A Monitoring-Aware Network-on-Chip Design Flow

Calin Ciordas f

Andreas Hansson |

Kees Goossens ¥ Twan Basten T

T Eindhoven University of Technology
{c.ciordas,m.a.hansson,a.a.basten} @tue.nl
! Philips Research Laboratories Eindhoven

kees.goossens @philips.com

Abstract

Networks-on-chip (NoC) are a scalable interconnect so-
lution for systems on chip and are rapidly becoming reality.
Monitoring is a key enabler for debugging or performance
analysis and quality-of-service techniques. The NoC design
problem and the NoC monitoring problem cannot be treated
in isolation. We propose a monitoring-aware NoC design
flow able to take into account the monitoring requirements
in general. We illustrate our flow with a debug driven moni-
toring case study of transaction monitoring. By treating the
NoC design and monitoring problems in synergy, the area
cost of monitoring can be limited to 3-20% in general.

1 Introduction

Advances in semiconductor technology have enabled
very complex large scale systems on a chip (SoCs) de-
signs. Each new SoC generation integrates more process-
ing elements (IPs) and offers increased functionality. As
the number of IPs increases, traditional interconnects, such
as busses, become a bottleneck.

Networks-on-chip (NoCs) are a modular, scalable inter-
connect solution [1,2,6,9,10,13,15]. Currently, they tend to
become the preferred interconnect solution for large scale
inherently multiprocessor SoCs. However, NoCs require
sophisticated tools to aid in design-time decisions [3,8, 11,
18]. Furthermore, with increasing complexity there is also
a strong need for run-time NoC monitoring [4, 5, 19, 20],
which must be accounted for in the design phase. This is in
turn driven by debugging [4, 5] and performance monitor-
ing/Quality of Service (QoS) [19,20,22].

With the introduction of NoCs the on-chip communica-
tion becomes more sophisticated relying on run-time pro-
grammable solutions. In centralized bus-based systems a
single bus monitor is enough to be able to track the whole
history of the system. In NoC-based SoCs, due to the in-
herent parallel behavior of communications, where multi-
ple pipelined parallel communications may exist between

IPs, multiple monitors have to be employed. The prob-
lem of how many such monitors are needed, their automatic
placement in the NoC-based SoC by means of a monitoring-
aware NoC design flow and the associated area cost impli-
cations have not been previously investigated.

Monitors and the traffic they generate are traditionally
added non-intrusively into the SoC by using a separate mon-
itoring NoC [19]. The cost of such a solution is high how-
ever, and a more efficient solution is use the same NoC for
both monitor data and user data, as suggested in [4, 5, 20].
When monitoring traffic uses an interconnect of its own, it
can be dimensioned after the user data NoC is designed.
This merely adds an extra step in the design flow. However,
when monitor and user data must share the same NoC, the
overall design flow must be revised [5].

NoC design flows for ASIC type designs are normally
split in several steps as topology selection, mapping, path
selection and slot allocation [3,8,11,18]. Some design flows
may omit or combine various steps. Each step adheres to
the decisions taken in the previous steps. As prerequisites
for NoC design, communication requirements must be de-
rived, and the set of IPs to be connected to the NoC must be
specified. In the topology selection step, the router network
together with the bordering NIs are generated, based on
the previously derived communication requirements. Using
this topology together with the IP specification, the binding
of IP ports to NI ports is done in the mapping step. In the
path selection step, paths are allocated for all the commu-
nication flows specified, and in the slot allocation step each
of the flows gets its own TDMA time slots for the traversed
NoC links.

We have two interdependent problems: the one of func-
tional dimensioning of the NoC and mapping of cores
while accounting for their communication requirements,
and the other of monitor placement and monitoring band-
width specification. If these two problems are solved se-
quentially, the monitoring communication requirements can
be precomputed. However, if the communication require-
ments of the monitors do not fit directly on the generated
application NoC, a new NoC must be generated, e.g., by in-
creasing the topology and repeating the process. However,

by increasing the topology, the number of NoC routers in-
creases. In turn, the mapping, path selection and alloca-
tion of resources may change and the number of required
monitoring probes may increase as well (e.g. if probing all
routers is required) and their communication requirements
may change. In the mentioned cases the monitoring prob-
lem (whether driven by debugging or by run-time perfor-
mance analysis) must be solved within or at least tightly
coupled with the NoC design process. The task of placing
the monitors must therefore be automated and integrated in
the NoC design flow.

Contribution. We propose a monitoring-aware NoC de-
sign flow able to take into account the monitoring require-
ments at all steps in the NoC design flow. We illustrate
this with a debug driven monitoring case study. Simple,
area-efficient transaction monitors, attached to selectively
chosen NoC routers, are used to enable debugging of the
NoC-based SoC at transaction level. This is one of the
most difficult cases, where the monitoring requirements are
only known after the path selection step. In the context
of application specific designs, the proposed flow is able
to automatically insert transaction monitors, by determin-
ing the number and placement of these transaction monitors
and accounting for their communication requirements. The
smallest NoC which satisfies the application requirements,
as well as the monitoring requirements is generated as a re-
sult. The area implications are quantified and compared to
original NoCs without monitoring. The efficiency of the
flow is shown on several realistic examples.

2 Related Work

In [19], the use of end-to-end monitors is proposed in
order to assist the operating system controlling the NoC.
The work focuses on the use of such performance monitors
to optimize communication resource usage. The monitored
data uses a separate NoC, called the control NoC instead of
the application NoC.

[20] uses router performance monitors to keep track of
the network utilization. By means of a network manager
this information is made useful to a QoS manager to in-
crease/decrease the quality levels of running applications.
The monitored performance data uses the same NoC as the
user data.

[4] proposes a generic NoC monitoring service compris-
ing monitors attached to NoC components, routers or NIs,
offered by the NoC. Targeted at debugging, it focuses on
generic concepts of the service, architectural and general
cost implications. The monitored data uses the same net-
work as the user data.

[5] shows that using the same interconnect for the user
traffic and monitoring traffic is area-efficient but may re-
quire modifications in the NoC design flow. However, it
falls short on showing how to solve this problem in general
and what are the associated cost implications.

All previous works assumes that: (1) the placement of
the monitors is known, (2) the monitoring generated traffic

or communication requirements are known in advance, (3)
this traffic fits on top of the user traffic on the shared NoC
or (4) on a separate NoC.

For monitoring, in general, these assumptions are not
valid. The number and placement of monitors and their as-
sociated monitoring communication requirements are usu-
ally not known beforehand, but only after the NoC to be
probed has been fully designed, or at least some steps in the
NoC design flow have been performed. For example, some
requirements may be known only after topology generation,
such as the number of routers employed in the NoC, which
is relevant if all routers or a coverage of routers need to be
probed e.g. with router monitors showing link utilization.
In this case the number of routers determines the number
of probes and their placement, while their communication
requirements are fixed, depending only on the number of
links being traced. Other communication requirements may
be known after the path selection step in the design flow,
e.g. router monitors able to trace a connection, e.g. the
functional traffic for debug reasons (or for connection uti-
lization). In this case, assuming a desired full coverage of
the connections, the number of probes and their placement
is given by the routers in the cover. Their communication
requirements depend on the number of connections passing
the probed router and their sizes. We propose a monitoring
aware design flow that fully integrates the design of the NoC
and its monitoring service, solving all the above mentioned
issues.

3 Architectural Platform
3.1 NoCs and Athereal

NoCs comprise two components: routers (R) and net-
work interfaces (NI), as depicted in Figure 1. The routers
can be randomly connected among themselves and to the
NIs (i.e., there are no topology constraints). Note that in
principle there can be multiple links between routers. The
routers transport packets of data from one NI to another.

dedicated IP

embedded FPGA |

Figure 1. Example NoC

The NIs enable end-to-end services [21] to the IP mod-
ules and are key in decoupling computation from communi-
cation [2,23]. The NI allows the designer to simplify com-

munication issues to local point-to-point transactions at IP
module boundaries, using protocols natural to the IP [23].
They are responsible for (de-)packetization, for implement-
ing the connections and services, and for offering a standard
interface (e.g., AXI or OCP) to the IP modules.

We use the ZEthereal NoC [8, 9] as an example for our
work. The Athereal NoC runs at 500 MHz and offers a raw
link bandwidth of 2GB/s in a 0.13ym CMOS technology.
ZAthereal offers transport-layer communication services to
IPs, in the form of connections, comprising best-effort
(BE) and guaranteed-throughput (GT) services. Guaran-
tees are obtained by means of TDMA slot reservations in
NIs. Athereal NoC instances are reconfigurable at run-time.
This is achieved by programming the NIs using standard
memory-mapped I/O ports. The current setup uses cen-
tralized programming of the NoC and source routing. The
Athereal NoC allows the mapping of potentially multiple
IPs per NI and potentially multiple NIs per router with any
topology.

The interconnected IPs interact with each other by means
of transactions, which are read and write transactions from
IPs. Transactions consist of one request message and one
optional response message. E.g. a request message can be
a write message. A response message is for example data
coming back as a result of a read operation, or an acknowl-
edgment as a result of a write operation. Transactions are
performed on connections, consisting of one request and
one response channel. The paths of request and response
channels may be different.

The NIs convert these messages into packets, by chop-
ping them into pieces of a maximum length and adding a
header to each of these pieces, resulting in packets. Packets
may be of different lengths.

Packets are further split into flits, the minimum flow-
control unit between hops. One flit corresponds to one
TDMA slot.

3.2 Transaction Monitoring

3.2.1 The Transaction Monitoring Problem

To increase the operational speed of system-level debug-
ging, the NoC debugging infrastructure must bring the ab-
straction level of the monitored data at transaction-level,
and allow run-time transaction monitoring in particular, at a
reasonable cost.

The problem of how many transaction monitors are
needed relates to the desired coverage of the user commu-
nication flows. In general a full coverage is desired. How-
ever, it is prohibitively expensive to duplicate all traffic in
the NoC; therefore the coverage may be full but has to be
selective at certain moments in time. This means that the
monitors must cover all channels, but not at the same time.
At run-time, any (potentially more) of the desired channels
can be selected to be monitored. The number of simultane-
ously active monitors in the system is bounded by the num-
ber of monitors deployed, as each monitor can only track a

single channel.

The problem of the cost implications of the monitoring
relates to the area of the monitors, the number of monitors
involved and also to the area of the resulting NoC which
supports both the application and monitoring communica-
tion requirements. The resulting NoC, potentially larger
than the original NoC, accounts for the extra NIs, NI ports
or enlarged topology to support monitoring in addition to
the application communication.

3.2.2 NoC Monitoring Service

We use a monitoring service (NoCMS) as described in [4].
The NoCMS is offered by the NoC in addition to the com-
munication services offered to the IPs. It consists of config-
urable probes attached to NoC components, see Figure 2 for
details. The probe modular design comprises three parts:
the sniffer (S), the event generator (EG) and the monitor-
ing network interface (MNI). The MNI can be a separate
NI or it can be merged with an existing NI. The monitoring
service access point (MSA) is an IP which controls the con-
figuration of the monitors at run-time and receives the mon-
itored data from all monitors. E.g. the MSA can stream this
data outside the chip through a debug port. The NoCMS
is configured by means of probe programming via the NoC
using memory-mapped I/O write transactions. The generic
NOCMS concepts must be instantiated for the monitoring
task at hand, in our case transaction monitoring. This im-
plies the replacement of the EGs with transaction monitors,
the placement of these monitors to offer a full channel cov-
erage of the system, the placement of the MSA, and the
the dimensioning of the communication requirements of the
monitors (as this data should go to the MSA via the NoC).
We use centralized monitoring with a single MSA.

Figure 2. NoC Monitoring Service

3.2.3 Transaction Monitors

The transaction monitors can be attached to routers or NIs.
For simplicity we only consider them as attached to routers.
They can ultimately track transactions over a single chan-
nel passing any of the router’s links. The monitors can be
(re-)programmed at run-time to track any channel. They
consist of a configuration block and a set of five pipelined
filters. All run-time settings are done through the configu-
ration block.

The raw data is provided to the transaction monitor by
the sniffer, which captures it from the router links. The link
of interest can be selected at run-time by configuring the
first filter. The flits can be further filtered as BE or GT in
the second filtering block. Further filtering of flits is done by
identifying a single connection from the set of connections
sharing the same link, in the next filter.

Transactions are composed of messages. Message iden-
tification allows to see, from within the NoC, when a write
or a read message has been issued and from where or to
which of the IPs or memories. Messages are payload packed
in packets. Therefore, message identification requires de-
packetization, a procedure usually done at the NI. For the
fourth filter, which is the essential one to provide trans-
action monitoring, we reused available ZAthereal hardware
modules for depacketization. The fifth filter has abstraction
capabilities and is not discussed here because the details are
not important.

A 0.13pm CMOS technology implementation of a trans-
action monitor supporting the first four filtering stages
shows an area cost of 0.026mm?. Assuming that no fil-
tering/abstraction is done locally at the monitor, the band-
width requirements of the transaction monitors are compa-
rable with the bandwidth of the monitored connection.

4 Application-aware placement

Since we are considering ASIC-like design, the applica-
tion is known at design time. For the NoC-based SoC it
means that also the set of connections (all request and re-
sponse channels) is known at design time. The bandwidth
and latency constraints of the channels are determined be-
forehand by means of static analysis or simulation.

At least one probe is required on the path of each chan-
nel, regardless whether it is a request or response channel.
This means that any of the existing channels can be probed,
achieving a full channel coverage. Furthermore, the con-
current observation of multiple channels is only limited by
the number of probes in the NoC. We can simultaneously
monitor one channel per probe. At run-time, the monitored
channels per probe may change by means of programming
the probes. This selectivity is acceptable as usually not all
streams are required to be monitored at once (duplicating

(a) Naive placement of
monitors

(b) Optimal placement of
monitors

Figure 3. Placement of Transaction Monitors

all traffic, even at a high abstraction level is prohibitive).

In ASIC design, a full coverage of routers with moni-
tors may potentially be avoided, see for example the four
monitors in Figure 3(a) covering each one of the four chan-
nels, versus the two monitors in Figure 3(b) covering each
the two channels passing through. This leads to a reduction
of the total monitoring solution area cost. Note that even
assuming a full coverage of NoC routers with transaction
monitors the communication requirements of these moni-
tors are not known before the path selection step in the NoC
design flow, as we do not know earlier what channels will
pass through each of the monitored routers. Therefore, the
problem of modifying the design flow to support monitoring
constraints cannot be avoided.

S Design Flow
5.1 UMARS

UMARS [11] is a QoS constrained NoC design algo-
rithm. It unifies the three resource allocation phases: spatial
mapping of cores, spatial routing of communication, and the
restricted form of temporal mapping that assigns time-slots
to these routes. UMARS considers the real-time commu-
nication requirements, and guarantees that application con-
straints on bandwidth and latency are met.

UMARS is a greedy algorithm, iterating over the mono-
tonically decreasing set of unallocated channels until they
are all accommodated in the NoC, or until allocation failed.
The algorithm, as outlined in Algorithm 5.1, never back-
tracks to reevaluate an already allocated flow, enabling run-
times in the order of milli-seconds.

Algorithm 5.1 Outer loop of UMARS

1. While there are unallocated channels

(a) Select the channel with highest bandwidth
(b) Find a mapping and a path
(c) Select slots on this path

An important property of UMARS that we exploit in this
work is the fact that channels are allocated ordered on their
bandwidth requirements. This is done as it: 1) helps in re-
ducing bandwidth fragmentation [14], 2) is important from
an energy consumption and resource conservation perspec-
tive since the benefits of a shorter path grow with commu-
nication demands [12], 3) gives precedence to flows with a
more limited set of possible paths [12]. This ordering as-
sures us that no channel succeeding the one currently being
allocated has higher bandwidth requirements.

5.2 Monitoring-Awareness

The proposed monitoring aware NoC design flow is de-
picted in Figure 4. The coupling of mapping, path selection

and time-slot allocation from the original UMARS is ex-
tended with the mapping of transaction monitors to routers
such that a full coverage of user channels is achieved. Here,
we do not discuss the original UMARS mapping, routing
and slot allocation; for these refer to [11].

As a preprocessing step to the modified UMARS, trans-
action monitors are virtually added to all routers (as this
would be the maximum set of transaction monitors that we
consider). These virtual monitors are added to the set of
IPs present in the system. They are connected to the closest
local NI, attached to the router they monitor.

Due to the centralized monitoring used, a single MSA
is further added to the set of IPs and it gets its own NI
A single GT connection is assumed from any monitor to
the MSA although yet of unknown required bandwidth. We
consider monitoring connections as latency insensitive, so
no latency constraints are added to them.

Topologyselection

Routin;

SlotAllocation
MonitorPlacement

|(Comersionng)
\

Setofflows
SetofIPs

Figure 4. Monitoring-aware design flow

Monitor Placement. The loop of Algorithm 5.1 is ex-
tended with a fourth step, after a channel is allocated. This
step is described in Algorithm 5.2. First, we check whether
we need to insert additional monitoring. If the channel
passes through a router that is monitored, we know, as chan-
nels are traversed in decreasing bandwidth order, that the
monitor is able to monitor also this channel. Hence, noth-
ing changes in this case. However, if none of the routers
that the channel passes through are yet monitored, we se-
lect one in Step la of Algorithm 5.2. We select a router
with the highest arity on the channel path, because it max-
imizes the number of potential observed channels for this
monitor. Once we select the router to be probed we are sure
that the router will stay in the final set of transaction mon-
itors. Therefore, the virtually probed router is added to the
set of probed routers.

In Step 1b of Algorithm 5.2 we then add a channel from
the now monitored router (and its associated NI) to the
MSA. This channel is added to the set of unallocated flows.

Dimensioning. The requirement in terms of bandwidth
is derived as a function of the channel that mandated the
insertion of the probe. Note that the way in which the com-
munication requirements are dimensioned does not impact
the overall proposed design flow. For the transaction moni-
toring example we set the traffic numbers for the monitoring
channels equal to the bandwidth required by the monitored

channel. The next channel to be monitored by the same
monitor, whose monitoring channel has been allocated, is
guaranteed to require a lower bandwidth. As one monitor
can only monitor one channel at a time, the previously allo-
cated monitoring channel would be reused. The same holds
if the monitoring channels would require, e.g. 10% of the
monitored connection bandwidth, due to a higher abstrac-
tion power of the monitors.

Algorithm 5.2 Step four
1. If the path does not pass a monitored router

(a) Select a router on the path
(b) Add a channel from this router to the MSA

The newly added channel is a monitoring channel. The
only difference between a genuine user channel and a moni-
toring channel is that we only want to monitor the user chan-
nels and not the monitoring channels themselves. Besides
allocating the user and monitoring channels we also take
care not to monitor the monitoring channels. Therefore, Al-
gorithm 5.2 is only executed for user channels.

Results. If UMARS completes the allocation success-
fully, we have as results the mapping, routing, slot alloca-
tion, monitor placement and monitoring dimensioning. Af-
ter UMARS completes the allocation for all flows, all the
routers in the set of probed routers have monitors attached.
All the rest of virtual monitors are removed, as well as all
the unallocated monitoring flows.

Iterations. If an allocation was not found by varying the
slot table size till some predefined upper limit, the topology
can be increased and the process repeated.

6 Experiments
6.1 Application Examples

Real Examples. We have used two real applications.
(mpeg) an mpeg2 encoder/decoder using the main profile
(4:2:0 chroma sampling) at main level (720x480 resolution
with 15Mb/s) supporting interlaced video up to 30 frames
per second. This application consists of 15 processing cores
and an external SDRAM, and has 42 channels (with an ag-
gregated bandwidth of 3GB/s), all configured to use guar-
anteed throughput, as presented in [8].

(audio) this application performs sample rate conversion,
MP3, audio-postprocessing and radio. It closely resembles
the chip presented in [16]. The application consists of 18
cores and has 66 channels all configured to use guaranteed
throughput.

We have combined the two applications into four cases
to be used as examples: mpeg (Designl), mpeg + audio
(Design2),2 x mpeg + audio (Design3), 4 x mpeg + audio
(Design4).

Synthetic Examples. We have also generated synthetic
application benchmarks for testing our proposed design

Table 1. Real Examples

| Designs [area [inc [size [mon [st ‘
INI/R
Designl 5.15 - 2x4 - 21
Designl+M | 5.43 +5.5% | 2x4 5 27
Design2 8.75 - 3x3 - 30
Design2+M | 10.16 | +16.1% | 3x4 | 10 | 27
Design3 12.03 - 3x4 - 44
Design3+M | 1395 | +16% | 3x4 9 60
2NIs/R
Designl 4.03 - 1x4 - 21
Designl+M | 4.12 +22% | 2x2 3 20
Design2 7.88 - 2x3 - 20
Design2+M 8.2 +3.9% | 2x3 6 20
Design3 10.82 - 3x3 - 22
Design3+M | 11.64 | +7.6 % | 2x4 8 29
3NIs/R
Designl 3.62 - 1x2 - 30
Designl+M | 3.85 +6.3% | 1x3 3 18
Design2 6.97 - 1x3 - 27
Design2+M | 7.16 +54% | 1x3 3 30
Design3 10.26 - 2x3 - 21
Design3+M | 10.78 +5% 2x3 6 22
Design4 18.45 - 3x4 - 21
Design4+M | 19.07 | +3.4% | 2x4 8 36

flow. These benchmarks are structured to follow the ap-
plication patterns of real SoCs. We have generated appli-
cations into two classes of such benchmarks, as presented
n [17]: (i) Spread communication benchmarks (Spread),
where each core communicates to a few other cores. These
benchmarks characterize designs such as the TV processor
that has many small local memories with communication
evenly spread in the design. (ii) Bottleneck communication
benchmarks (Bottleneck) where there are one or multiple
bottleneck vertices to which the core communication takes
place. These benchmarks resemble designs using shared
memory/external devices such as the set-top boxes.

We have used spread communication of 12 IPs, in which
every IP communicates with three others. We have used
bottleneck communication with two converging points and
12 IPs. We have generated 500 synthetic application exam-
ples with spread and bottleneck communication.

6.2 Results

6.2.1 Setup

For both the real and synthetic application examples
we have investigated what the original UMARS vs.
monitoring-aware UMARS output is. The original UMARS
generates the minimal NoC on which only the application
requirements fit, while the monitoring-aware UMARS gen-
erates the minimal NoC on which both the application and
monitoring requirements fit. To evaluate the performance of
our approach, we looked at: (i) required number of transac-
tion monitors,(ii) resulting topology size and (iii) resulting
area.

(@) one NI per (b) two NIs per (c) three NIs per
router router router

Figure 5. Nls per router

For each application we have evaluated all possible
meshes, from one by one up to seven by seven. For each
of these topologies we have added one, two and three NIs
per router, as depicted in Figure 5 and evaluated slot table
sizes up to 65 TDMA slots. A larger slot table size mitigates
overprovisioning due to granularity, but is often associated
with a growth in buffer sizes as network consumption tends
to become more bursty. Out of all the configurations for
which UMARS finds an allocation, we present the one with
lowest total area cost.

Table 1 summarizes the results for the real examples,
when one, two or three NIs per routers are tried. Due to the
large communication demands, and given the constraints on
topology and slot-table size we set for our experiments, De-
sign4 only fits on a topology using three NIs per router. For
the synthetic examples Figures 6 and 7 summarize the re-
sults for bottleneck and spread communication respectively.

6.2.2 Number of transaction monitors

For the synthetic cases with bottleneck communication, we
see that the number of routers needed to be probed for full
coverage varies between 50% and 100% with an average
of 75%. Figure 6(a) displays the distribution. For spread
communication Figure 7(a) displays the distribution. We
see that the number of routers requiring a probe is higher
compared to the bottleneck cases, but that is no surprise as
the communication is more balanced (spread out) over the
routers. The minimum is 60% while the maximum is 90%.
Hence, the interval is narrower than with bottleneck com-
munication, the maximum is actually lower, and coverage
of all routers was never required. Looking at the diagrams
it is obvious that the number of routers needing probes is
focused around the 80-90% bins.

Please note that the number of transaction monitors re-
quired is high because the Athereal NoC allows multiple
IPs to be connected to the same NI and multiple NIs to be
connected to the same router. Therefore, channels can be
very short, e.g. a channel between a master and a slave con-
nected to the same NI will go through the NI starting from
the master, then through one router and back to the same
NI to the slave. All routers having at least one channel like
this passing through will require one transaction monitor.
Other NoCs may require a channel to pass through two dif-
ferent NIs, potentially lowering the number of transaction
monitors being required.

For the real examples, see column mon showing the
number of monitors and compare it to column size show-

Relative frequency

°
@

Relative frequency

11

005 0.05
g = [l
50 60 70 EY 90 100 <0) 1
Probed routers (%)

Number extra routers

8 10 15 20 25 30 35 40
Area overhead (%)

(a) Number of Probed Routers

(b) Topology Increase

(c) Area Implications

Figure 6. Bottleneck

&

Relative frequency
o o o
=

™

Relative frequency
o
B

= . 1 -

il
I
i

50 60 70 80 EY 100 <0 0 1
Probed routers (%)

Number extra routers

2 3 5 10 15 20 25 30 35 40
Area overhead (%)

(a) Number of Probed Routers

(b) Topology Increase

(c) Area Implications

Figure 7. Spread

ing the mesh size. On average 87% of the routers need to
be probed, but full coverage of routers with probes was re-
quired in 60% of the cases. Relating this with the area num-
bers from the same table, it is interesting to observe that
the most area-efficient solutions required all routers probed.
Therefore probing all routers must not be associated with
area-inefficient solutions, the number of monitoring probes
(in our case transaction monitors) being just one component
which influences the total area cost of the monitoring solu-
tion.

6.2.3 Topology size

For the topology size we looked at the total number of
routers employed. Figures 6(b) and 7(b) display the dis-
tribution for the synthetic examples. On average, topology
stays the same (no extra routers required) or one or two
extra routers are required. Increases in topology size with
more than two routers, but with a maximum of 8, are still
required in other cases, especially in the bottleneck applica-
tions. This can be explained because in bottleneck designs
it is harder to accommodate the new monitoring channels
due to the existing bottleneck vertices. Interesting is the
fact that in 3-4% of the cases the number of routers actually
decreased. This we can attribute to the heuristic nature of
UMARS and to the higher number of slots used in the NoCs
with monitoring.

For the real examples we see the number of routers kept
constant in six cases, and both an increase and a decrease in
two cases. The latter is accountable to an allocation found

with a higher slot table size, see column st in Table 1.

In both real and synthetic examples we see that there is
a good chance(30-60%) to find a solution on the same NoC
topology, without requiring extra routers.

6.2.4 Area

The total NoC area is derived according to the model
in [7] extended with the area of the transaction monitors,
0.026mm? per monitor in 0.13zm CMOS technology. Note
that the total area presented includes NIs, routers and probes
(transaction monitors). The area of NIs also accounts for
buffer sizing in the NIs/NI ports corresponding to the real
communication requirements of the users and monitors.
The area numbers do not include the area of other IPs in
the SoC, but refer to the NoC together with the complete
monitoring service.

For bottleneck communication, area wise the cost is con-
tinuously below 50% with an average of 15%. Figure 6(c)
shows the distribution of area overhead over the test cases
and it is obvious that most lie in the left half of the span.

For spread communication Figure 7(c) shows the distri-
bution. From an area point of view the overhead is between
10% and 40%, which again is a narrower interval than for
bottleneck communication. In all it ends up on an average
of 15% also for uniform traffic. No major difference in the
area overhead is noticeable between uniform and bottleneck
communication.

For the real examples the total area increase, see column
inc in Table 1, amounts to between 2.2% and 16.1%. The

100%

90%

S

8 o

< 95% OProbes
2 W Routers
2 BNIs

©

£

£

S

z

Examples

Figure 8. Overall distribution of area

area overhead is between 3% and 7% in the most area ef-
ficient case of three NIs per router which succeeded for all
four designs. The resulting four designs we consider the
end results of the monitoring-aware NoC design flow.

It is also interesting to see the overall distribution of this
area between NIs, routers and monitors. This is presented
in Figure 8 for the four designs in their most area-efficient
case using 3NIs/R. For the original designs the distribution
of area between NlIs and routers is shown. The main re-
mark is that in all cases area of the transaction monitors is
insignificant relative to the total area of the designs, dom-
inated by the area of the NIs. Furthermore, in all designs
the area of the monitors is even several times lower than the
area of the routers involved.

7 Conclusion

We propose a NoC design flow in which monitoring is
taken into account at design time and is fully integrated in
the flow, automating the insertion of the monitors whenever
their communication requirements are known, leading to a
monitoring aware NoC design flow. Our flow was exempli-
fied with the concrete case of transaction monitoring, in the
context of the Athereal NoC and UMARS design flow.

We are the first to quantify the complete cost of the com-
plete monitoring solution accounting for the monitors, ex-
tra NIs, NI ports or enlarged topology needed to support
monitoring in addition to the original application commu-
nication. Results show an area efficient solution for inte-
grating monitoring in NoC designs. Monitors alone do not
add much to the overall area numbers as the designs remain
dominated by the area of NIs.

References

[1] L. Benini and G. De Micheli. Networks on chips: A new SoC
paradigm. IEEE Computer, 35(1):70-80, 2002.

[2] T. Bjerregaard and J. Sparsg. A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-
chip. In Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 1226-1231, Mar. 2005.

[3] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC: QoS ar-
chitecture and design process for network on chip. Journal of Sys-
tems Architecture, 50(2-3):105-128, Feb. 2004. Special issue on
Networks on Chip.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

[23]

C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J. van Meer-
bergen. An event-based monitoring service for networks on chip.
ACM Transactions on Design Automation of Electronic Systems,
10(4):702-723, Oct. 2005. HLDVT’04 Special Issue on Validation
of Large Systems.

C. Ciordas, K. Goossens, A. Ridulescu, and T. Basten. NoC monitor-
ing: Impact on the design flow. In Proc. Int’l Symposium on Circuits
and Systems (ISCAS), May 2006.

W. J. Dally and B. Towles. Route packets, not wires: on-chip in-
terconnection networks. In Proc. Design Automation Conference
(DAC), pages 684-689, 2001.

S. Gonzélez Pestana, E. Rijpkema, A. Ridulescu, K. Goossens, and
O. P. Gangwal. Cost-performance trade-offs in networks on chip: A
simulation-based approach. In Proc. Design, Automation and Test
in Europe Conference and Exhibition (DATE), pages 764769, Feb.
2004.

K. Goossens, J. Dielissen, O. P. Gangwal, S. Gonzilez Pestana,
A. Rédulescu, and E. Rijpkema. A design flow for application-
specific networks on chip with guaranteed performance to accelerate
SOC design and verification. In Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE), pages 1182—1187, Mar.
2005.

K. Goossens, J. Dielissen, and A. Ridulescu. The Athereal network
on chip: Concepts, architectures, and implementations. /EEE Design
and Test of Computers, 22(5):21-31, Sept-Oct 2005.

P. Guerrier and A. Greiner. A generic architecture for on-chip packet-
switched interconnections. In Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE), pages 250-256, 2000.
A. Hansson, K. Goossens, and A. Rddulescu. A unified approach to
constrained mapping and routing on network-on-chip architectures.
In Int’l Conf. on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 75-80, Sept. 2005.

J. Hu and R. Marculescu. Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures. In
DATE ’03: Proceedings of the conference on Design, Automation
and Test in Europe, pages 688—693. IEEE Computer Society, 2003.
F. Karim, A. Nguyen, and S. Dey. An interconnect architecture for
networking systems on chips. IEEE Micro, 22(5):36—45, Sept. 2002.
I. Matta and A. Bestavros. A load profiling approach to routing guar-
anteed bandwidth flows. In IEEE INFOCOM, volume 3, pages 1014—
1021, Mar 1998.

M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The
Nostrum backbone - a communication protocol stack for networks
on chip. In Proc. Int’l Conference on VLSI Design, pages 693—696,
2004.

A. Moonen, R. van den Berg, M. Bekooij, H. Bhullar, and J. van
Meerbergen. A multi-core architecture for in-car digital entertain-
ment. In GSPx, 2005.

S. Murali, M. Coenen, A. Ridulescu, K. Goossens, and
G. De Micheli. A methodology for mapping multiple use-cases on to
networks on chip. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), Mar. 2006.

S. Murali and G. De Micheli. Bandwidth-constrained mapping of
cores onto NoC architectures. In Proc. Design, Automation and Test
in Europe Conference and Exhibition (DATE), pages 896-901, 2004.
V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J.-Y. Migno-
let. Operating-system controlled network on chip. In Proc. Design
Automation Conference (DAC), pages 256-259, 2004.

M. Pastrnak et al. Combined reservation and adaptation QoS for
improving picture quality and resource usage of multimedia (NoC)
chips. In International Symposium on Consumer Electronics, 2006.
A. Ridulescu, J. Dielissen, S. Gonzélez Pestana, O. P. Gangwal,
E. Rijpkema, P. Wielage, and K. Goossens. An efficient on-chip
network interface offering guaranteed services, shared-memory ab-
straction, and flexible network programming. IEEE Transactions on
CAD of Integrated Circuits and Systems, 24(1):4-17, Jan. 2005.

J. W. van den Brand. Runtime networks-on-chip performance moni-
toring. Technical Report 2006/00218, Philips Research, Mar. 2006.
D. Wingard. Socket-based design using decoupled interconnects.
In J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, editors,
Interconnect-Centric Design for Advanced SoC and NoC, chapter 15,
pages 367-396. Kluwer, 2004.

