
Wrapper Design for the Reuse of Networks-on-Chip
as Test Access Mechanism

Alexandre M. Amory2 Kees Goossens1 Erik Jan Marinissen1

Marcelo Lubaszewski2 Fernando Moraes3

1 Philips Research Laboratories
IC Design

Prof. Holstlaan 4
5656 AA Eindhoven, The Netherlands

{kees.goossens, erik.jan.marinissen}@philips.com

2 Federal University of RGS – UFRGS
Instituto de Inforḿatica

Av. Bento Gonçalves, 9500
Porto Alegre, RS, Brazil

amamory@inf.ufrgs.br, luba@ece.ufrgs.br

3 Catholic University – PUCRS
Faculdade de Inforḿatica

Av. Ipiranga, 6681
Porto Alegre, RS, Brazil

moraes@inf.pucrs.br

Abstract

This paper proposes a wrapper design for interconnects with
guaranteed bandwidth and latency services and on-chip protocol.
We demonstrate that these interconnects abstract the interconnect
details and provide predictability in the data transfer, which are
desirable not only for the functional domain but also for the test
application. The proposed wrapper is implemented in VHDL and
integrated to the Æthereal NoC. The results show the impact of of
bandwidth in the core test time. The wrapper area and core test
time are compared with a wrapper design for dedicated TAM.1

1 Introduction

The increasing complexity of Systems-on-Chip (SoCs) poses
challenges to testing for manufacturing defects [10].Modular test-
ing, i.e. testing individual SoC modules as stand-alone units, ef-
fectively addresses most of these challenges. Non-logic modules
such as embedded analog and memories, as well as black-box or
encrypted third-party cores require modular testing. In addition,
modular testing provides an attractive “divide-and-conquer” test
development approach and allows for test reuse. Modular test-
ing is enabled by on-chip hardware such as test wrappers and a
Test Access Mechanism (TAM) [10]. The design of wrappers and
TAMs has a large impact on the test application time and other
test-related costs of the SoC. Several design and optimization pro-
cedures have been proposed [6, 4].

As SoCs grow in complexity, functional interconnects for SoCs
have evolved from a single buses, to multiple hierarchical buses,
and recently to networks-on-chip (NoC) [1]. Each new generation
of functional interconnect has more bandwidth, scalability, modu-
larity, and communication services. With such features, the reuse
of this infrastructure as TAM seems to be straightforward, how-
ever,compatibilitywith the existing tools, standards, and design

1This work was partially supported by CAPES and CNPq-PNM, under
scholarship grant 2371/04-9 and 141993/2002-2, respectively.

methods; and ageneral test approachthat fits to a large number of
functional interconnects are the major challanges.

This paper presents awrapper designfor the reuse of a func-
tional interconnect with support toguaranteed services and on-
chip protocolas a TAM. The proposed wrapper does the required
conversions between functional and test protocols. The wrapper
is implemented in VHDL, integrated to the Æthereal NoC [9], and
results for test time and area overhead are presented. The novelties
presented in this paper are: (i) the proposed wrapper, rather than
the core which is in test mode, plays the protocol between the core
and the functional interconnect to keep the test data flow; (ii) we
demonstrate the use and benefits of interconnects with guaranteed
bandwidth and latency services for test.

This paper is organized as follows. Section 2 compares the
previous papers. Section 3 presents the basic background, moti-
vation, and advantages of our approach. Section 4 and 5 show
the template for both the core and wrapper, respectively. Section 6
demonstrates an operational wrapper examples integrated to the
Æthereal NoC. Section 7 concludes the paper.

2 Prior Work

There are papers proposing the reuse of different functional in-
terconnects, such as, directly connected wires, buses, and NoCs.
However, this paper focus on the reuse of NoCs for test because it
has the required properties to deal with the future complex SoCs,
e.g. scalability, bandwidth, low power, abstraction, among others.
In addition, different from other interconnects,NoCs support mul-
tiple simultaneous transactions, which is important to allow paral-
lel test and sending data in and out of the CUT simultaneously.

Cota et al. [3] propose preemptive test scheduling, where the
test of a core can be interrupted if there is no free path between the
source to CUT or CUT to sink. A test packet can also take differ-
ent paths depending on their availability, but the shortest available
is selected. The drawbacks are that preemptive test may reduce
the parallelism between scan-in and scan-out, and clock gating is
required to halt the test when there is no data. Liu et al. [5] pro-

8

interconnect
network

port

com
m

.
services

functional interconnect

port

com
m

.
services

wrapper

CUTCUT

converter

Figure 1. System model for the reuse of func-
tional interconnect for test.

posed non-preemptive testing. A single path from source to CUT
and from CUT to sink is established in the beginning of the test
and the test packets are sent one after the other on this dedicated
path. Although this approach preserves the scan-in and scan-out
pipeline, it does not guarantee that there will be a new test data in
each clock cycle. For example, there are some clock cycles that are
used to pack/unpack data, and also some clock cycles to execute
the functional protocol. The exact timing depends on the packet
format, that may be different in each design. Then, the clock gat-
ing or holdable scan cells must be used.

Despite all the advantages of NoCs for both the functional and
test domains, a NoC is more complex than a dedicated TAM. A
common aspect to all the previous approaches is the large amount
of NoC implementation details required for the test model. All
kind of functional implementation details (e.g. used arbitration al-
gorithm), temporal details (e.g. time to route a packet), and organi-
zational details (e.g. network topology) are required, in addition to
a cycle-accurate scheduling used to determine the available paths
between the test source, CUT and test sink. This amount of imple-
mentation details requires major efforts to adapt the test model to
different NoCs. Thus,interconnect abstraction, which is the key
challenge for adoption of test reuse approaches, is not fulfilled.

3 System Model

Figure 1 illustrates the overall environment and its main com-
ponents: the tester, the CUT, the functional interconnect, a con-
verter around the tester interface, and a wrapper around the CUT
interface.

The first component in Figure 1 is thetester. Testers are built
to assert and evaluate signals in a timing accurate manner. A tester
works in acontinuous streamingmode, which means that once the
test starts, it is not interrupted until its end. Considering other type
of communication is not realistic.

The second component in Figure 1 is acore in scan-based test
mode. The core, like the tester, also requires continuous test data
streaming, where the internal scan chains are continuously fed
with new test data every clock cycle until the end of its test. On
the other hand, it is possible to modify the wrapper design in order
to support temporally stalling of the test. This kind of test is called
preemptive test. Preemptive test may be useful to support dividing
the test of a core in several pieces in order to better fit in the chip-
level test scheduling. However, preemptive test requires logic to
halt the test while there is no test data. The usual approach is to
implement clock gating, but it interferes in the clock tree design.
The second approach is to implement hold state to all scan cells
of a core. This option increases the area overhead due to the ad-
ditional multiplexers required for each scan cell to hold its current
value. Moreover, it is impossible to modify the scan cell design
for hard and encrypted cores. In addition, every time the test of

5

Addr[]

BusrtSize[]

Cmd[]

CmdAccept

DataValid

DataAccept

Data[]

RespAccept

RespValid

RespData[]

w

A

r

0 5

C

1 2

3

6 7

8

B

4 5

2 1

Figure 2. Functionality of a DTL-like port.
a core is interrupted in a preemptive test, the parallelism between
the scan-in and scan-out of test patterns is lost, increasing the core
test time. This paper uses non-preemptive test, and preserve the
continuous test data streaming nature of the test application.

The third component in Figure 1 is thefunctional interconnect.
The interconnect model includes standard ports implementing on-
chip protocols and guaranteed services. Anon-chip protocol, e.g.
DTL [8], standardizes the interface between cores and the inter-
connect. Interconnects with support toguaranteed servicespro-
vide data transfer which respects the pre-defined communication
requirements of the core, such as bandwidth, latency, and jitter.
Thus, no matter how the interconnect is implemented, the pre-
defined attributes of a given data transfer is respected, abstracting
the interconenct implementation [7]. Guaranteed services are used
on Internet for applications that requires quality of service [7]. Re-
cently, guaranteed services are been implemented on NoCs to deal
with real-time applications [9, 2]. These services assure that the
target core in the communication can receive a certain amount of
data in a fixed time interval providing predictability for the data
transfers.

Theconverter around the tester interfaceperforms a parallel-
to-serial convertion to match the number of functional data termi-
nals from the interconnect with the number of test terminals from
the tester. A serial-to-parallel conversion is required for the output
part.

We claim that the presented interconnect model is not only use-
ful for the functional domain to enable a compositional and mod-
ular chip design, but also for the test domain, to enable a general
reuse approach since it abstracts the interconect and provides pre-
dictability for the data transfer. It is important to realize that these
features that our model rely on were defined for the functional do-
main. We propose the reuse of this kind of interconnect for test,
and we present a wrapper design for it.

4 Core Model

Cores are connected to interconnect using standardized pro-
tocols. This paper proposes a new core terminals classification,
which takes the protocols into account. When considering reuse
of functional interconnect for test, it is important to know the role
of each terminal used to connect the core to the interconnect.

Figure 2 illustrates the functionality of a DTL-like port and its
protocol. The main principles can be applied to other protocols.

Event 1 in Figure 2 represents the request of a write command
to send two words, which is accepted in the next clock cycle, dur-

ing the event 2. The first word is sent during the event 3, when the
data valid is high. In event 4 the target does not accept the second
word, but it is accepted in event 5. The read command works in a
similar way.

Definition 1 formally defines a port for test purpose, classifying
the port terminals as control or data. Thedata terminalsDI and
DO are those terminals of a port that transport actual data. A port
may have data input terminals, output or both, but there must be
terminals classified as data terminals. The sets ofcontrol terminals
CI andCO are the terminals which actually implement the con-
trol protocol signaling. Typically, the minimal number of control
terminals in a port is a pair of terminals to implement handshake
(e.g. valid and accept terminals), but there may be other termi-
nals used, for example, to identify the end of a data transfer, to
do error signaling, among others. Themaximal data ratesbin

max

andbout
max represent the maximal sustainable data rate that can be

assigned to a port in functional mode. These values are defined
by the functional application or system specification. Taking the
port illustrated in Figure 2 as example. The signalsAddr, Burst-
Size, Cmd, DataValid, andrespAcceptare classified asCO; Cm-
dAccept, DataAccept, andRespValidare classified asCI; Dataas
DO, andRespDataasDI.

Definition 1 [Port].

• setDI of data input terminalsand a setDO of data output
terminals, such thatDI ∪ DO 6= ∅;

• setCI of control input terminals;
• setCO of control output terminals;
• theport maximal input data ratebin

max, expressed in bytes/s;
• the port maximal output data ratebout

max, expressed in
bytes/s;

�

A core may have a set of ports connected to the functional
interconnect. The core may also have other terminals connected
elsewhere, e.g. chip pins, rather than the functional interconnect.
Definition 2 classifies a complete core for test considering these
issues.

Definition 2 [Core].

• setFI of functional input terminals;
• setFO of functional output terminals;
• setSI of scan input terminals;
• setSO of scan output terminals;
• set S of scan chains, where for eachs ∈ S its length is

denoted byl(s);
• setP of ports;
• thesystem test frequencyf , expressed in Hz.

�

The functional terminalsFI andFO consist of those termi-
nals not connected to the interconnect. The functional terminals
can also consist of ports connected to the interconnect, but are not
used for test. Thescan terminalsSI andSO consist of termi-
nals used to connect the wrapper cells to the set of internal scan
chainsS. The set ofports used for testP is defined according to
Definition 1.

12

CUT

WRAPPER

FI FO

CI1

D
I 1

S1

S0

port1

po
rt

(in
pu

t p
ar

t)

D
O

1

CO1 port (output part)

SI SO

(b) proposed wrapper cell (c) standard wrapper cell

scan_in
scan_out

func_in
func_out

shift normal_mode

clock

scan_in
scan_out

func_in

shift
normal_mode

clock

prot_mode
prot_in

func_out

test
wires

test control
& protocol

(a) wrapper

Figure 3. Wrapper model.

5 Wrapper Model

Figure 3 presents the proposed wrapper model for interconnect
reuse. It has three main parts: test wires, wrapper cells, and control
part. The wrapper also has the CUT specified as in Definition 2.
We are assuming that the core may be a hard-core or encrypted
core, and no modifications are allowed on it. Figure 3 has one
port (port1) and its terminals are classified in the setsCI1, DI1,
CO1, DO1 terminals. More ports are allowed; then, theportn

would have the setsCIn, DIn, COn, DOn terminals. The sets
FI, FO, SI, andSO are unique for the whole core. The wrapper
cells are connected by test wires. The control and protocol signals
are generated in the control logic. Each core port is connected to
one interconnect port. The interconnect port is split in the input
and output parts to ease the figure.

5.1 Wrapper Cells

All functional terminals of a core require wrapper cells. The
terminals classified asDI, DO, andCI use the standard wrap-
per cell illustrated in Figure 3(c) (theCI terminals use the stan-
dard cell because, as they are inputs for the wrapper, the wrapper
does not control these signals). The terminals classified asCO
use the proposed wrapper cell shown in Figure 3(b). Both cells
have functional/scan input/output terminals as well as control ter-
minals to operate the muxes. The proposed cell has an additional
multiplexer. The terminalprot in receives from the control logic
the required value to play the protocol (the actual protocol is im-
plemented in the control logic, Section 5.3, not in the wrapper
cell). During test mode, the terminalprot modeis asserted to ’1’
to assure that test signaling does not interfere with the functional
protocol.

11

DI CI and FI DOCO and FOinternal scan chains

Figure 4. Ordering of test wires elements.

5.2 Defining the Test Wires

We definetest wires, illustrated in Figure 3(a) in dotted lines,
as those used to connect the wrapper cells and internal scan chains.
A wrapper must have at least one test wire. In general, the more
test wires a wrapper has, the shorter is the test time. The order of
elements in a test wires, illustrated in Figure 4, must be first one or
more wrapper cells connected to data input terminals. Secondly,
all the remaining input wrapper cells. Third, zero or more inter-
nal scan chains. Then, all output wrapper cells, such that the last
elements are connected to data terminals. This order enables the
scan-in and scan-out pipelining effect to reduce the core test time
(goal i).

The complete specification of test wires is done in three steps:
defining the number of test wires, defining the number of data ter-
minals per test wire, and balancing the scan-in and scan-out.

5.2.1 defining the maximal number of test wires

The number oftest wirestw is defined in Equation 1. It refers to
the maximal number of test wires a core can have considering the
maximal bandwidth for data input and data output.bin

max andbout
max

are, respectively, the maximal input bandwidth and the maximal
output bandwidth, expressed in bytes/s, that can be assigned to
the port. The factor 8 is used since the bandwidth is expressed in
bytes/s. f is the test frequency. The floors are required to have
discrete number of test wires. In addition, equal number of test
wires for scan-in and scan-out is required for test, then the minimal
is used.

tw = min(b bin
max × 8

f
c, b bout

max × 8

f
c) (1)

5.2.2 number of data terminals per test wire

We define thenumber of data terminals per test wirefor data in-
put and output in Equations 2 and 3 respectively. Equal number
of data terminals is important to do a serial-to-parallel conversion
of di wires totw wires without corruptingtw. For example, con-
sider |DI| = 32 andtw = 2. Then, each of the two test wires
would have 16 data input terminals. On the other hand, if this con-
straint were not applied, it would be possible to have one test wires
with 20 input data terminals, and the other with 12 data terminals.
Problems would arise during the parallel-to-serial conversion. Ei-
ther the second test wire would have eight bits corrupting the test
every word read from the interconnect, or the first test wire would
have eight unused bits. There is a second issue regarding this con-
straint. Consider, for example,|DI| = 32 andtw = 3. Then, the
three test wires would have ten data input terminals. The data in
two of the |DI| terminals would be ignored. This constraint, as
demonstrated in Section 6.3, may imply in a slight increase of test
time compared to a standard test wrapper. Analogously, there is a
parallel-to-serial conversion to send responses to the interconnect.

di = b |DI|
tw

c (2)

do = b |DO|
tw

c (3)

From the interconnect point of view, the number of data ter-
minalsdi anddo means the period data is read or sent. Everydi
clock cycles a word is read from the interconnect; meanwhile, this
word is shifted into the wrapper cells. The interconnect must be
able to provide data in these intervals. A violation in the data re-
quest would corrupt the test wires. The guaranteed service plays
an important role for test since it assures periodicity. Previous
reuse approaches were not based on guaranteed service, thus, they
needed to assure periodicity by means of a complex cycle-accurate
model of the interconnect. The reuse of interconnect with support
to guaranteed service enables the creation of a simpler wrapper;
just simple parallel-to-serial and serial-to-parallel converters are
required.

5.2.3 balancing the scan-in and scan-out

This step distributes the core internal scan chains and wrapper cells
(except those related to the data terminals, which were already
defined) among the test wires in order to minimize the core test
time. The test timeT is defined as

T = {1 + max(si, so)} × p + min(si, so)} (4)

wherep denotes the number of test patterns, andsi and so

denote respectively the scan-in and scan-out time for a core.
Since the number of test patterns is fixed, in order to reduce

the test time, the maximal scan-in and scan-out time should be re-
duced. Algorithms like LPT [6] have been proposed to minimize
the core test time by balancing test wires. The same algorithm
can be used in our approach, but a modification is required to sup-
port the constraint related to the equal number of data terminals
per test wire. Due to this constraint, the resultingmax(si, so) of
the proposed approach may be slightly bigger then the one used in
wrappers with dedicated TAMs. Examples are presented in Sec-
tion 6.3.
5.3 Wrapper Control and Protocol

When the core is in test mode, it cannot play the protocol with
the interconnect to keep the data flowing. In the proposed ap-
proach, a subset of the protocol is implemented in the wrapper.

All the CO terminals require a protocol signal. However, the
large majority of theCO terminals requires only a hard coded ’0’
or ’1’. For a few terminals, it is necessary to change its value
during the test application. For these terminals a small finite state
machine have to be implemented. The exact logic to be imple-
mented depends on the protocol used, and the role of the terminal
in the protocol.

Let us take the port illustrated in Figure 2 as an example. Let us
consider that this port is used to send test responses. In this way,
the responses are sent via terminalData; the terminalsRespData
and Addr are not relevant, hence they are tied to zero; theCO
terminalBurstSizemust be assigned with the number of words to
be transfer in each burst; TheCO terminalsDataValid andCmd
require a FSM.DataValid must be asserted high everydi clock

15

CUTCUT

Æthereal
NoC RR

NI
002
NI
002

NI
003
NI
003

P2

sinksinkP1

NI
000
NI
000

NI
001
NI
001

sourcesourceP1

P1

DTL

DTL

wrapper

Figure 5. Target system.
cycles to send a new word; theCO terminal Cmd must be as-
serted high when the number of words specified inBurstSizewere
sent. The FSM required to these two terminals is simple, around
6 states, and depends only on two internal counters, a counter to
count thedi clock cycles and a counter to count the number of
words of the burst.

Once the wrapper is completely specified, the requireddeliv-
erablesfor the system integration are the wrapper itself and the
bandwidth the interconnect should deliver to the port during the
core test. Theactual bandwidthassigned for test,bin

act andbout
act

(bytes/s), is defined in Equation 5. It represents the minimal band-
width that can sustaintw test wires. Thus, this model guarantees
the maximal number of test wires using the minimal amount of
interconnect bandwidth. Before the test application, two connec-
tions are established to transport the test stimuli and responses be-
tween the ATE and the CUT with this actual bandwidth. Later, the
ATE starts sending data.

bin
act = bout

act = df × tw

8
e (5)

6 Experimental Results
6.1 Experimental Setup

Figure 5 shows the system described in VHDL to validate our
wrapper. It has three cores: the test source; the test sink; and the
CUT which is involved by the wrapper further described in Sec-
tion 6.2. Theinterfacebetween the cores and the interconnect is
via a DTL protocol configured with 32 data bits. Theinterconnect
is a Æthereal NoC automatically generated with four network in-
terfaces (NI) and one router (R). The Æthereal instance matches
this interconnect model illustrated in Figure 1: the protocol box
in the model matches with the DTL port; the communication ser-
vice box in the model matches with the NI; and the interconnect
network matches with the router network.

Although the system used as example is simple, we chose it
just for sake of readability and understanding. The guaranteed
communication services implemented in the Æthereal NI abstract
the internal implementation completely, for example, the topology
of the interconnect network.
6.2 Wrapper Architecture

TheCUT has two complete DTL ports; one to receive test stim-
uli from the source (port1), and the other to send responses to the

sink (port2). The CUT is configured with five internal scan chains
with 123, 123, 50, 50 and 23 cells, respectively. Each DTL port
has 133 terminals. Both of them have 32DI terminals, as well
as 32DO terminals. Port1 has 62CI and 7CO terminals, while
port2 has 7CI and 62CO. The core has no terminals classified
asFI andFO. The maximal bandwidths arebin

max = 200 MB/s
andbout

max = 300 MB/s. The test frequency isf = 500 MHz. The
number of test patterns isp = 10.

Equation 1 results intw = 3 test wires. The number of input
and output data terminals per test wire isdi = 10 anddo = 10,
respectively. After balancing the test wires, the maximal scan-in
and scan-out time ismax(si, so) = 168, while the minimal scan-
in and scan-out time ismin(si, so) = 167. Then, the core test
time isT = 1857 clock cycles.

The implemented wrapper for this core is presented in Figure 6.
The wrapper has three test wires identified by the dotted lines. The
test wires start withDI1 (DI of port1) terminals used to receive
test stimuli from the interconnect, followed byCI1, DI2 (not used
to receive test stimuli),CI2, internal scan chains,DO1 (not used
to send test responses),CO1, CO2, andDO2 used to send test
responses to the interconnect. Note that the terminalsDI110 (ter-
minal 10 in the setDI of port1),DI121 , DO210 , andDO221 are
not being used to carry test data (they have darker lines). This
effect happens because the division|DI|

tw
has remainder different

than zero.

6.3 Results

As presented in Section 5, more bandwidth may result in more
test wires for the wrapper, which may reduce the core test time.
The test time and wrapper area are compared with an approach for
dedicated TAMs [4].

Table 1 shows the core test time as function of the assigned
bandwidth (bact). The used core is the same presented in Section
6.2. As the bandwidth is increased, the number of test wires in-
creases, and the core test time decreases. Last column shows the
test time for [4]. Different test time between our approach and
[4] were observed for wrappers with more then three test wires.
Let us take the wrapper with four test wires as an example. Using
Equations 2 and 3, we derivedi = do = 8. The scan chains are
presented in Table 2 for our approach and for [4].

The previous approach [4] does not require constraints when
balancing the test wires. When there is the situation where a single
test wire is the bottleneck for the scan time (as the test wires tw[0]
and tw[1] in the example), the previous approach presents slight
better test time since their approach can distribute better the wrap-
per cells, resulting in smaller scan-in and scan-out times. How-
ever, the difference in the scan times is small, since our constraint
increases the scan time in only|DI|

tw
clock cycles for the scan-in

and |DO|
tw

clock cycles for the scan-out time.
We compare the area to implement a wrapper, for the core pre-

sented in Section 6.2, using our approach and [4]. The comparison
evaluates the area to implement the wrapper cells and the control
logic. The CUT requires 266 wrapper cells. In the proposed wrap-
per, 69 out of 266 use the new wrapper cell. The area to implement
all the 266 cells is 3000 equivalent gates. On the other hand, the
area to implement 266 wrapper cells for the previous wrapper is
2910 gates. Thus, the proposed approach requires +3% of area to

12

CUT

0

10

0

19

port1

SI SO

test control
& protocol

11

21

20

39

22

31

61

0

10

4

6

11

21

2

3

22

31

0

1

0

10

0

1

port2

11

21

2

3

22

31

6

0

19

10

0

20

39

21

11

40

61

22

CI1

DI1

DO2

CO2

test
wires

CO1

DO1

CI2

DI2SRU
W ��L

QSX
W�SD

UW� SRUW� �RXWSXW�SDUW�

SRU
W ��L

QSX
W�SD

UW� SRUW� �RXWSXW�SDUW�

31

40

4

123
123
50
50
23

Figure 6. Wrapper with three test wires.
bmax bact test our [4] additional

(MB/s) (MB/s) wires test test test
time time time (%)

63 to 124 63 1 5532 5532 0
125 to 199 125 2 2771 2771 0
200 to 249 200 3 1857 1857 0
250 to 333 250 4 1429 1395 2.4
334 to 399 334 5 1306 1250 4.3
400 to 499 400 6 1295 1244 3.9

Table 1. Test time as function of bandwidth.

test CI1+ scan DO1+
wire DI1 DI2+ chains CO1+ DO2

CI2 CO2

tw[0] 8 0 {123} 0 8
tw[1] 8 0 {123} 0 8
tw[2] 8 50 {50,23} 50 8
tw[3] 8 51 {50} 51 8

tw[0] 2 0 {123} 0 2
tw[1] 2 0 {123} 0 2
tw[2] 3 50 {50,23} 50 3
tw[3] 25 51 {50} 51 25

Table 2. Test wires for our approach and [4].

implement the wrapper cell then the previous approach. The con-
trol logic presented in Section 6.2 used to implement a subset of
the protocol requires 489 equivalent gates. This area is referent to
a small FSM of 6 states and two internal counters. The area may
change slightly for other cores due to the size of internal counters.
It also changes if other protocol is considered such as OCP or AXI.

On one hand, our approach has marginally higher test time and
area overhead. On the other hand, the wrapper presented in [4]
cannot be applied for functional interconnect reuse for test because
they ignore the protocol and don’t have support to convert data
formats.

7 Conclusion

We proposed the reuse of interconnects with on-chip protocol
and guaranteed bandwidth and latency services as a TAM. These
properties abstract the interconnect implementation and provide
the predictability in the data transfer required by the test applica-
tion. On top of this interconnect, the paper presented a general
wrapper model for reuse of functional interconnect as a TAM. The
wrapper design method is compatible with the well-defined and
existing tools (e.g. interconnect design tools), equipments (e.g.
tester), standards (e.g. P1500 and DTL), and concepts (e.g. sep-
aration between the computation and the communication). The
proposed wrapper was implemented in VHDL and integrated with
Æthereal NoC. Results for core test time and area overhead were
compared with a wrapper design for dedicated TAM.

References

[1] L. Benini and G. De Micheli. Networks on Chips: A New
SoC Paradigm.IEEE Computer, 35(1):70–80, 2002.

[2] T. Bjerregaard and J. Sparso. Scheduling Discipline for La-
tency and Bandwidth Guarantees in Asynchronous Network-
on-Chip. In11th IEEE International Symposium on Asyn-
chronous Circuits and Systems, pages 34–43, 2005.

[3] E. Cota, L. Carro, and M. Lubaszewski. Reusing an On-Chip
Network for the Test of Core-based Systems.ACM TODAES,
9(4):471–499, 2004.

[4] S. Goel and E. Marinissen. SOC Test Architecture Design
for Efficient Utilization of Test Bandwidth.ACM TODAES,
8(4):399–429, Oct. 2003.

[5] C. Liu et al. Power-Aware Test Scheduling in Network-on-
Chip Using Variable-Rate On-Chip Clocking. InProc. VTS,
pages 349–354, 2005.

[6] E. Marinissen, S. Goel, and M. Lousberg. Wrapper Design
for Embedded Core Test. InProc. ITC, pages 911–920, 2000.

[7] J. McCabe. Network Analysis, Architecture, and Design.
Morgan Kaufmann Publishers, 2nd edition, 2003.

[8] Philips Semiconductors.Device Transaction Level (DTL)
Protocol Specification. Version 2.2, July 2002.

[9] A. Rădulescu et al. An Efficient On-Chip Network Interface
Offering Guaranteed Services, Shared-Memory Abstraction,
and Flexible Network Programming.IEEE Transactions on
CAD of Integrated Circuits and Systems, 24(1):4–17, Jan.
2005.

[10] Y. Zorian, E. Marinissen, and S. Dey. Testing Embedded-
Core Based System Chips. InProc. ITC, pages 130–143,
1998.

