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Abstract— Networks-on-chip (NoCs) are a scalable intercon-
nect solution to large scale multiprocessor systems on chip and
are rapidly becoming reality. As the ratio of embedded cores
per I/O pin increases, the run-time observability becomes a
bottleneck. Run-time NoC monitoring can alleviate this problem.
As NoCs are the result of sophisticated synthesis design flows,
monitoring must be taken into account during this process. We
present several scalable alternatives for NoC monitoring. The
alternatives vary from using physically separated interconnects
for user data and monitoring data, to a completely shared single
interconnect. For each alternative we evaluate area cost, required
design flow modifications, non-intrusiveness and reusability of
monitoring resources for application communication traffic. An
interesting trade-off is presented showing that what is area
efficient requires efforts in modifying the NoC design flow and
in achieving non-intrusiveness. All the experiments are done in
the context of the Æthereal NoC and design flow.

I. INTRODUCTION

Problem Description. Recent technological advances have
increased the potential scale and complexity of future designs.
This has led the designer’s way to multiprocessor Systems-on-
Chip (SoCs). Future designs of such large-scale chips need to
be structured. Networks-on-Chip (NoCs) [1]–[6] have emerged
as a scalable, future-proof SoC interconnect. They enable IP
reuse and structuring of the design process by decoupling
computation from communication and offering well defined
interfaces.

As the complexity of each new SoC generation increases,
the number of embedded cores and added functionality and
features increases as well. With this added complexity getting
the full design to work properly is increasingly difficult, re-
quiring better system-level debug solutions. These in turn rely
on run-time observability and controllability of the system. As
current SoCs are incorporating more programmable cores, the
controllability increases. The observability of such complex
SoCs becomes a bottleneck as the ratio between the number
of deeply embedded cores and I/O pins increases.

System level observability solutions must include on-chip
instrumentation modules that support the entire system of
interest, the computation and the communication part. Such
instrumentation modules are common for computation, e.g. at
the core level [7], and for bus-based communication [8]. As the
SoC world is moving towards NoCs, inter-IP communication
will be able to use multiple truly parallel communication paths,
as opposed to centralized bus communication in current SoCs.
While a central bus monitor like [8] is enough for bus-based
systems, multiple monitoring probes are required in NoC-
based SoCs [9] to keep up with the communication parallelism.
Supporting NoC observability in future systems is a must.

The necessity of multiple probes leads to the problem
of their interconnection. Interconnecting the chip-wide dis-
tributed monitoring probes poses a significant challenge. Any
such interconnect must be scalable, non-intrusive (which is a
key aspect in debugging, one of the main run-time monitoring
drivers), run-time usable and configurable, and of minimum
area cost. As NoCs are a scalable interconnect they appear
naturally fit for the task [9]. Options like sharing or not sharing
a single interconnect for functional and monitoring traffic are
key to monitoring system design. However, NoCs are the result
of sophisticated NoC synthesis design flows. Some monitoring
probe communication requirements are not known beforehand,
but only after the NoC to be probed has been designed, or at
least some steps in the NoC design flow have been performed.
For example, some requirements may be known only after
topology generation (such as the number of routers employed
in the NoC, which is relevant if all routers need to be probed),
other after the mapping or path selection. In this case the
monitoring problem must be solved within or at least coupled
with the NoC design process having an impact on the overall
NoC design flow.

Related Work. There has been a lot of work towards
run-time observability and towards NoCs, but little on the
combination of the two. ARM’s Coresight [10] technology
combines ETMs [7] for ARM cores, with the AHB Trace
Macrocell which gives visibility on AMBA AHB busses. First
Silicon’s on-chip instrumentation technology (OCI), provides
on-chip logic analyzers [8] for AMBA AHB, OCP, and Sonics
SiliconBackplane bus systems. These allow the user to run-
time capture bus activity, and in a multi-core embedded debug
system [11] they can be combined with in-system analyzers
for cores, e.g. for MIPS cores. Although state-of-the-art, both
solutions are not able to cope with a NoC-based SoC. The
test and verification implications of using NoCs have been
inventoried in [12]. Currently, in the NoC research community,
focus is on the design [2], [4], [5], [13]–[15], analysis [16],
[17] and use [18], [19] of NoCs. [9] proposes a generic NoC
monitoring service (NoCMS) consisting of hardware probes
attached to NoC components, routers and network interfaces
(NIs). It assumes that the probes connect to the NoC NIs and
use the existing physical NoC for monitoring data transport.

Contribution. This paper presents several monitoring al-
ternatives. These are independent of any specific NoCs. All
options are based on the reuse of NoC components and
(parts of) the NoC design flow. As all are based on a NoC
interconnect, they are all scalable solutions. For each of the
proposed solutions, we explain the main concepts and the



architectural details. We evaluate all the proposed solutions
with respect to four aspects: (1) impact on the overall NoC
design flow, (2) non-intrusiveness, (3) area cost and (4) reuse
potential of debug resources. All our options are proven and
exemplified with the Æthereal NoC and design flow.

II. NOC MONITORING SERVICE AND ÆTHEREAL NOC
The Æthereal NoC [3], [15] runs at 500 MHz and offers a

raw link bandwidth of 2GB/s in a 0.13µm CMOS technology.
Æthereal offers transport-layer communication services to IPs,
in the form of connections, comprising best-effort (BE) and
guaranteed-throughput (GT) services. Guarantees are obtained
by means of TDMA slot reservations in NIs. Æthereal NoC
instances are reconfigurable at run-time.

The NoCMS [9] consists of hardware probes (Ps in Figure
1) attached to NoC components, routers and NIs. The generic
probe architecture includes a sniffer for data gathering from
the NoC components, an event generator for processing of
this data, and a monitoring network interface to send the
monitoring data to a NoC external device, the monitoring
service access point (MSA). This is done via the NoC by
means of GT connections. Specialized monitoring probes may
be integrated in the NoCMS, e.g. probes able to trace data flits
in the NoC at run-time, or able to follow data traffic to compute
averages and statistics of it. The NoCMS also provides support
for the chip-wide monitoring system by offering the option
of integrating third party probes (monitoring IPs) like ARMs
ETM probe [7] for the ARM processors. Adding a NoCMS to
an existing NoC means: (1) adding the probes (the number of
probes may depend on the NoC topology, mapping of cores to
NIs, number of NIs connected to routers), (2) adding one MSA
assuming a centralized monitoring system and (3) connecting
the probes to the MSA for the purpose of data transport and
run-time configuration.

III. MONITORING INTERCONNECT OPTIONS

In this section we consider and explore three monitoring
platform options:
(A) Separate Physical Interconnect for the original NoC ap-

plication and the NoCMS
(B) Common Physical Interconnect but Separate Physical

NoC Resources
(C) Common Physical Interconnect and Shared Physical NoC

Resources
All these three options are supported in the Æthereal design

flow. As a reference example we have chosen an MPEG
codec with a 2x3 mesh NoC interconnect [15]. The area cost
of the NoC interconnect is 2.35mm2. In the following, for
each option, we explain the concepts, the impact on the NoC
design flow, the non-intrusiveness aspect, the reuse potential
of debug resources for application traffic, and the interconnect
area cost, not including the area of the probes which is the
same in all cases. Each of the options is compared to the
original NoC, called user NoC in the remainder, shown in
Figure 1(a). The typical NoC design flow [13], [15], [19] is
normally split in four steps as shown in Figure 2(a): topology
selection, mapping, path selection and slot allocation. Each
step adheres to the decisions taken in the previous steps. As
prerequisites for NoC design, communication requirements

must be derived, and the set of IPs to be connected to the NoC
must be specified. In the topology selection step, the router
network together with the bordering NIs are generated, based
on the previously derived communication requirements. Using
this topology together with the IP specification, the binding of
IP ports to NI ports is done in the mapping step. In the path
selection step, paths are allocated for all the communication
flows specified, and in the slot allocation step each of the
flows gets its own TDMA time slots for the traversed NoC
links. Some design flows may omit or combine various steps.

A. Separate Physical Interconnect

In this case a separate physical interconnect is chosen
for monitoring. Although any interconnect may be used, we
have chosen to use a NoC, the monitoring NoC, because
it is scalable. Figure 1(b) show the resulting system. The
monitoring NoC is used for transporting the monitoring data
from probes to the MSA and for monitoring configuration
traffic from MSA to the probes. The monitoring NoC can
be similar in topology with the user NoC interconnect. For
simplicity, we only show a fully probed NoC in Figure 1(b),
with probes attached to all routers. A more advanced, selective
NoC probe placement at routers is possible, e.g. ensuring a
coverage of all NoC physical links. In the remainder only a
fully probed NoC is assumed as well. For each of the probed
routers we add a new router and an NI. The NI is used by
the probe to connect to the monitoring NoC. Please note that
probes can be attached also to NIs or IPs in the system,
in which case these will connect to the monitoring router
corresponding to the user router these NIs or IPs connect to in
the user NoC. Each of the probes and the MSA connect to the
monitoring NoC through a separate NI. Optionally, taking into
account the monitoring requirements driven e.g. by debugging,
some of the monitoring NoC links (in between routers) may
be removed, as long as each probe can still connect to the
MSA.

Design Flow Impact: During the NoC design process, the
NoC design flow is applied twice: (1) for the user NoC,
taking into account the user communication requirements as
shown in Figure 2(a), (2) for the monitoring NoC, taking
into account the monitoring communication requirements as
shown in Figure 2(b). Dimensioning of the monitoring com-
munication requirements and of the number of debug IPs (e.g.
router probes) required, which are dependent on the user NoC
topology, mapping, and path selection, is simple as all these
aspects for the user NoC are not influenced in any way by
the monitoring system and done beforehand. While applying
the NoC design flow for the monitoring NoC, topology is
already given by the original NoC, and mapping is given by the
probe placement in the original NoC, as previously explained.
Therefore only the path selection and slot allocation have to
be done for the monitoring NoC.

Non-intrusiveness: This solution is non-intrusive because
only the monitoring NoC is used for transporting the monitor-
ing data. No interference between monitoring NoC and user
NoC is possible, because they are physically disjoint.

Area cost: A total NoC area cost of 3.82mm2 (2.35mm2

original + 1.47mm2 extra) was determined based on the
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Fig. 1. Monitoring Transport Options
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addition of 7 NIs for the 6 probes and one MSA, and of 6
routers.

Reuse: No reuse potential due to complete separation of
monitoring and user NoCs.

B. Common Physical Interconnect but Separate Physical NoC
Resources

An alternative monitoring option is to have within the user
NoC a separate monitoring subnetwork. No new routers are
added, but following the NoC topology, separate links and their
corresponding router ports are added to the existing NoC. Each
probe and the MSA gets its own NI to connect to the NoC.
This is visually depicted in Figure 1(c).

Design Flow Impact: During the NoC design process the
NoC design flow is applied twice: Considering the user
requirements, the user NoC is obtained, by going through
the NoC design flow. In this way, the topology, mapping,
path selection and slot allocation are computed for the user
NoC as shown in the reference design flow of Figure 2(a).
At the second run of the design flow, as shown in Figure
2(c), the debug communication requirements and the required
debug IPs, e.g. one probe for every router in the original
NoC, are derived. This is done based on the user NoC
topology. The user NoC is then extended with the monitoring
resources, router links. In the path selection and slot allocation
steps, the newly added router links are only scheduled for
the monitoring traffic. Optionally, taking into account the
monitoring requirements, driven e.g. by debugging, some of
the monitoring router ports and links may be removed from the

monitoring subnetwork, as long as each probe can still connect
to the MSA. Dimensioning of the monitoring communication
requirements which are dependent on the user NoC topology,
mapping, or path selection is simple as the user NoC path
selection and scheduling is not influenced in any way and
done beforehand.

Non-intrusiveness: This solution is non-intrusive as only the
monitoring subnetwork consisting of dedicated links is used
for transporting the monitoring data. Although the routers are
shared, the set of user links and the set of monitoring links are
disjoint. No interference between the monitoring subnetwork
and the user subnetwork is therefore possible. Existing user
NoC scheduling in the original NoC (Figure 1(a)) is kept also
in the new NoC (Figure 1(c)).

Area cost: This solution has a high NoC area cost: 3.88mm2

(2.35mm2 original NoC + 1.53mm2 extra). This was due to
increasing the arity of all six routers, e.g from 3 to 6, and the
addition of 7 separate NIs, from which 6 for the probes and
one for the MSA.

Reuse: One advantage is that after debugging, some debug
communication resources (the set of monitoring links) can be
used partially or totally for functional user traffic.

Disadvantage: One potential disadvantage of this solution
is that the routers are limited to a maximum number of ports.

C. Common Physical Interconnect and Shared Physical NoC
Resources

A third possibility is to use the existing user NoC for the
user traffic and also for the monitoring traffic. Both would



share all the NoC resources but we keep the NoC user traffic
and the monitoring traffic separated. In this way a virtual NoC
for monitoring is created.

Design Flow Impact: Considering the user requirements, the
user NoC is obtained, by going through the reference NoC
design flow from Figure 2(a). In this way the topology and
mapping are computed. After this, the monitoring communi-
cation requirements and debug IPs are computed and probes
are added to the design. Figure 1(d) shows that probes are
connected to the existing NoC by means of an extra port on the
existing user NIs, as opposed to separate NIs for monitoring
in the previous two cases. All the links, NI and router links,
are considered shared between the user and the monitoring
traffic. The mapping of the probes to existing NIs is based
on the closest available NI. Path selection and slot allocation
is computed together for all the communication requirements:
user and monitoring. There are two possible cases:

(1) Everything fits on the existing user NoC. This means that
the user NoC can accommodate the monitoring communica-
tion requirements on top of the existing user communication
requirements. Topology of the NoC will therefore not change.
This is exactly the situation shown in Figure 1(d). In this case,
we have the lowest area cost, as no new NoC components,
routers and NIs for monitoring, are added, except the new NI
ports to connect the probes to the NoC.

(2) It does not fit on the existing user NoC. In this case, a
new NoC must be generated, e.g. by increasing the topology
and repeating the process. By increasing the topology, the
number of user NoC routers increases and in turn the number
of required monitoring probes may increase as well (e.g. if
probing all routers is required). This leads to the recomputing
of the monitoring communication requirements and monitor-
ing IPs as shown in Figure 2(d). However, this process may
not converge, i.e. a solution may not be found.

Non-intrusiveness: By sharing NoC resources, non-
intrusiveness is potentially not guaranteed and must be en-
forced. The monitoring traffic can in this case interfere with
the user traffic. For our Æthereal examples this was not needed
because we use GT for both functional and monitoring traffic
and they cannot interfere. However, in general extra steps may
be required in order to enforce the non-intrusiveness.

Area cost: The total NoC area cost for our example is
2.75mm2 (2.35mm2 original + 0.4mm2 extra). This was based
on the addition of 7 network interface ports, 6 for connecting
the probes and 1 for the MSA. The added monitoring traffic
fits in the original network.

Reuse: After debugging, the debug communication re-
sources can be used for functional user traffic, e.g. by BE
traffic.

A brief overview, summarizing the advantages and disad-
vantages, of each of the proposed solutions is shown in Table
I. A, B and C are the solutions proposed in the Sections III-A,
III-B and III-C respectively.

The table shows that having separate NoCs or NoC re-
sources just for monitoring, as A and B, is both non-intrusive
and basically straightforward in the NoC design flow; however
it shows a high area cost in both cases. Having shared
resources for user traffic as well as for monitoring traffic is

TABLE I
COMPARISON

A B C
Design Flow ++ + -

Non-intrusiveness + + +/-
Area Cost - - +

Reuse after debugging - + +

a good idea area-wise but may have strong implications on
both the NoC design flow and the non-intrusiveness. However,
both of these can be alleviated, as previously explained.
Furthermore, it enables reuse of the shared resources by the
functional traffic after the debugging is done.

IV. CONCLUSION

We have presented three architectural options for a NoC
monitoring service supporting a chip-wide monitoring system.
All options are generic and can be applied to any NoC. Each
of the presented options is NoC-based and scalable. Non-
intrusiveness, influences on the overall NoC design flow, area,
and reuse potential are evaluated for all these options. An
interesting trade-off is presented showing that what is good
for area and reusability requires efforts in modifying the NoC
design flow and in preserving the non-intrusiveness of the
monitoring system.
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