virtual channel does not preclude packets residing on other
virtual channels [77] as depicted in Fig. 5.11.

The problem of deadlocks in a WH NoC can be alleviated by the use
of multiple virtual channels. The idea is that more buffers can be allo-
cated in the receiver size to different flows (e.g., a Virtual Channel per
destination). However, the number of Virtual Channels that are required

5.6 NoC Addressing 175

p3 p3

p2 p2

p3 p3

p2 p2 p1

! FIGURE 5.11

A packet p2 is blocked by a previous packet p1 and is occupying the physical channel between the routers.
Packet p3 that follows p2 is allowed to proceed and pass p2 by using the buffers associated with another
virtual channel.

to completely solve the deadlock problem for any routing scheme, is large
[28, 33] and therefore costly in terms of VLSI resources. There are general
mechanisms for avoiding deadlocks by restricting the routing algorithms.
Glass and Ni [40] call a specific pair of input–output links around a router
as a turn and introduce several deadlock-free routing schemes based on
turn prohibition. Enough turns are prohibited to break all dependency
cycles while still maintaining connectivity between every pair of routers.
The Æthereal BE service class uses the turn model for routing on arbi-
trary topologies [54]. The most simplistic approach to turn prohibition
is the well-known dimension-ordered routing. It is a static and minimal
distance routing algorithm where a packet is routed in one dimension at a
time, finding the correct coordinate in each dimension before continuing
with the next. In a two-dimensional mesh this method is known as XY
routing and is very popular due to its simplicity. When a packet is sent
it will be forwarded in the X dimension until it reaches the X coordinate
of the destination; only then is it forwarded in the Y dimension until it
reaches its goal.

An illustration of the turn model in a two-dimensional mesh is shown in
Fig. 5.12. There are eight possible turns that form two cycles if no turns are
prohibited. With the static XY routing four of the turns are prohibited and
it is clear that no cycles can be formed from the remaining turns. It is not
necessary to prohibit this many turns to guarantee deadlock freedom. The
west-first routing algorithm [41], illustrated in Fig. 5.12(c), prohibits only
two of the eight turns and manages to break all cycles thereby constituting
a deadlock-free routing algorithm.

Many contemporary NoC proposals based on a regular mesh topology
have implemented the above dimension-order (XY) based routing. It is
shown in Refs [13, 52] that this may cause a significant imbalance in the
traffic utilization of the mesh links, even when traffic requirements are
symmetric. When traffic patterns are known ahead of time (for ASICs),
this can be dealt with using NoCs with asymmetric link capacities such
as QNoC [13, 52], where each link capacity is planned according to its
expected load. This eliminates the need for an expensive implementation

176 Chapter 5 ! Network and Transport Layers in NoCs

(a) (b) (c)

! FIGURE 5.12

Illustration of turn prohibition in two-dimensional mesh. (a) Unprohibited mesh with two cycles, (b) four
prohibited turns of XY routing, and (c) two prohibited turns of west-first routing.

! FIGURE 5.13

SoC modules interconnected by an irregular mesh NoC.

of an dynamic load balance routing that requires the reordering of packets
at the network interfaces. A simple alternative to link capacity planning
is to use a combination of alternatively (or randomly) choosing between
XY and YX routing as described in Refs [59, 94] that is close to optimal in
terms of maximum utilization in a homogenous mesh. Therefore, the “tog-
gle” XY–YX routing above better suits a FPGA type device where the links
between the routers cannot be customized ahead of time for specific loads
[39]. While other balanced static routing schemes (also termed oblivious
routing [71]) were introduced for mesh-based interconnection networks
(and can be implemented using source routing), they usually require too
much hardware to be used in a low-budget NoC environment.

Another problem which is related to low-cost static routing is how to
cope with irregular meshed NoCs that result from module size variability
and the need to physically separate between the modules internals and the
NoC infrastructure, as illustrated in Fig. 5.13.

Packet routing in irregular meshes resembles routing in a labyrinth,
since missing links may lead to a dead end. Therefore, a simple XY or
XY–YX “toggle” scheme cannot be employed and different routing tech-
niques need to be applied. In off-chip networks, routing in irregular
topologies is typically accomplished using routing tables located in routers
or in sources. Routing table size and the corresponding power and area
costs grow with the network size. Moreover, the time required to access

5.6 NoC Addressing 177

each table, which affects NoC performance, depends on its size and thus
on the network size.

Reference [14] develops hardware-efficient routing techniques that
reduce the VLSI cost of routing in irregular mesh topology NoCs. The
techniques are based on a combination of a fixed routing function (such
as “route XY” or “don’t turn”) and reduced routing tables for both dis-
tributed and source routing approaches. The entries in the reduced routing
tables are created only for destinations whose routing decisions differ from
the output of the default routing function. Random simulations of differ-
ent topologies and flow scenarios are used for comparing and estimating
the VLSI cost savings obtained by different algorithms. This mechanism
is found to be superior (around five times lower cost) to the traditional
source routing and routing table-based techniques.

5.6.3 NoC Dynamic Routing Schemes2

Dynamic routing is an efficient alternative to balance the traffic load
over a given NoC where the NoC traffic is unpredictable or changes
with time (e.g., the CMP NoC type). Note that when a source destina-
tion traffic is split over multiple paths, packets may arrive out of order
and re-sequencing buffers at the destination may be required. The sim-
plest method of dynamic routing is termed deflection routing or hot-potato
routing. It was suggested for metropolitan networks [73], optical burst
networks [15], and interconnection networks [35]. In this scheme, when
a packet enters a router it will be sent toward a preferred output port
according to a routing table or a routing function as described above.
However, if the preferred port is busy (blocked by a backpressure from
a neighboring router, or captured by another packet) an alternative port
will be selected. Here the router has no additional buffers in which to store
the packets before they are moved, and each packet is constantly trans-
ferred until it reaches its final destination. The packet is bounced around
like a “hot potato,” sometimes moving further away from its destination
because it has to keep moving through the network. This is in contrast
to SAF switching where the network allows temporary storage at inter-
mediate locations (Section 5.4.2). Deadlocks cannot happen in deflection
routing when the number of input and output ports of a switch are iden-
tical and new local packets are not allowed in when all inputs are busy. It
is guaranteed that any packet in a router will be transferred in the next
cycle to any of the output ports and therefore the router can receive a new
packet over all its inputs from neighboring routers (so no backpressure
is sent among routers). Livelocks may happen in deflection routing and
needs to be resolved. A livelock situation happens when a packet is sent

2 We acknowledge contributions from Andreas Hansson [53, 54] for this section.

178 Chapter 5 ! Network and Transport Layers in NoCs

over and over and never reaches its final destination. Simple priority rules
can resolve it [17].

While there is a broad literature on the use of deflection routing in var-
ious networks, one may question the impact of this scheme on the NoC
power consumption due to the long routes packets may take in the net-
work. However, the benefits of an dynamic routing scheme for the CMP
model may overcome the disadvantages. First, deflection routing auto-
matically spreads traffic to alternate routes when primary routes are in
demand. Second, routes can be selected according to profitability [109]
where routes that move packets closer to the destination are favorable
over paths that lead packets away from it. Finally, in the NoC environment,
the backpressure from neighboring routers may be more effective than in
off-chip networks due to the relative proximity of routers to each other.
Nilsson et al. [83] suggest avoiding excessive oscillations by exchanging
“stress values” among neighboring routers. Packets are routed away from
“stressed areas.” Ye et al. [109] leverage the previous idea and suggests a
contention-look-ahead routing based on flits in a WH network.

Several more dynamic routing technologies have been suggested to
NoCs. An interesting technique that switches between the XY and the YX
in an dynamic way is described in Ref. [59]. Gossip-based routing which
is based on a broadcast of the information to all destinations is suggested
in Refs [17, 34].

SPIN [49] uses dynamic routing in a fat tree topology. In routing from
one module to another, any path to a common ancestor in the tree may
be taken. A unique path then exists from that ancestor to the destina-
tion module. Although all paths between a pair of modules have the same
length, delays may be different on different paths due to congestion and
re-sequencing buffers are necessary at the receiver network interface.

An interesting balance between static and dynamic routing may be very
suitable for the FPGA or CMP NoCs. In some NoCs paths can be configured
at power up [39] or reconfigured at run time [7, 84, 91]. The latter usually
happens based on a change in the application, for example, starting a new
functionality [79]. It could, however, also be applied to deal with variation
within a single application. The paths that are newly loaded can either be
computed at run time or precomputed at design time. In this way, traffic
can be distributed over the NoC in a way that is tailored to the application
(or mode) at hand. ASICs, ASSPs, and FPGAs often have relatively static
application modes (Fig. 5.1), and NoCs for these systems will benefit from
this approach.

5.7 CONGESTION CONTROL AND FLOW CONTROL

In previous sections we have shown how data is transported through
the network (Section 5.4), along which routes (Section 5.5), to offer the

5.7 Congestion Control and Flow Control 179

slave NI

master NI

R
R

R
R

RR R

congestion
control

regulates traffic
(over)load

inside the router
network, arising
from all masters

and slaves

flow control
regulates the

traffic between
a master–slave

pair

! FIGURE 5.14

Scope of congestion control and flow control.

required QoS properties (Section 5.2). In this section we describe two fun-
damental phenomena that have to be addressed in order to deliver the
various QoS levels.

In particular, packets travelling through the router network may want
to use the same resources (buffers, links) at the same time. This is called
contention. Like an oil stain, contention can propagate, leading to con-
gestion and reduced network performance. In Section 5.7.1, we illustrate
the problem in more detail, and describe a number of congestion control
techniques.

A separate but related problem arises when two communicating parties
(a master and a slave) are not balanced in terms of data injection and
consumption rates. A slow (or non-responding) slave can cause a backlog
of packets inside the router network. In Section 5.7.2 we describe a number
of flow control techniques that address this problem.

Fig. 5.14 shows the scope of congestion control and flow control. In a
nutshell, congestion control keeps the router network free of traffic jams,
while flow control ensures that no sender overwhelms any of its receivers.

In Section 5.7.3 we show that to offer desirable communication services
(QoS) such as guaranteed minimum bandwidth, guaranteed maximum
latency and jitter, both congestion control and flow control are required.

5.7.1 Congestion Control
Fig. 5.15 illustrates the basic problem. To send a message from a producer
to a consumer, it must be accepted by a buffer in the master network inter-
face (master NI in the figure). Then the packets constituting the message
traverse links and routers (L and B). At some point in the future the mes-
sage has to be accepted by a buffer in the slave network interface (Slave
NI in the figure). Therefore, a series of resources (buffers, links) is used at
different points in time. Managing resources spatially (which links and/or
buffers) and temporally (at which points in time) can prevent overloading
the resources individually (contention) as well as collectively (congestion).

180 Chapter 5 ! Network and Transport Layers in NoCs

slave NI

master NI master NI

primary congestion tree

secondary congestion tree

master NI

(1) contention:
two packets

wish to use the
same resource

(2) congestion:
other packets

queue because
of contention

(further ahead)

(3) secondary
congestion
tree: other

traffic is also
affected

slave NI

packet header

packet payload
MNI

L

L

L

L

SNI

B

B

B

(A) blocked or
slow slave:

causes
congestion too

! FIGURE 5.15

Contention and congestion.

Fig. 5.15 shows that congestion is the result of contention: when mul-
tiple packets wish to use the same link, the waiting packet (on the left)
causes queues behind it (comment (1) in the figure). The contention is
caused inside the network by two packets contending for a single out-
put link or buffer. This occurs, for example, in the center of a mesh when
dimension-ordered routing is used. A congestion tree results, which affects
not only packets destined for the shared link or slave (2, solid lines, and
the dark-shaded packets) but also packets that only share a link in the
congestion tree (3, dashed lines, and the light-shaded packets). Conges-
tion lowers the effective utilization of the network (because packets are
waiting or deflected and take a longer route), and thus congestion should
be avoided for performance reasons. In addition, congestion also makes
end-to-end bandwidth and latency harder to compute (because dynamic
interactions between shared resources must be modeled), and must be
circumscribed if performance guarantees are to be given.

We describe several techniques to limit congestion, starting with reac-
tive techniques that do not require explicit resource reservations. Then
we detail techniques that use resource reservations that reduce or even
eliminate contention entirely.

Congestion control methods are also classified as being closed loop
(based on feedback) or open loop (preventive) in the computer network

5.7 Congestion Control and Flow Control 181

congested

desirable

perfect

packets sent
pa

ck
et

s
de

liv
er

ed
! FIGURE 5.16

Dropping packets reduces the effective utilization of a network [101].

domain [101]. Many of the methods that exist for computer networks can
be reused on chip (such as traffic shaping, token buckets, and leaky buck-
ets). However, because NoCs have until now, not dropped packets many
methods are also not applicable (such as load shedding).

Congestion control without resource reservations

! A localized solution to contention is deleting (dropping) packets.
When two or more packets wish to simultaneously use the same
resource, all but one are deleted. In the short term, this solves the
contention and also avoids any congestion. However, on a larger
time scale, dropped packets must be re-sent. Dropping therefore
leads to more traffic in the long run, reducing the effective utilization
of the NoC, as shown in Fig. 5.16. Until now, no NoC has used packet
dropping for congestion control.

! Alternatively, dynamic routing schemes (cf. Section 5.6.3) can be
used to send packets around the contention. SPIN [50] is an exam-
ple of this approach, and uses dynamic routing with WH switching.
Nostrum [75] uses another approach, namely deflection routing
with SAF switching. If multiple packets should be routed to the
same output port, then one is picked and the remaining packets are
routed to other outputs. By always routing all incoming packets to
non-conflicting outputs, only one packet needs to be stored for each
input. To reduce the SAF latency, short packets are preferred, at the
cost of wider inter-router links.

In all dynamic routing schemes, packets can arrive out of
order, which requires packet numbering and reordering buffers in
addition to depacketization buffers. Although these can be com-
bined with buffers to hide variations in packet arrival (jitter) [49],
random-access memories must be used to store packets, instead of
potentially much cheaper FIFOs.

! Local methods can be extended to take information of a router
neighborhood into account. In case of dynamic routing, routers

182 Chapter 5 ! Network and Transport Layers in NoCs

! FIGURE 5.17

Dynamic routing around mesh center hot spot [83].

can exchange congestion information, and in this way route more
efficiently around hot spots [83, 109]. Fig. 5.17 shows how conges-
tion is centered on a small area in the left graph. When congestion
control is added, the load spreads over a larger area and is reduced
by a factor 20 (maximum load changes from 0.2 to 0.01), as shown
in the right graph.

! Reducing the injection rates of packets into the network tackles
congestion at a higher level. Rather than routing packets around
congested areas, the number of packets in the network is reduced.
Packet injection rates at network interfaces can be regulated either
based on preset/precomputed values or based on measurements in
the NoC (e.g., links [102] or network interfaces [85]). A (set of) rate
controllers can regulate the packet injection rate, based on statis-
tical information such as the offered load versus average latency
distribution. For example, by measuring the utilization of a critical
shared link, the injection rate (offered load) can be kept under lim-
its that correspond to desired average latency. Van den Brand [102]
shows how latency can be bounded by using NoC monitors [22] and
multi-input multi-output model-predictive controllers (MPCs) (Fig.
5.18). An example is given in Fig. 5.19, where the monitor P observes
the utilization of link L, and reports this information to the MPC.
The controller regulates the packet injection rates of the producers
to bound the link utilization (to 75% in the example). The graphs
show the difference between link utilization of link L without and
with use of the controller, respectively. The link utilization translates
directly to latency experienced by BE traffic.

Note that all methods described above are reactive, and reduce the
effects after contention or congestion has been detected. For this reason,

5.7 Congestion Control and Flow Control 183

R R R NINI

NI

IPMPC

probe1GB/s VBR GT connection

BE connectionmonitor connection

monitored link

! FIGURE 5.18

A small NoC with a monitoring probe and MPC [102].

0 5 10 15

" 104 " 104

0

10

20

30

40

50

60

70

80

90

100

Time (ns)
(a) (b)

0 5 10 15

Time (ns)

lin
k

ut
ili

za
tio

n
(%

)

0

10

20

30

40

50

60

70

80

90

100

lin
k

ut
ili

za
tio

n
(%

)

! FIGURE 5.19

Link utilization with (a) and without (b) NoC congestion control [102].

it is hard to provide hard end-to-end guarantees on bandwidth or latency.
This is much easier when resources are reserved, and congestion is
constrained to be within required bounds as described below.

Congestion control with resource reservations

As shown in Fig. 5.15, network resources such as buffers and links, are used
in time and in space. Essentially, contention occurs when two packets use
the same resource at the same time. It can therefore be avoided entirely,
or bounded to a desired level by scheduling the time and location of all
packets in the network. This is the aim of the category of congestion control
methods described here, which reserve resources before they are used.

184 Chapter 5 ! Network and Transport Layers in NoCs

Producer and consumer network interfaces and the routers along the
path(s) between them contain buffers and are interconnected by links
(Fig. 5.15). Buffers and/or links are shared. Here we are concerned with
resources that pertain to congestion, that is, in the router network only
(Fig. 5.14). The resources in the network interfaces are managed by flow
control, and will be described in Section 5.7.2.

A network user (usually a master–slave pair) must specify its require-
ments to the network before the network can decide what network
resources are necessary for that flow. User requirements are stated using
the service classes defined in Section 5.2. The network can then compute
if sufficient resources are available to support the requested flow. If there
are, the flow is accepted, else it is denied. This admission control (or set-
up phase) is necessary to prevent invalidating the guaranteed QoS of flows
already present in the network by overloading the network. Furthermore,
the traffic that the communicating parties (e.g., master and slave) inject
in the network must conform to the service class that was reserved for
their flow. For example, if a CBR flow with a maximum of 50 MByte/s was
requested, the master should not produce more data than promised. To
guarantee the services of other flows, they should be enforced (traffic polic-
ing). That is, if a user does not obey the agreed traffic class, the network will
enforce the contract, for example, by not accepting data. Finally, when a
flow finishes, the network must be notified, after which the resources that
were reserved can be freed for reuse by other flows (tear-down phase).
The set-up and tear-down phases take time, and it is advisable therefore
to use a flow for a longer period of time. (Although SOCBus has used flow
for single transactions [107].) The aforementioned flows are often called
connections [92], which are communication pipes between a master and
(multiple) a slaves.

Below we describe two different methods to eliminate or reduce con-
tention to within known bounds. They guarantee that packets that are
injected in the network at the initiator network interface arrive at the target
network interface within a predetermined interval. We highlight the strong
relation of scheduling and buffering schemes (alluded to in Section 5.4.1):

! In the most extreme scheme, contention can be eliminated entirely
by scheduling the time and location of all packets globally, using
TDM. Packets are injected at the network’s edge in such a way that
they never collide at any link. This assumes that propagation speed
of individual flits through the NoC is fixed and known in advance.
This corresponds to a global notion of time (although not neces-
sarily implemented through a synchronous clock). Flits wait in the
network interfaces until they are injected in the NoC according to
the TDM schedule. For lossless operation, some kind of end-to-end
flow control is also necessary (described below in Section 5.7.2).

The concept of globally scheduling all virtual circuits is used
by NuMesh [96] (for parallel processing), Nostrum’s looped

5.7 Congestion Control and Flow Control 185

! FIGURE 5.20

Eliminating contention through TDM [44].

containers [75], aSoCs global scheduling [65, 66], and Æthereal’s
contention-free routing [44, 90].

We illustrate the concept with contention-free routing, as used
in Æthereal [44], but the other methods are essentially the same.
Every TDM slot table T has S time slots (rows), and N router outputs
(columns). There is a logical notion of synchronicity: all routers in
the network are in the same fixed-duration slot. In a slot s at most
one flit can be read/written per input/output port. In the next slot,
(s + 1) module S, the packets are written to their appropriate output
ports. The entries of the slot table map outputs to inputs for every
slot: T(s, o) = i, meaning that flits from input i (if present) are passed
to output o at times s + kS, k ∈ N. An entry is empty when there is
no reservation for that output in that slot. There is no contention,
by construction, because there is at most one input per output for
each slot.

Fig. 5.20 illustrates the operation of contention-free routing. It
shows a snapshot of a router network with three routers R1, R2,
and R3 at slot s = 2, indicated by the arrows pointing to the third
entry in the table. (Slots are numbered starting from zero.) The
size of the slot tables is S = 4, and only the relevant columns are
depicted. Three flows, a, b, and c, are shown with the gray arrows;
the black circles represents flits on the flow with the corresponding
letter. Flit b is switched from input i1 to output o2 in router R1, as
indicated by the slot table T1(2, o2) = i1. Similarly, flits a and c will
be switched to outputs o2 of R2 and o1 of R3, respectively.

As discussed in Section 5.4.1, because flits never wait in the
network, a single-flit buffer per input (or output) per router suf-
fices. Network interfaces often use virtual circuit buffering, but this
depends on the flow control scheme that is used (see Section 5.7.2).

The advantage of TDM for contention-free routing comes at a
cost. The average latency for packets is relatively high, because
although the time in the router network is minimal (no contention),

186 Chapter 5 ! Network and Transport Layers in NoCs

R1 R2 R3NI

! FIGURE 5.21

Characterizing congestion in rate-controlled methods [110].

they have to wait for their slots in the network interfaces, even
if there are no other flits in the network that they could clash
with. However, the worst-case latency is the same for TDM and
rate-control described below. Note that with TDM bandwidth
and latency, guarantees are (inversely) coupled, that is, a lower
latency requires a larger slice of the bandwidth. Low-bandwidth
high-priority flow (e.g., control traffic) may therefore be relatively
expensive to offer (in terms of bandwidth overprovisioning).

! The essence of rate-control schemes [110] is that contention is
allowed, but within known bounds. By regulating the amount of
traffic that is injected at the network edge, the maximum con-
tention that can arise at any point in the network can be computed.
End-to-end latency follows from this. Each router is seen as an inde-
pendent server, which means that routers must be non-blocking,
that is, packets must not interfere with each other in switch or
buffer usage. Each router accepts incoming traffic with a certain
pattern, and produces outgoing traffic with a potentially modi-
fied pattern. Different schedulers can be used in the routers, with
different results, in terms of average and worst-case latency, jit-
ter, buffering requirements, etc. Starting with periodic traffic, two
things can be observed in Fig. 5.21 [110]: (1) the incoming traffic
pattern of a flow can be distorted due to network load fluctuations,
(2) the distortion may make the traffic burstier and cause instan-
taneously higher rates. In the worst case, the distortion can be
accumulated, and downstream routers potentially face burstier traf-
fic than upstream routers. Therefore, the source network interface
traffic characterization may not be applicable inside the network.

Fig. 5.22 shows an example of how different flows can use a router
network. The encircled links are the bottlenecks, determining the
maximum allowed bandwidth ratios for the flows. At most three
solid flows (C1, C2, C3, C6) use the same link, and they are allocated
one-third of the link bandwidth each. The dashed flows (C3, C4)
each share a link with at most one other flow, and can therefore use
up to half of the link bandwidth. Essentially, any allocation of rates
to flows is allowed, as long as the sum of rates allocated at each
link does not surpass the link’s capacity. At the network interfaces,
the flows are constrained to not inject more than their allocated
bandwidth ratio, for a fixed periodic time interval.

5.7 Congestion Control and Flow Control 187

R

R

NI

R

R

NI

R

R

NI

NI

NI

NI

NI

NI NI NI

C1 1/3

C2 1/3

C3 1/3

C4 1/2 C5 1/2
C6 1/3

! FIGURE 5.22

Flows and rates.

Buffers are required to deal with local bursts. The exact maximum burst
size depends on the scheduling scheme used, but also on the time interval
over which the flow rates are enforced (described above). This, together
with the non-blocking requirement, means that virtual-circuit buffering
with output queueing, or SAF switching with output queueing can be used.
The latter results in large buffers, and has not been used for NoCs. Mango
uses the former, with both round-robin arbitration [10] and priority-based
ALG [9]. Both scheduling methods are work-conserving, which can result
in lower average latencies in case the NoC is not fully utilized, unlike TDM
as described before. Moreover, the ALG scheduler also decouples band-
width and latency guarantees [9, 111]. However, ALG cannot schedule
100% of the available bandwidth for guaranteed services, unlike TDM and
some other schedulers.

Reservation of resources can eliminate or bound congestion, but it
comes at a price. Network users must negotiate their requirements with
the network, which requires insight into their communication behavior,
and which takes time (set-up and tear-down phases). Reservations may
have to be for the worst-case traffic instead of the average case traffic,
which can lead to overdimensioning of the NoC.3 This is possible for ASIC,

3 This depends on the exact service classes that are offered. But routers implementing
guaranteed services may be smaller and faster than those implementing BE services [44],
counteracting the impact of worst-case dimensioning.

188 Chapter 5 ! Network and Transport Layers in NoCs

ASSP, and FPGA NoCs. However, just like for connection-oriented cir-
cuit or packet switching, in CMP NoCs with dynamic applications where
flows are short lived, change frequently, or very variable in their demands,
resource reservations may be difficult to achieve.

Positive points are the possibility to offer hard guarantees regard-
ing bandwidth, latency, jitter, etc. This has a host of advantages for
system-level integration [45, 47], such as compositional system design
and reduced verification effort, because modules and applications do not
interfere with one another.

5.7.2 Flow Control
Using congestion control techniques described above, we can eliminate
or reduce the congestion that packets encounter in the router network.
However, they do not guarantee that there is space in buffers at the target
network interface.4This happens when a target does not keep up with the
incoming traffic, or even fails to respond entirely (e.g., through incorrect
programming or malfunction). Its network interface buffers will fill up,
and incoming packets must wait in the network. For example, the root of
the dashed congestion tree in Fig. 5.15 could be caused by a slow slave,
marked A. This may congest and even completely block the network, no
matter what congestion method we use. Even when using congestion-free
TDM, a full buffer still inhibits progress of other packets because their
reserved link or buffer in the router network is, in fact, not available.
Essentially, to avoid this phenomenon, packets from a master to a slave
that cannot be accepted by a slave network interface must not inhibit
the progress of packets on different flows (connections). Flow control,
described below, ensures this.

Congestion control in the router network and flow control for network
interfaces have different but related aims. Congestion control by itself is
useful, for example, to increase performance, but not essential. However,
flow control is often necessary even without congestion control, for exam-
ple, to avoid deadlock [55]. (For example, the Æthereal BE traffic class
uses no congestion control but does use flow control.)

Flow control deals with individual flows, that is, flows between a master
and a slave (in its simplest form). Flow control ensures that the master
does not send more data to the router network than can be accepted by
the slave and its network interface. We describe a number of flow control
techniques. First, three methods that do not require resource reservations:

1. The simplest form of flow control is to ensure that packets always
find space in the slave network interface buffer. If the buffer is

4 One may argue that the network interface buffers are no different than router buffers, but
then the problem we will describe just shifts one “hop,” into the slave. For clarity, we will
omit any discussion of the behavior and internals (buffering, pipelining, etc.) of the slave,
and concentrate on the network interfaces.

5.7 Congestion Control and Flow Control 189

full packets are deleted (dropped), according to wine (drop new
packets) or milk (drop old packets) policies. As discussed before,
dropping increases congestion in the long run. For this reason,
dropping packets as a flow control measure has not been used
in NoCs. Note that no resource reservations are required for this
method, and it fits quite well with dropping as a congestion control
technique.

2. Returning packets that do not fit in buffers at the target network
interface to the sender. To avoid introducing deadlock, the sender
must accept the rejected packets. Although this technique has been
used in computer networks, it is not (yet) used by any NoC [98].

3. Deflection routing for end-to-end flow control is used by SPIN [49]
(and could be a natural option for Nostrum [75]). In other words,
when a packet does not fit in the slave network interface buffer, it
is sent back in the router network. Note that this is not the same
as sending back the packet to the sender described above. There
the slave does not intend accepting the packet at all, while here
the slave temporarily refuses a packet with a view to accepting it
later. This method combines well with using deflection routing for
congestion control.

Methods that require resource reservations:

! Another method to ensure that packets always find space in the slave
network interface buffer is to ensure that packets are only sent by the
master network interface when there is guaranteed to be space in the
slave network interface buffer. This can be achieved by end-to-end
flow control based on credits or sliding windows [38, 97]. (Note that
ACK/NACK, Go-Back-N, etc. are flow control schemes most com-
monly used for the link-layer and are described in Chapter 4.) These
methods can be used with any buffering scheme. However, when
virtual-circuit buffering (Section 5.4.1) is used a better approach
exists, as described in the next point.

Fig. 5.23 shows how credit-based end-to-end flow control oper-
ates. A master sends requests to a slave, who optionally returns
responses. End-to-end flow control is required independently for
both the request and the response flows. The figure shows routers
that use shared buffers for all request and response traffic for all
flows in the NoC. The routers have degree 3 with input buffers are
shown. However, the buffer organization is not relevant here. Pack-
ets are allowed to leave the master network interface request buffer
(1) only when there is space for them in the slave network interface
request buffer (2). This is accomplished by tracking the free space
in a credit counter (a). The counter is initialized to the capacity of
the slave network interface request buffer (2), and is decremented

190 Chapter 5 ! Network and Transport Layers in NoCs

slave

m
aster

1 2

4 3

response credit counter:
how much space is

available in master NI
response buffer 4

dark-shaded buffers are shared by multiple connections
light-shaded buffers are request buffers per connection
dashed buffers are response buffers per connection

buffers shared by
multiple connections

requests
responses

requests
responses

request credit counter:
how much space is available in NI slave

response buffer 2

a

b

! FIGURE 5.23

Credit-based end-to-end flow control.

whenever a packet is sent. Whenever a slave removes a packet from
its request buffer (2), it sends a credit (in a packet) back to the mas-
ter, who adds it to its credit counter (a). The slave network interface
request buffer must be large enough to hide the delay introduced by
sending back credits, otherwise the master will stall as long as the
credits are in transit. Responses from slave to master are handled
analogously.

Credit traffic can consume a substantial amount of the bandwidth
(31% is quoted in Ref. [50]). As an optimization, the requested
credit packets can be combined with response packets (and vice
versa). This is called piggy backing [101], and can save substan-
tial bandwidth (Fig. 5.24). As the burst size grows, the relative
overhead introduced by credit packets decreases. With larger burst
sizes, more credits are reported in a credit packet. Consequently,
the number of credit packets (i.e., overhead introduced by cred-
its) decreases. The drawback of increasing burst sizes is that larger
buffers are required to accommodate the bigger bursts.

Æthereal [91] uses standard credit-based end-to-end flow control
as described as above. Nostrum has been extended [42] to use the
same flow control scheme.

SPIN [50] uses the same basic scheme, except that the credit
counter is initialized with a value higher than the receiving buffer
capacity. This can be interpreted as using the router buffers as an
extension of the receiving buffer. However, this optimization intro-
duces a dependency of flow control on congestion control. In SPIN
this is solved by using deflection routing for both.

5.7 Congestion Control and Flow Control 191

0

1000

2000

3000

4000

5000

6000

7000

8000

16 32 64 128 256

A
ve

ra
ge

 li
nk

 b
an

dw
id

th
 (

M
bi

t/s
)

Burst size (bytes)

used bandwidth: no piggybacking
used bandwidth: piggybacking

! FIGURE 5.24

Piggy backing can save up to 20% on the average link bandwidth [91].

QNoC [105] uses end-to-end credits for both congestion control
and flow control. Credits are not handed out on a flow (single
master–single slave) basis as above. Instead a slave manages the
requests of all masters that communicate with it in a single queue,
and hence a single set of credits. A two-phase protocol is now used:
a master requests credits from the slave using a high-priority traffic
class, then it can send its data using the standard priority traffic
class. This method is useful for heavily used slaves (i.e., those that
cause congestion) with many masters (i.e., end-to-end flow control
per master–slave pair is too expensive).

! The end-to-end flow control methods ensure that when packets
enter the router network then they will after some time (depend-
ing on congestion) arrive at the receiving network interface, and
find space in the appropriate buffer. Queueing in the router net-
work must be avoided because packets of other flows that use the
same router buffers may be blocked. In other words, by giving all
flows their own buffers in every router along their paths (virtual
circuit buffering, Section 5.4.1), a packet that is blocked causes no
harm to other flows.

As briefly mentioned in Section 5.4, routers synchronize the trans-
fer of flits to ensure that the sending buffer is not empty, and that
the receiving buffer does not overflow. This is performed by link-
level flow control, as described in Chapter 4. Note that link-level
flow occurs per virtual circuit, and if one virtual circuit is blocked,
another may still progress. Now, end-to-end flow control is auto-
matically obtained by a chain of link-level flow controls, as shown

192 Chapter 5 ! Network and Transport Layers in NoCs

m
aster

local flow control credits:
how much space is
available in the next

buffer 2

1
2 3

4

slave
local flow control credits:

how much space is
available in the next

buffer 3

master–slave uses light-shaded solid and dashed circuits for requests and responses, resp.
the master communicates to another slave using the white-shaded circuits
the slave communicates with another master using the dark-shaded circuits

local flow control credits:
how much space is
available in the next

buffer 4

requests
responses

requests
responses

! FIGURE 5.25

Virtual-circuit buffering with credit-based local flow control.

in Fig. 5.25. Although the figure shows credit-based link-level flow
control, other techniques are also possible (see Chapter 4).

Mango [8] and [106] use this approach. Although currently not
the case, Nostrum [75] could use this approach for its containers
(under the restriction that containers transport data from initiator
to target only).

We have described congestion control and flow control, and why each
is desirable or necessary. In the next section we see that both together are
required if NoC offers QoS performance guarantees.

5.7.3 Congestion Control and Flow Control for QoS
We have described how congestion control and flow control regulate the
interaction or interference between different packets and flows in the net-
work. In either case, resources can be (explicitly) reserved or not, as
summarized in Table 5.2.

As mentioned a number of times in this section, without resource reser-
vations it is in general impossible to give hard (100%) guarantees. If either
congestion control or flow control does not use resource reservations,
no end-to-end guarantees such as minimum bandwidth and maximum

5.7 Congestion Control and Flow Control 193

TABLE 5.2 ! Overview of congestion control and flow control.

Without reservations With reservations

Congestion control Cropping Contention-free routing
Dynamic routing Rate control
Adaptive injection

Flow control Dropping End-to-end flow control
Refusing Virtual-circuit flow control
Deflection

latency service classes can be offered. Congestion control is required to
eliminate or characterize the interference between different flows in the
router network. Flow control characterizes the interaction between the
sender and the receiver. Without it a single slow or non-responding mas-
ter or slave can cause loss of data (if dropping is used), or congestion or
even complete blockage of the NoC. No bandwidth or latency guarantees
can be given in all these cases.

When no hard performance guarantees can be given, the NoC behavior
can be described statistically. Under the assumption of particular traffic
patterns, distributions of for example, packet delays can be computed, as
well as statistical bounds (for a given confidence level). For example, Guer-
rier [49] shows that in SPIN network latencies occur with an exponentially
decreasing probability (Fig. 5.26). Note that the number of packets (ver-
tical axis) is exponential. The lowest network latencies are obtained at
the lowest (27%) offered load, where over 90% of packets arrive within
50 cycles. The almost horizontal curve corresponds to a saturated NoC at
47% offered load. Beyond this load the module-to-module latency rapidly
becomes unbounded.

Fig. 5.26 shows that very long latencies will occur, although infre-
quently. However, note that “improbable” failures (e.g., 10−14 chance
of being “late”) occur often, with high NoC operating frequencies
(e.g., 500 MHz), concurrent transactions (e.g., 20 active packets): every
20 × 5 × 1012 × 10−14 = every second. In an NoC with BE service classes
only, reducing the failure rate to an acceptable level may mean drastically
reducing the offered load, or equivalently, the utilization of the NoC.

However, there are advantages when resources do not need to be
reserved. The set-up and tear-down phases are not required, and at any
point in time resources are automatically distributed over flows (although
perhaps unfairly [105]). No resource re-allocation (reconfiguration) is
necessary, when NoC usage changes.

Few NoCs have implemented both congestion control and flow con-
trol with a view to give hard QoS guarantees. In particular, Mango [6],
Æthereal [44], and SonicsMX [106] offer complete solutions. However, a
number of NoCs can be extended with techniques described above (usu-
ally end-to-end or chained link-level flow control), and they too will be

194 Chapter 5 ! Network and Transport Layers in NoCs

! FIGURE 5.26

Network latency distributions for 27%, 45%, and 47% offered load [49].

able to offer the same level of QoS guarantees. This category contains
Nostrum [75], aSoC [65], and Refs [63, 108].

NoCs differ in the granularity of resource reservations they make. There
are two ends of the spectrum. The first precisely maps traffic classes to a
larger number of tailored service classes, where the other more coarsely
maps traffic classes to fewer, more generic service classes (Section 5.2).
The former enables accurate traffic scheduling for high effective NoC
utilization, at the cost of precise traffic characterizations with tailored
service classes. The latter reduces the burden of precise traffic characteri-
zation, at the cost of lower effective NoC utilization. Hence, the respective
approaches trade off accuracy of mapping of traffic classes to service
classes versus effective NoC utilization. The QoS approaches, introduced
in Section 5.2.1, of QNoC [13] (four service classes) and SPIN [49] (a sin-
gle BE service class) may be interpreted as examples of these respective
approaches, with Nostrum [75] and Æthereal [44] being in between (with
guaranteed-bandwidth and BE service classes).

Which approach is most suitable depends on the application require-
ments and NoC type (ASIC, ASSP, FPGA, or CMP). For example, real-time
streaming applications (such as video) tend to be long lived, and mini-
mum bandwidth and low jitter must be guaranteed, but low latency is less
important. Resource reservations to optimally schedule link and buffer uti-
lization reduces the cost of the system, at the cost of explicit flow set-up.

References 195

This is acceptable in ASIC and ASSP NoCs, which are the natural imple-
mentation for this sort of applications for reasons of performance and
cost. On the other hand, cache traffic of embedded processors of CMPs, is
unpredictable in terms of (instantaneous) bandwidth usage and the aver-
age and worst-case bandwidth are very different. Average low latency is
essential for good performance. Hence, precise characterization of cache
traffic is difficult, and overdimensioning would be very expensive. As a
result, most traffic classes may be mapped to the BE service class, which
needs no or few reservations.

5.8 SUMMARY

In this chapter we described the main principles in designing the network-
ing and transport layers of NoCs. These layers include the specification of
the following NoC characteristics: switching technique, topology, address-
ing and routing, and end-to-end congestion and flow control schemes. We
presented this complex problem as a constrained optimization process.
The NoC designer should minimize the cost of the NoC which is expressed
in terms of VLSI area and power consumption added to his overall chip
design. The constraints are the level of services (service classes) to be pro-
vided for the traffic patterns of the SoC under consideration. Since NoCs
can be designed anew for each SoC implementation, this optimization
process is expected to be repeated for each new SoC design, using NoC
CAD tools.

Following this definition, it is clear that the SoC traffic characteris-
tics strongly impact the NoC characteristics. We therefore classified SoCs
according to how much is known in advance about their functionality,
and consequently about their expected module-to-module communication
patterns (Fig. 5.1).

We reviewed topical state-of-the-art solutions for each of the impor-
tant NoC characteristics: switching mechanisms, QoS implementations,
topological design, routing mechanisms, congestion and flow control tech-
niques. We showed how the NoC model impacts the choices available, for
each of these, as well as the relationships and trade-offs between them.

REFERENCES

[1] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez and C.A. Zeferino,
“SPIN: A Scalable, Packet Switched, On-Chip Micro-Network,” Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2003.

[2] ARM, AMBA AXI Protocol Specification, June 2003.

196 Chapter 5 ! Network and Transport Layers in NoCs

[3] ATM Forum, ATM User-Network Interface Specification, Prentice Hall, July
1994, Version 3.1.

[4] C. Aurrecoechea, A.T. Campbell and L. Hauw, “A Survey of QoS Architec-
tures,” Multimedia Systems, Vol. 6, No. 3, 1998, pp. 138–151.

[5] D. Bertozzi and L. Benini, “Xpipes: A Network-on-Chip Architecture for
Gigascale Systems-on-Chip,” IEEE Circuits and Systems Magazine, Vol. 4,
No. 2, 2004, pp. 18–31.

[6] T. Bjerregaard, The MANGO Clockless Network-on-Chip: Concepts and
Implementation, Ph.D. thesis, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, 2006.

[7] T. Bjerregaard, S. Mahadevan, R. Grøndahl and J. Sparsø, “An OCP Com-
pliant Adapter for GALS-Based SoC Design Using the MANGO Network-
on-Chip,” Proceedings of the International Symposium on Systems on Chip
(SoC), 2005.

[8] T. Bjerregaard and J. Sparsø, “A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-Chip,”
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE), March 2005, pp. 1226–1231.

[9] T. Bjerregaard and J. Sparsø, Scheduling Discipline for Latency and Band-
width Guarantees in Asynchronous Network-on-Chip,” Proceedings of the
International Symposium on Asynchronous Circuits and Systems (ASYNC),
March 2005, pp. 34–43.

[10] T. Bjerregaard and J. Sparsø, “Implementation of Guaranteed Services in
the MANGO Clockless Network-on-Chip,” IEE Proceedings: Computers and
Digital Techniques, 2006.

[11] H. Bodlaender, R. Tan, D. Thilikos and J. van Leeuwen, On Interval Routing
Schemes and Treewidth, 1995.

[12] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, “Cost considerations in
Network on Chip,” Integration, the VLSI Journal, Vol. 38, No. 1, October
2004, 19–42.

[13] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, “QNoC: QoS Architecture
and Design Process for Network on Chip,” Journal of Systems Architecture,
Vol. 50, No. 2–3, February 2004, pp. 105–128. Special issue on Networks
on Chip.

[14] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, “Efficient Routing in Irregu-
lar Topology Nocs,” Technion, CCIT Report, Vol. 554, No. 5, September 2005.

[15] F. Borgonovo, L. Fratta and J.A. Bannister, “On the Design of Optical
Deflection-Routing Networks,” Proceedings of the Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM), 1994,
pp. 120–129.

[16] R. Braden, D. Clark and S. Shenker, RFC 1633: Integrated Services in the
Internet Architecture: an Overview, June 1994.

[17] J. Brassil and R.L. Cruz, “Bounds on Maximum Delay in Networks with
Deflection Routing,” IEEE Transactions on Parallel and Distributed Systems,
Vol. 6, No. 7, 1995, pp. 724–732.

[18] I. Cidon, R. Guérin and A. Khamisy, “On Protective Buffer Policies,
IEEE/ACM Transactions on Networking, Vol. 2, No. 3, 1994, pp. 240–246.

[19] I. Cidon, F.M. Jaffe and M. Sidi, “Local Distributed Deadlock Detec-
tion by Cycle Detection and Clustering,” IEEE Transactions on Software
Engineering, Vol. 13, No. 1, 1987, pp. 3–14.

References 197

[20] I. Cidon, J.M. Jaffe and M. Sidi, “Distributed Store-and-Forward Deadlock
Detection and Resolution Algorithms, “IEEE Transactions on Communica-
tion, Vol. 35, No. 11, 1987, pp. 1139–1145.

[21] I. Cidon and I. Keidar, “Zooming in on Network on Chip Architectures,”
Technion, CCIT Report, Vol. 565, No. 5, December 2005.

[22] C. Ciordaş, T. Basten, A. Rădulescu, K. Goossens and J. van Meerbergen,
An Event-Based Network-on-Chip Monitoring Service,” ACM Transactions
on Design Automation of Electronic Systems, Vol. 10, No. 4, October 2005,
pp. 702–723. HLDVT’04 Special Issue on Validation of Large Systems.

[23] D.J. Culler, J.P. Singh and A. Gupta, Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufmann Publishers, 1999.

[24] W. Dally and B. Towles, Principles and Practices of Interconnection Networks,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[25] W.J. Dally, “Express Cubes: Improving the Performance of k-ary n-cube
Interconnection Networks,” IEEE Transactions on Computers, Vol. 40, No.
9, September 1991, pp. 1016–1023.

[26] W.J. Dally, “Virtual-Channel Flow Control,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 3, No. 2, March 1992, pp. 194–205.

[27] W.J. Dally and H. Aoki, Adaptive routing using virtual channels, Technical
Report, Laboratory for Computer Science, MIT, Cambridge, Massachusetts,
September 1990.

[28] W.J. Dally and H. Aoki, “Deadlock-Free Adaptive Routing in Multicom-
puter Networks Using Virtual Channels,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 4, No. 4, April 1993, pp. 466–475.

[29] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in Multiproces-
sor Interconnection Networks,” IEEE Transactions on Computers, Vol. 36,
No. 5, May 1987, pp. 547–553.

[30] W.J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnec-
tion Networks,” Proceedings of the Design Automation Conference (DAC),
2001, pp. 684–689.

[31] A. DeHon, Robust, high-speed network design for large-scale multipro-
cessing, A.I. Technical report 1445, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, September 1993.

[32] J. Dielissen, A. Rădulescu, K. Goossens and E. Rijpkema, “Concepts and
Implementation of the Philips Network-on-Chip, In Workshop on IP-Based
System-on-Chip Design, November 2003.

[33] J. Duato, S. Yalamanchili and L. Ni, “Interconnection Networks – An
Engineering Approach, Morgan Kaufmann, 2003.

[34] T. Dumitras and R. Mărculescu, “On-Chip Stochastic Communication,”
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2003.

[35] U. Feige and P. Raghavan, “Exact Analysis of Hot-Potato Routing,” Proceed-
ings of the Annual Symposium on Foundations of Computer Science, October
1992, pp. 553–562.

[36] E. Fleury and P. Fraigniaud, “A General Theory for Deadlock Avoid-
ance in Wormhole-Routed Networks,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 9, No. 7, July 1998, pp. 626–638.

[37] O.P. Gangwal, A. Rădulescu, K. Goossens, S. González Pestana and E. Rijp-
kema, “Building Predictable Systems on Chip: An Analysis of Guaranteed
Communication in the Æthereal Network on Chip,” in P. van der Stok

198 Chapter 5 ! Network and Transport Layers in NoCs

(editor), Dynamic and Robust Streaming in and Between Connected
Consumer-Electronics Devices, Vol. 3. Philips Research Book Series, Springer,
2005, Chapter 1, pp. 1–36.

[38] M. Gerla and L. Kleinrock, “Flow Control: A Comparative Survey,” IEEE
Transactions on Communications, Vol. COM-28, No. 4, 553–574, April 1980.

[39] R. Gindin, I. Cidon and I. Keidar, NoC architecture for future fpgas,
Department of EE, CCIT Report 579, Technion, March 2006.

[40] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing,” Interna-
tional Symposium on Computer Architecture, May 1992, pp. 278–287.

[41] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing,” Journal of
the ACM, Vol. 41, No. 5, September 1994, pp. 874–902.

[42] S. González Pestana, K. Goossens, A. Rădulescu and R. Thid. Framework
and performance metric definitions: A first step towards network-on-chip
benchmarking, Technical Note 2006/00003, Philips Research, January
2006.

[43] K. Goossens, J. Dielissen, O.P. Gangwal, S. González Pestana, A. Rădulescu
and E. Rijpkema, “A Design Flow for Application-Specific Networks on Chip
with Guaranteed Performance to Accelerate SOC Design and Verification,”
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE), March 2005, pp. 1182–1187.

[44] K. Goossens, J. Dielissen and A. Rădulescu, “The Æthereal Network on
Chip: Concepts, Architectures, and Implementations,” IEEE Design and
Test of Computers, Vol. 22, No. 5, September–October 2005, pp. 21–31.

[45] K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko, A. Rădulescu,
E. Rijpkema, E. Waterlander and P. Wielage, “Guaranteeing the quality of
Services in Networks on Chip,” In A. Jantsch and H. Tenhunen (editors),
Networks on Chip, Kluwer, 2003, Chapter 4, pp. 61–82.

[46] K. Goossens, O.P. Gangwal, J. Röver and A.P. Niranjan, “Interconnect and
Memory Organization in SOCs for Advanced Set-Top Boxes and TV – Evo-
lution, Analysis, and Trends,” In J. Nurmi, H. Tenhunen, J. Isoaho and
A. Jantsch (editors), Interconnect-Centric Design for Advanced SoC and NoC,
Kluwer, 2004, Chapter 15, pp. 399–423.

[47] K. Goossens, J. van Meerbergen, A. Peeters and P. Wielage, “Networks on
Silicon: Combining Best-Effort and Guaranteed Services, in Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition
(DATE), March 2002, pp. 423–425.

[48] A.G. Greenberg and N. Madras, “How Fair Is Fair Queueing,” Journal of the
ACM, 1992, pp. 568–598.

[49] P. Guerrier, Un Réseau D’Interconnexion pour Systémes Intégrés, Ph.D.
thesis, Université Paris VI, March 2000.

[50] P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip Packet-
Switched Interconnections,” Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2000, pp. 250–256.

[51] K.D. Günther. “Prevention of Deadlocks in Packet-Switched Data Transport
System,” IEEE Transactions on Communications, Vol. 29, April 1981, pp.
512–524.

[52] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, “Efficient
Link Capacity and QoS Design for Wormhole Network-on-Chip,” Proceed-
ings of the Design, Automation and Test in Europe Conference and Exhibition
(DATE), March 2005, pp. 9–14.

References 199

[53] A. Hansson, K. Goossens and A. Rădulescu, UMARS: A unified approach
to mapping and routing on a combined guaranteed service and best-
effort network-on-chip architecture, Technical Report 2005/00340, Philips
Research, April 2005.

[54] A. Hansson, K. Goossens and A. Rădulescu, “A Unified Approach to Con-
strained Mapping and Routing on Network-on-Chip Architectures,” Inter-
national Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), September 2005, pp. 75–80.

[55] A. Hansson, K. Goossens and A. Rădulescu, Analysis of message-dependent
deadlock in network-based systems on chip, Technical Report 2006/00230,
Philips Research, March 2006.

[56] M. Harmanci, N. Escudero, Y. Leblebici and P. Ienne, “Quantitative
Modelling and Comparison of Communication Schemes to Guarantee
Quality-of-Service in Networks-on-Chip,” Proceedings of the International
Symposium on Circuits and Systems (ISCAS), 2005, pp. 1782–1785.

[57] J. Hu and R. Marculescu, “Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC Architectures,” Pro-
ceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2003, pp. 688–693.

[58] J. Hu and R. Marculescu, “DyAD – Smart Routing for Networks on Chip,”
Proceedings of the Design Automation Conference (DAC), June 2004.

[59] J. Hu and R. Marculescu, “Energy- and Performance-Aware Mapping for
Regular NoC Architectures, IEEE Transactions on CAD of Integrated Circuits
and Systems, Vol. 24, No. 4, April 2005, pp. 551–562.

[60] P. Humblet, A. Bhargava and M.G. Hluchyj, “Ballot Theorems Applied
to the Transient analysis of nD/D/1 Queues,” IEEE/ACM Transactions on
Networking, 1993, Vol. 1, No. 1, pp. 81–95.

[61] A. Jalabert, S. Murali, L. Benini and G. De Micheli, “XpipesCompiler: A Tool
for Instantiating Application Specific Networks on Chip,” Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition (DATE),
2004.

[62] N. Kavaldjiev, G.J.M. Smit and P.G. Jansen, “A Virtual Channel Router
for On-Chip Networks,” Proceedings of the International SOC Conference
(SoCC), September 2004.

[63] H.T. Kung, T. Blackwell and A. Chapman, “Credit-Based Flow Control for
ATM Networks: Credit Update Protocol, Adaptive Credit Allocation and
Statistical Multiplexing.” SIGCOMM, 1994, pp. 101–114.

[64] A. Laffely, J. Liang, P. Jain, N. Weng, W. Burleson and R. Tessier, “Adaptive
Systems on a Chip (aSoC) for Low-Power Signal Processing, Proceedings of
the Asilomar Conference on Signals, Systems, and Computers, 2001.

[65] A.J. Laffely, An Interconnect-Centric Approach for Adapting Voltage and
Frequency in Heterogeneous System-on-a-Chip. Ph.D. thesis, University of
Massachusetts Amherst, 2003.

[66] K. Lee, S.-J. Lee and H.-J. Yoo, “A Distributed Crossbar Switch Sched-
uler for On-Chip Networks,” Proceedings of the Custom Integrated Circuits
Conference, 2003.

[67] K. Lee, S.-J. Lee and H.-J. Yoo, “A High-Speed and Lightweight On-Chip
Crossbar Switch Scheduler for On-Chip Interconnection Networks,” Pro-
ceedings of the International Conference on European Solid-State Circuits,
2003.

200 Chapter 5 ! Network and Transport Layers in NoCs

[68] C. Leiserson, “Fat-Trees: Universal Networks for Hardware-efficient super-
computing,” IEEE Transactions on Computers, October 1985, Vol. C-34, No.
10, pp. 892–901.

[69] D.H. Linder and J.C. Harden, “An adaptive and Fault Tolerant Wormhole
Routing Strategy for k-ary n-cubes,” IEEE Transactions on Computers, Vol.
40, No. 1, January 1991, pp. 2–12.

[70] A. Litman and S. Moran-Schein, “Fast, Minimal, and Oblivious Routing
Algorithms on the mesh with bounded Queues,” Journal of Interconnection
Networks, 2001, Vol. 2, No. 4, pp. 445–469.

[71] P. López, J.M. Martínez and J. Duato, “A Very Efficient Distributed Deadlock
Detection Mechanism for Wormhole Networks,” Proceedings of the Inter-
national Symposium on High-Performance Computer Architecture (HPCA),
February 1998, pp. 57–66.

[72] N.F. Maxemchuk, “Routing in the Manhattan Street Network,” IEEE Trans-
actions on Communication, Vol. COM-35, No. 2–3, May 1987, pp. 503–512.

[73] D.E. McDysan and D.L. Spohn, ATM: Theory and Application, McGraw-Hill,
Inc., New York, NY, USA, 1994.

[74] M. Millberg, E. Nilsson, R. Thid and A. Jantsch, “Guaranteed Bandwidth
Using Looped Containers in Temporally Disjoint Networks within the Nos-
trum Network on Chip,” Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2004.

[75] M. Millberg, E. Nilsson, R. Thid, S. Kumar and A. Jantsch, “The Nostrum
Backbone – a Communication Protocol Stack for Networks on Chip,” Pro-
ceedings of the International Conference on VLSI Design, 2004, pp. 693–696.

[76] P. Mohapatra, “Wormhole Routing Techniques for Directly Connected Mul-
ticomputer Systems.” ACM Computing Surveys, Vol. 30, No, 3, 1998, pp.
374–410.

[77] S. Murali, L. Benini and G. de Micheli, “Mapping and Physical Planning
of Networks on Chip Architectures with Quality of Service Guarantees,”
Proceedings of the Design Automation Conference, Asia and South Pacific
(ASPDAC), 2005.

[78] S. Murali, M. Coenen, A. Rădulescu, K. Goossens and G. De Micheli, “A
Methodology for Mapping Multiple Use-Cases on to Networks on Chip.
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE), March 2006, pp. 118–123.

[79] S. Murali and G. De Micheli, “SUNMAP: A Tool for Automatic Topology
Selection and Generation for NOCs,” Proceedings of the Design Automation
Conference (DAC), June 2003.

[80] L.M. Ni and P.K. McKinley, “A Survey of Wormhole Routing Techniques
in Direct Networks,” IEEE Computer, February 1993, Vol. 26, No. 2,
pp. 62–76.

[81] K. Nichols, S. Blake, F. Baker and D. Black. RFC 2474: Definition of the dif-
ferentiated services field (DS field) in the IPv4 and IPv6 headers, December
1998.

[82] E. Nilsson, M. Millberg, J. Öberg and A. Jantsch, “Load Distribution with
the Proximity Congestion Awareness in a Network on Chip,” Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2003.

[83] V. Nollet, T. Marescaux, P. Avasare, D. Verkest and J.-Y. Mignolet, Central-
ized Run-Time Resource Management in a Network-on-Chip Containing

References 201

Reconfigurable Hardware Tiles,” Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition (DATE), March 2005, pp. 234–239.

[84] V. Nollet, T. Marescaux and D. Verkest, “Operating-System Controlled Net-
work on Chip. Proceedings of the Design Automation Conference (DAC), June
2005, pp. 256–259.

[85] OCP International Partnership, Open Core Protocol Specification, 2001.
[86] U.Y. Ogras, J. Hu and R. Marculescu, “Key Research Problems in

NoC Design: A Holistic Perspective,” International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), September
2005.

[87] P. Pande, C. Grecu, Ivanov and R. Saleh, “Design of a Switch for Network on
Chip Applications,” Proceedings of the International Symposium on Circuits
and Systems (ISCAS), 2003.

[88] E. Rijpkema, K. Goossens, A. Rădulescu, J. Dielissen, J. van Meerbergen,
P. Wielage and E. Waterlander, “Trade Offs in the Design of a Router with
Both Guaranteed and Best-Effort Services for Networks on Chip,” IEE Pro-
ceedings: Computers and Digital Technique, September 2003, Vol. 150, No.
5, pp. 294–302.

[89] E. Rijpkema, K. Goossens and P. Wielage, “A Router Architecture for Net-
works on Silicon,” Proceedings of Progress 2001, 2nd Workshop on Embedded
Systems, Veldhoven, the Netherlands, October 2001.

[90] A. Rădulescu, J. Dielissen, S. González Pestana, O.P. Gangwal, E. Rijp-
kema, P. Wielage and K. Goossens, “An Efficient On-Chip Network Interface
Offering Guaranteed Services, Shared-Memory Abstraction, and Flexible
Network Programming,” IEEE Transactions on CAD of Integrated Circuits
and Systems, January 2005, Vol. 24, No. 1, pp. 4–17.

[91] A. Rădulescu and K. Goossens, “Communication Services for Networks
on Chip,” In S.S. Bhattacharyya, E.F. Deprettere and J. Teich (editors),
Domain-Specific Processors: Systems, Architectures, Modeling, and Simu-
lation, Marcel Dekker, 2004, pp. 193–213.

[92] I. Saastamoinen, M. Alho, J. Pirttimäki and J. Nurmi, “Proteo Interconnect
IPs for Networks-on-Chip,” In IP Based Design 2002, 2002.

[93] D. Seo, A. Ali, W.-T. Lim, N. Rafique and M. Thottethodi, “Near-Optimal
Worst-Case Throughput Routing for Two-Dimensional Mesh Networks,
International Symposium on Computer Architecture, 2005, pp. 432–443.

[94] L. Shang, L.-S. Peh and N.K. Jha, “Dynamic Voltage Scaling with Links
for Power Optimization of Interconnection Networks,” IEEE Computer
Society, HPCA ’03: Proceedings of the 9th International Symposium on
High-Performance Computer Architecture, Washington, DC, USA, 2003,
pp. 91.

[95] D. Shoemaker, An Optimized Hardware Architecture and Communication
Protocol for Scheduled Communication, Ph.D. thesis, Electrical Engineering
and Computer Science Department, Massachusetts Institute of Technology,
May 1997.

[96] V. Shurbanov, D. Avresky, P. Mehra and W. Watson, “Flow Control in Server-
net Clusters,” The Journal of Supercomputing, June 2002, Vol. 22, No. 2, pp.
161–173.

[97] Y.H. Song and T.M. Pinkston, “A Progressive Approach to Handling
Message-Dependent Deadlock in Parallel Computer Systems,” IEEE Trans-
actions on Parallel and Distributed Systems, 2003, Vol. 14, pp. 259–275.

202 Chapter 5 ! Network and Transport Layers in NoCs

[98] F. Steenhof, H. Duque, B. Nilsson, K. Goossens and R. Peset Llopis, “Net-
works on Chips for High-End Consumer-Electronics TV System Architec-
tures,” Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition (DATE), March 2006, pp. 148–153.

[99] P. Stravers and J. Hoogerbrugge, “Homogeneous Multiprocessing and the
Future of Silicon Design Paradigms,” In VLSI-TSA, 2001.

[100] A.S. Tanenbaum, Computer Networks, Prentice-Hall, 1996.
[101] J.W. van den Brand, C. Ciordaş and T. Basten, Runtime Networks-on-Chip

Performance Monitoring, Technical Report 2006/00218, Philips Research,
March 2006.

[102] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe and A. Agarwal,
“Baring It All to Software: Raw Machines,” IEEE Computer, September
1997, Vol. 30, No. 9. pp. 86–93.

[103] I.Z. Walter, Quality of Service in Network-on-Chip, Master’s thesis, Tech-
nion, Israel Institute of Technology, August 2005.

[104] W.-D. Weber, J. Chou, I. Swarbrick and D. Wingard, “A Quality-of-Service
Mechanism for Interconnection Networks in System-on-Chips. Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition
(DATE), March 2005.

[105] D. Wiklund, Development and Performance Evaluation of Networks on Chip,
Ph.D. thesis, Department of Electrical Engineering, Linköping University,
2005.

[106] P.T. Wolkotte, G.J. Smit, G.K. Rauwerda and L.T. Smit, “An Energy-
Efficient Reconfigurable Circuit Switched Network-on-Chip,” Proceedings
of the International Parallel and Distributed Processing Symposium (IPDPS),
April 2005.

[107] T.T. Ye, L. Benini and G. De Micheli, “Packetization and Routing Analysis of
On-Chip Multiprocessor Networks,” Journal of Systems Architecture, Febru-
ary 2004, Vol. 50, No. 2–3, pp. 81–104. Special issue on Networks on Chip.

[108] H. Zhang, “Service Disciplines for Guaranteed Performance Service in
Packet-Switching Networks,” Proceedings of the IEEE, October 1995, Vol.
83, No. 10, pp. 1374–1396.

[109] H. Zhang and D. Ferrari, “Rate-Controlled Static-Priority Queueing. Pro-
ceedings of the Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), 1993, pp. 227–236.

